
Access Control
PA193 Secure Coding Principles

Vladimír Štill
based on materials by Petr Ročkai

Faculty of Informatics, Masaryk University

PA193 Secure Coding Principles: Access Control 1 / 61

Lecture Overview

Access control in …

1 Multi-User Systems

2 File Systems

3 Sub-User Granularity

(example functions/API given for POSIX)

PA193 Secure Coding Principles: Access Control 2 / 61

Multi-User Systems

PA193 Secure Coding Principles: Access Control 3 / 61

Multi-User Systems & Users

computer can be expensive → share it by multiple people
not everyone should have access to everything
privileges separation is needed

private files
computer administration

→ computer users with permissions
can be people
or services
managed by operating system

PA193 Secure Coding Principles: Access Control 4 / 61

Ownership

various objects in an OS can be owned
files
processes
…

usually: owner = creator
ownership can be transferred
by system the administrator and possibly original owner

API
processes: ps, getuid()/geteuid(), …
files: ls, stat, stat(), …

PA193 Secure Coding Principles: Access Control 5 / 61

Principle of Least Privilege

entities should have minimum privilege required
applies to software components (service users)
but also to human users of the system
e.g. the user cannot install applications system-wide

this limits the scope of mistakes
and also of security compromises

PA193 Secure Coding Principles: Access Control 6 / 61

Privilege Separation

different parts of a system need different privilege
least privilege → splitting the system

components are isolated from each other
they are given only the rights they need

components communicate using simple IPC

$ ps axo user,group,comm
nginx nginx nginx
postgres postgres postgres
xstill fi-stud+ bash
checker checker python3
fjaweb nginx uwsgi
[…]

PA193 Secure Coding Principles: Access Control 7 / 61

Process Separation

each process runs in its own address space
shared memory can be requested

each user has a view of the filesystem
a lot more is shared by default in the filesystem
especially the namespace (directory hierarchy)

PA193 Secure Coding Principles: Access Control 8 / 61

Access Control Models

owner usually decide who can access their objects
= discretionary access control

in high-security environments, this is not allowed
a central authority decides the policy
= mandatory access control

Access Control Policy

there are 3 pieces of information
the subject (user)
the verb (what is to be done)
the object (the file or other resource)

PA193 Secure Coding Principles: Access Control 9 / 61

Access Rights Subjects

in a typical OS those are (possibly virtual) users
sub-user units are possible (e.g. programs)
roles and groups could also be subjects

the subject must be named (names, identifiers)
easy on a single system, hard in a network

PA193 Secure Coding Principles: Access Control 10 / 61

Access Rights Verbs

the available “verbs” (actions) depend on object type
a typical object would be a file

files can be read, written, executed
directories can be searched or listed or changed

network connections can be established, …

PA193 Secure Coding Principles: Access Control 11 / 61

Access Rights Objects

anything that can be manipulated by programs
although not everything is subject to access control

files, directories, sockets, shared memory, …
object names depend on their type

file paths, i-node numbers, IP addresses, …

PA193 Secure Coding Principles: Access Control 12 / 61

Subjects in POSIX

there are 2 types of subjects: users and groups
each user can belong to multiple groups (one is primary)
users are split into normal users and root

root = super-user

$ id
uid=22572(xstill) gid=985(users)
groups=985(users),984(systemd-journal),998(wheel)

getuid(), getgid(), getgroups()
(geteuid(), getegid())

PA193 Secure Coding Principles: Access Control 13 / 61

User Management

the system needs a database of users
in a network, user identities often need to be shared
simple – text file

/etc/passwd and /etc/group on UNIX systems
complex – a distributed database
FI uses LDAP + Kerberos for user database and
authentication

aisa$ getent passwd xstill xsvenda
xstill:x:22572:10100:Vladimir Still:/home/xstill:/bin/bash
xsvenda:x:10361:10000:Petr Svenda:/home/xsvenda:/bin/bash

aisa$ getent group paradise
paradise:*:10240:xsafran1,brim,xbenes3,cerna,xbarnat

PA193 Secure Coding Principles: Access Control 14 / 61

User and Group Identifiers

users and groups are represented as numbers
this improves efficiency of many operations
the numbers are called uid and gid

those numbers are valid on a single computer
or at most, a local network (e.g. FI network)

PA193 Secure Coding Principles: Access Control 15 / 61

Changing Identities

each process belongs to a particular user
ownership is inherited across fork()
super-user processes can use setuid() to change user ID
exec() can sometimes change a process owner

setuid binaries (like sudo)

