
Static Analysis of a Linux Distribution

Kamil Dudka <kdudka@redhat.com>

March 22nd 2021

How to find programming mistakes efficiently?

0 users (preferably volunteers)

1 Automatic Bug Reporting Tool (ABRT)

2 code review, automated tests, fuzzing

3 static analysis

1 / 25

Why do we use static analysis at Red Hat?

... to find programming mistakes soon enough – example:

Error: SHELLCHECK_WARNING:
/etc/rc.d/init.d/squid:136:10: warning: Use "${var:?}" to ensure this never expands to /* .
134| RETVAL=$?
135| if [$RETVAL -eq 0] ; then
136|-> rm -rf $SQUID_PIDFILE_DIR/*
137| start
138| else

https://bugzilla.redhat.com/1202858 – [UNRELEASED] restarting
testing build of squid results in deleting all files in hard-drive

Static analysis is required for Common Criteria certification.

2 / 25

https://bugzilla.redhat.com/1202858

Agenda

1 Code Review, Fuzzing

2 Linux Distribution, Reproducible Builds

3 Static Analysis of a Linux Distribution

4 Dynamic Analysis and Formal Verification

Code Review, Fuzzing

Code Review

design (anti-)patterns

error handling (OOM, permission denied, . . .)

validation of input data (headers, length, encoding, . . .)

sensitive data treatment (avoid exposing private keys, . . .)

use of crypto algorithms

resource management

3 / 25

Code Review, Fuzzing

Fuzzing

Feeding programs with unusual input.

Can be combined with valgrind, GCC sanitizers, etc.

radamsa – general purpose data fuzzer

$ cat file | radamsa | program

OSS-Fuzz – continuous fuzzing of open source software

service provided by Google

many security issues detected e.g. in curl

4 / 25

Agenda

1 Code Review, Fuzzing

2 Linux Distribution, Reproducible Builds

3 Static Analysis of a Linux Distribution

4 Dynamic Analysis and Formal Verification

Linux Distribution, Reproducible Builds

Linux Distribution

operating system (OS)

based on the Linux kernel

a lot of other programs running in user space

usually open source

5 / 25

Linux Distribution, Reproducible Builds

Upstream vs. Downstream

Upstream SW projects – usually independent

Downstream distribution of upstream SW projects

Red Hat uses the RPM package manager

Files on the file system owned by RPM packages:

Dependencies form an oriented graph over packages.

We can query package database.

We can verify installed packages.

6 / 25

Linux Distribution, Reproducible Builds

Fedora vs. RHEL

Fedora

new features available early

driven by the community (developers, users, . . .)

RHEL (Red Hat Enterprise Linux)

stability and security of existing deployments

driven by Red Hat (and its customers)

7 / 25

Linux Distribution, Reproducible Builds

Where do RPM packages come from?

Developers maintain source RPM packages (SRPMs).

Binary RPMs can be built from SRPMs using rpmbuild:

rpmbuild --rebuild git-2.30.2-1.fc34.src.rpm

Binary RPMs can be then installed on the system:

sudo dnf install git

8 / 25

Linux Distribution, Reproducible Builds

Reproducible Builds

Local builds are not reproducible.

mock – chroot-based tool for building RPMs:

mock -r fedora-rawhide-x86 64 git-2.30.2-1.fc34.src.rpm

koji – service for scheduling build tasks

koji build rawhide git-2.30.2-1.fc34.src.rpm

Easy to hook static analyzers on the build process!

9 / 25

Agenda

1 Code Review, Fuzzing

2 Linux Distribution, Reproducible Builds

3 Static Analysis of a Linux Distribution

4 Dynamic Analysis and Formal Verification

Static Analysis of a Linux Distribution

Static Analysis at Red Hat in Numbers

Preliminary scan of all RHEL-9 packages in February 2021.

Analyzed 480 million LoC (Lines of Code) in 3700 packages.

98.6 % packages scanned successfully.

Approx. 680 000 potential bugs detected in total.

Approx. one potential bug per each 750 LoC.

10 / 25

Static Analysis of a Linux Distribution

Analysis of RPM Packages

Command-line tool to run static analyzers on RPM packages.

One interface, one output format, plug-in API for (static) analyzers.

Fully open-source, available in Fedora and CentOS.

