Distance-based Learning

Based on Raymond J. Mooney’s slides and
Peter Flach book



Distance-based Learning

» Supervised: Instance-based learning (k-nearest neighbors)

* Unsupervised: Clustering



Instance-Based Learning

Unlike other learning algorithms, does not involve
construction of an explicit abstract generalization but
classifies new instances based on direct comparison and
similarity to known training instances.

Training can be very easy, just memorizing training
1nstances.

Testing can be very expensive, requiring detailed
comparison to all past training instances.

Also known as:

— Case-based

— Exemplar-based
— Nearest Neighbor
— Memory-based
— Lazy Learning



Example




Similarity/Distance Metrics

Instance-based methods assume a function for determining
the similarity or distance between any two instances.

For continuous feature vectors, Euclidian distance 1s the
generic choice:

d(xi9xj) = \/i (ap(xi)_ap(xj))2

Where a,(x) is the value of the p th feature of instance x.

For discrete features, assume distance between two values
1s 0 1f they are the same and 1 1f they are different (e.g.
Hamming distance for bit vectors).

To compensate for difference 1n units across features, scale
all continuous values to the interval [0,1].



Minkowski distance 1

If & = R4 , the Minkowski distance of order p > 0 is defined as

d

1/p
Dis, (x,y) = (Z X —yjlp) = [Ix=yllp
j=1

1/p
where ||z]|, = (Ed 1121 ) is the p-norm (sometimes denoted L, norm) of
the vector z. We will often refer to Dis, simply as the p-norm.

&= The 2-norm refers to the familiar Euclidean distance

d
Diss (X, y) = \l Y (xj-y)? =/ &=y x-y)
j=1

which measures distance ‘as the crow flies’.



Minkowski1 distance 11

&= The 1-norm denotes Manhattan distance, also called cityblock distance:

d
Dis; (x,y) = )_ 1xj— y;jl
j=1

This is the distance if we can only travel along coordinate axes.

g&= If we now let p grow larger, the distance will be more and more dominated
by the largest coordinate-wise distance, from which we can infer that
Diseo (X,y) = max; |xj — y;l; this is also called Chebyshev distance.



Minkowski distance 111

&= You will sometimes see references to the 0-norm (or Ly norm) which counts
the number of non-zero elements in a vector. The corresponding distance
then counts the number of positions in which vectors x and y differ. This is
not strictly a Minkowski distance; however, we can define it as

d d
Disox,y) = Y. (xj—y)° = Ilxj=y;]

J

J

under the understanding that x° = 0 for x = 0 and 1 otherwise.

¢= |If x and y are binary strings, this is also called the Hamming distance.

Alternatively, we can see the Hamming distance as the number of bits that
need to be flipped to change x into .

&= For non-binary strings of unequal length this can be generalised to the
notion of edit distance or Levenshtein distance.



Means and distances |

Theorem (The arithmetic mean minimises squared Euclidean distance)

The arithmetic mean pu of a set of data points D in a Euclidean space is the
unique point that minimises the sum of squared Euclidean distances to those
data points.

Proof.

We will show that argminyzxep ||x—y||2 = ., where || - || denotes the 2-norm.
We find this minimum by taking the gradient (the vector of partial derivatives with
respect to y;) of the sum and setting it to the zero vector:

Vy Y Ix=ylI*=-2) (x-y)=-2) x+2|Dly=0
xeD xeD xeD

from which we derive y = |—ll)| > xeDX= L. ]




Means and distances 11

&= You may wonder what happens if we drop the square here: wouldn't it be
more natural to take the point that minimises total Euclidean distance as
exemplar?

¢= This point is known as the geomelric median, as for univariate data it
corresponds to the median or ‘middle value’ of a set of numbers. However,
for multivariate data there is no closed-form expression for the geometric
median, which needs to be calculated by successive approximation.

&= |n certain situations it makes sense to restrict an exemplar to be one of the
given data points. In that case, we speak of a medoid, to distinguish it from
a centroid which is an exemplar that doesn’t have to occur in the data.

¢= Finding a medoid requires us to calculate, for each data point, the total
distance to all other data points, in order to choose the point that minimises
it. Regardless of the distance metric used, this is an O(n?) operation for n
points.



The basic linear classifier 1s distance-based

&= The basic linear classifier constructs the decision boundary as the

perpendicular bisector of the line segment connecting the two exemplars
(one for each class).

An alternative, distance-based way to classify instances without direct
reference to a decision boundary is by the following decision rule: if X is
nearest to 1+~ then classify it as positive, otherwise as negative; or
equivalently, classify an instance to the class of the nearest exemplar.