SRPM list of bugscsmock

coverityshellcheckcppcheckclanggcc

11 / 25

Static Analysis of a Linux Distribution

csmock – Supported Static Analyzers
C C++ C# Java Go JavaScript PHP Python Ruby Shell

gcc X X
gcc -fanalyzer X
clang --analyze X X
cppcheck X X
coverity X X X X X X X X X
shellcheck X
pylint X
bandit X
smatch X

Need more?
https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

12 / 25

https://github.com/mre/awesome-static-analysis#user-content-programming-languages-1

Static Analysis of a Linux Distribution

What is important for developers?

The static analyzers need to:

be fully automatic

provide reasonable signal to noise ratio

provide reproducible and consistent results

be approximately as fast as compilation of the package

support differential scans:

added/fixed bugs in an update?

https://github.com/kdudka/csdiff

13 / 25

https://github.com/kdudka/csdiff

Static Analysis of a Linux Distribution

csmock – Output Format

14 / 25

Static Analysis of a Linux Distribution

csmock – Output Format

checker

key event
CWE ID

other events
location info

message associated with the key event

14 / 25

Static Analysis of a Linux Distribution

csmock – Output Format (Trace Events)

Error: RESOURCE_LEAK (CWE-772):
src/fptr.c:447: cond_true: Condition "i < l->nrefs", taking true branch.
src/fptr.c:448: cond_true: Condition "(f = (struct opd_fptr *)l->u.refp[i]->ent)->ent == NULL", taking true branch.
src/fptr.c:450: alloc_fn: Storage is returned from allocation function "calloc".
src/fptr.c:450: var_assign: Assigning: "e" = storage returned from "calloc(24UL, 1UL)".
src/fptr.c:451: cond_false: Condition "e == NULL", taking false branch.
src/fptr.c:456: if_end: End of if statement.
src/fptr.c:462: loop: Jumping back to the beginning of the loop.
src/fptr.c:447: loop_begin: Jumped back to beginning of loop.
src/fptr.c:447: cond_true: Condition "i < l->nrefs", taking true branch.
src/fptr.c:448: cond_true: Condition "(f = (struct opd_fptr *)l->u.refp[i]->ent)->ent == NULL", taking true branch.
src/fptr.c:450: overwrite_var: Overwriting "e" in "e = calloc(24UL, 1UL)" leaks the storage that "e" points to.
448| if ((f = (struct opd_fptr *) l->u.refp[i]->ent)->ent == NULL)
449| {
450|-> e = calloc (sizeof (struct opd_ent), 1);
451| if (e == NULL)
452| {

14 / 25

Static Analysis of a Linux Distribution

Example of a Fix
--- a/src/fptr.c

+++ b/src/fptr.c

@@ -438,28 +438,29 @@

GElf Addr

opd size (struct prelink info *info, GElf Word entsize)

{

struct opd lib *l = info->ent->opd;

int i;

GElf Addr ret = 0;

struct opd ent *e;

struct opd fptr *f;

for (i = 0; i < l->nrefs; ++i)

if ((f = (struct opd fptr *) l->u.refp[i]->ent)->ent == NULL)

{

e = calloc (sizeof (struct opd ent), 1);

if (e == NULL)

{

error (0, ENOMEM, "%s: Could not create OPD table",

info->ent->filename);

return -1;

}

e->val = f->val;

e->gp = f->gp;

e->opd = ret | OPD ENT NEW;

+ f->ent = e;

ret += entsize;

}

return ret;

}

15 / 25

Static Analysis of a Linux Distribution

Upstream vs. Enterprise

Different approaches to static analysis:

Upstream

Fix as many bugs as possible.

False positive ratio increases over time!

Enterprise

Run differential scans to verify code changes.

Up to 10% of bugs usually detected as new in an update.

Up to 10% of them usually confirmed as real by developers.

16 / 25

Agenda

1 Code Review, Fuzzing

2 Linux Distribution, Reproducible Builds

3 Static Analysis of a Linux Distribution

4 Dynamic Analysis and Formal Verification

Dynamic Analysis and Formal Verification

Dynamic Analysis

Executes code in a modified run-time environment.

Embedded in compilers: address sanitizer, thread sanitizer, UB sanitizer, . . .

Standalone tools: valgrind, strace, . . .

Not so easy to automate as static analysis.

Good to have some test-suite to begin with.

17 / 25

Dynamic Analysis and Formal Verification

Dynamic Analysis of RPM Packages

Experimental csmock plug-ins for valgrind and strace:

SRPM list of bugscsmock

stracevalgrindcppcheckclanggcc

$ sudo yum install csmock-plugin-valgrind

$ csmock -t valgrind -r fedora-rawhide-x86 64 *.src.rpm

18 / 25

Dynamic Analysis and Formal Verification

Tests Embedded in RPM Packages

$ fedpkg clone -a logrotate

$ cd logrotate

$ grep -A8 '%build' logrotate.spec

%build

mkdir build && cd build

%global _configure ../configure

%configure --with-state-file-path=%{_localstatedir}/lib/logrotate/logrotate.status

%make_build

%check

%make_build -C build -s check

$ fedpkg srpm

$ rpmbuild --rebuild *.src.rpm

19 / 25

Dynamic Analysis and Formal Verification

Dynamic Analysis of RPM Packages – Simple Approach

Dynamic analyzers usually support tracing of child processes.

Let’s combine it together:

valgrind --trace-children=yes rpmbuild --rebuild *.src.rpm

strace --follow-forks rpmbuild --rebuild *.src.rpm

But did we want to dynamically analyze rpmbuild, bash, make, etc.?

This makes the analysis extremely slow.

We get reports unrelated to *.src.rpm.

20 / 25

Dynamic Analysis and Formal Verification

Dynamic Analysis of RPM Packages – Better Approach

Produce binaries that will launch a dynamic analyzer for themselves.

We can use a compiler wrapper to instrument the build of an RPM package:

$ export PATH=$(cswrap --print-path-to-wrap):$PATH
$ export CSWRAP_ADD_CFLAGS=-Wl,--dynamic-linker,/usr/bin/csexec-loader

$ export CSEXEC_WRAP_CMD=valgrind

$ rpmbuild --rebuild *.src.rpm

Only binaries produced in %build will run through valgrind in %check.

21 / 25

Dynamic Analysis and Formal Verification

Program Interpreter

Program interpreter specified by shebang:
$ head -1 /usr/bin/yum

#!/usr/bin/python3

$ /usr/bin/yum [...] −→ /usr/bin/python3 /usr/bin/yum [...]

Program interpreter specified by ELF header:
$ file /sbin/logrotate

/sbin/logrotate: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, BuildID[sha1]=...

ELF interpreter can be set to a custom value when linking the binary:
$ file ./logrotate

./logrotate: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),

dynamically linked, interpreter /usr/bin/csexec-loader, BuildID[sha1]=...

22 / 25

Dynamic Analysis and Formal Verification

Wrapper of Dynamic Linker – Implementation

csexec works as a wrapper of the system dynamic linker:
https://github.com/kdudka/cswrap/wiki/csexec

$CSEXEC WRAP CMD can specify a dynamic analyzer to use.

csexec runs the system dynamic linker explicitly (to eliminate self-loop):
./logrotate [...] −→ valgrind /lib64/ld-linux-x86-64.so.2 ./logrotate [...]

csexec uses the --argv0 option of the system dynamic linker if available:
https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=c6702789

csexec emulates the original target of the /proc/self/exe symlink.

23 / 25

https://github.com/kdudka/cswrap/wiki/csexec
https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=c6702789

Dynamic Analysis and Formal Verification

Wrapper of Dynamic Linker – Evaluation

No completely unrelated bug reports.

Minimal performance overhead.

Minimal interference with commonly used testing frameworks.

Able to successfully run upstream test-suite of GNU coreutils (without valgrind).

Some tests fail if we wrap them by valgrind though:

a test that verifies the count open file descriptors

a test that intentionally sets non-existing $TMPDIR
. . .

[TODO: demo]

24 / 25

Dynamic Analysis and Formal Verification

Formal Verification of RPM Packages

SRPM list of bugscsmock

divinesymbioticcmbcclanggcc

AUFOVER (Automation of Formal Verification) project, supported
by Technology Agency of the Czech Republic:
https://starfos.tacr.cz/en/project/TH04010192

SV-COMP (Competition on Software Verification):
https://sv-comp.sosy-lab.org/2021/results/results-verified/

25 / 25

https://starfos.tacr.cz/en/project/TH04010192
https://sv-comp.sosy-lab.org/2021/results/results-verified/

Slides Available Online

https://kdudka.fedorapeople.org/muni21.pdf

https://kdudka.fedorapeople.org/muni21.pdf

	Code Review, Fuzzing
	Linux Distribution, Reproducible Builds
	Static Analysis of a Linux Distribution
	Dynamic Analysis and Formal Verification