If we use Euclidean distance as our closeness measure, simple geometry
tells us we get exactly the same decision boundary (Figure 8.6 (left)).

So the basic linear classifier can be interpreted from a distance-based
perspective as constructing exemplars that minimise squared Euclidean
distance within each class, and then applying a nearest-exemplar decision
rule.



Other Distance Metrics

« Mahalanobis distance (=2)

— Scale-invariant metric that normalizes for variance.
* Cosine Similarity
— Cosine of the angle between the two vectors.

— Used 1n text and other high-dimensional data.

e Pearson correlation (=)
— Standard statistical correlation coefficient.
e Edit distance

— Used to measure distance between unbounded length
strings.
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Example: Centroids and medoids

Flach Fig. 8.5. p. 239
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A small data set of 10 points, with circles indicating centroids and squares indicating
medoids (the latter must be data points), for different distance metrics. Notice how the
outlier on the bottom-right ‘pulls’ the mean away from the geometric median; as a result
the corresponding medoid changes as well.



K-Nearest Neighbor

Calculate the distance between a test point
and every training instance.

Pick the k closest training examples and
assign the test instance to the most common
category amongst these nearest neighbors.

Voting multiple neighbors helps decrease
susceptibility to noise.

Usually use odd value for £ to avoid ties.
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Implicit Classification Function

» Although it 1s not necessary to explicitly calculate
it, the learned classification rule 1s based on
regions of the feature space closest to each
training example.

» For 1-nearest neighbor with Euclidian distance,
the Voronoi diagram gives the complex
polyhedra segmenting the space into the regions
closest to each point.
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One vs. Two (and more) nearest neighbors
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(left) Voronoi tesselation for five exemplars. (middle) Taking the two nearest exemplars
into account leads to a further subdivision of each Voronoi cell. (right) The shading
indicates which exemplars contribute to which cell.
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Efficient Indexing

Linear search to find the nearest neighbors 1s not
efficient for large training sets.

Indexing structures can be built to speed testing.

For Euclidian distance, a kd-tree can be built that
reduces the expected time to find the nearest
neighbor to O(log n) in the number of training
examples.

— Nodes branch on threshold tests on individual features
and leaves terminate at nearest neighbors.

Other indexing structures possible for other
metrics or string data.

— Inverted index for text retrieval.
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kd-tree

The kd-tree 1s a binary tree in which every node 1s

a k-dimensional

point.

Every non-leaf node generates a splitting

hyperplane that d
subspaces.

Points left to the
tree of that node

1vides the space 1nto two

hyperplane represent the left sub-
and the points right to the

hyperplane by the right sub-tree.

The hyperplane direction 1s chosen in the
following way: every node split to sub-trees 1s
associated with one of the k-dimensions, such that

the hyperplane 1s
vector.

perpendicular to that dimension
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Nearest Neighbor Variations

 Can be used to estimate the value of a real-
valued function — regression - by taking the
average function value of the k nearest
neighbors to an input point.

» All training examples can be used to help
classify a test instance by giving every
training example a vote that 1s weighted by
the inverse square of 1ts distance from the
test instance.

19



Feature Relevance and Weighting

 Standard distance metrics weight each feature
equally when determining similarity.

— Problematic if many features are 1rrelevant, since
similarity along many irrelevant examples could
mislead the classification.

* Features can be weighted by some measure that
indicates their ability to discriminate the category
of an example, such as information gain.

* Opverall, instance-based methods favor global
similarity over concept simplicity.
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Rules and Instances 1n
Human Learning Biases

* Psychological experiments i

show that people from (05
different cultures exhibit % N
distinct categorization

biases. P>
. \
“Western” subjects favor e

simple rules (straight stem)

4 ‘)

and classify the target et Obiec

object in group 2.

“Asian” subjects favor

glOb al Similarity and Exampie of item measuring whether judgments of similarity

are based on family resemblance or rules.

classify the target object in
group 1.

21



Other Issues

Can reduce storage of training instances to a small set of
representative examples.
— Support vectors in an SVM are somewhat analogous.

Can hybridize with rule-based methods or neural-net

methods.

— Radial basis functions in neural nets and Gaussian kernels in
SVMs are similar.

Can be used for more complex relational or graph data.
— Similarity computation is complex since it involves some sort of
graph isomorphism.
Can be used 1n problems other than classification.
— Case-based planning
— Case-based reasoning in law and business.
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Conclusions

» IBL methods classify test instances based
on similarity to specific training instances
rather than forming explicit generalizations.

» Typically trade decreased training time for
increased testing time.

23