PA193 Secure Coding Principles: Access Control 16 / 61

Login

a super-user process manages user logins
the user types their name and provides credentials

upon successful authentication, login process calls
fork()
the child calls setuid() to the user
and uses exec() to start a shell for the user

PA193 Secure Coding Principles: Access Control 17 / 61

User Authentication

the user needs to authenticate themselves
passwords are the most commonly used method

the system needs to know the right password
user should be able to change their password

biometric methods are also quite popular

PA193 Secure Coding Principles: Access Control 18 / 61

Storing Passwords

passwords are often stored as hashes
along with salt, to counter rainbow tables
on UNIX: /etc/shadow (only root can read)

also: key derivation functions (bcrypt, argon2)
remote login – authentication over network is more
complicated

e.g. Kerberos, authentication against a trusted third party
passwords are easiest, but not easy
encryption is needed to safely transmit passwords
computer authentication
2-factor authentication is a popular improvement

PA193 Secure Coding Principles: Access Control 19 / 61

Computer Authentication

how to ensure we send the password to the right party?
an attacker could impersonate our remote computer

usually via asymmetric cryptography
a private key can be used to sign messages
the server will sign a message establishing its identity

PA193 Secure Coding Principles: Access Control 20 / 61

2-factor Authentication

2 different types of authentication
harder to spoof both at the same time

there are a few factors to pick from
something the user knows (password)
something the user has (keys)
what the user is (biometric)

PA193 Secure Coding Principles: Access Control 21 / 61

Enforcement: Hardware

all enforcement begins with the hardware
the CPU provides a privileged mode for the kernel
DMA memory and IO instructions are protected, …

the MMU allows the kernel to isolate processes
and protect its own integrity
different address spaces for different processes

there can be security bugs in hardware (e.g. Meltdown,
Spectre)

PA193 Secure Coding Principles: Access Control 22 / 61

https://meltdownattack.com
https://meltdownattack.com

Enforcement: Kernel

kernel uses hardware facilities to implement security
it stands between resources and processes
access is mediated through system calls

file systems are part of the kernel
user and group abstractions are part of the kernel

PA193 Secure Coding Principles: Access Control 23 / 61

Enforcement: System Calls

the kernel acts as an arbitrator
a process is trapped in its own address space
processes use system calls to access resources

kernel can decide what to allow
based on its access control model and policy

PA193 Secure Coding Principles: Access Control 24 / 61

Enforcement: Service APIs

userland processes can enforce access control
usually system services which provide IPC API

e.g. via the getpeereid() system call
tells the caller which user is connected to a socket
user-level access control is rooted in kernel facilities

PA193 Secure Coding Principles: Access Control 25 / 61

File Systems

PA193 Secure Coding Principles: Access Control 26 / 61

File Access Rights

file systems are a case study in access control
all modern file systems maintain permissions

the only exception in use is FAT (USB sticks, UEFI boot)
different systems adopt different representation

PA193 Secure Coding Principles: Access Control 27 / 61

Representation

file systems are usually object-centric
permissions are attached to individual objects
easily answers “who can access this file”?

there is a fixed set of verbs
those may be different for files and directories
different systems allow different verbs

PA193 Secure Coding Principles: Access Control 28 / 61

The UNIX Model

each file and directory has a single owner
plus a single owning group

not limited to those the owner belongs to
ownership and permissions are attached to i-nodes, not to
paths

PA193 Secure Coding Principles: Access Control 29 / 61

Access vs Ownership

POSIX ties ownership and access rights
only 3 subjects can be named on a file

the owner (user)
the owning group
everyone else (“other users”)

PA193 Secure Coding Principles: Access Control 30 / 61

Access Verbs in POSIX File Systems

read: read a file, list a directory
write: write a file, link/unlink i-nodes to a directory

→ you don’t need file access to delete it
execute: exec a program, enter the directory
execute as owner (group): setuid/setgid

PA193 Secure Coding Principles: Access Control 31 / 61

Permission Bits
basic UNIX permissions can be encoded in 9 bits
3 bits per 3 subject designations

first comes the owner, then group, then others
written as e.g. rwxr-x--- or 0750 (octal)

plus two numbers for the owner/group identifiers
plus setuid/setgid, and sticky bit for directories

$ ls -l
-rw-r--r-- 1 xstill users 250 Mar 19 16:19 Makefile
-rw-r--r-- 1 xstill users 18887 Mar 24 13:25 access-control.md
drwxr-xr-x 5 xstill users 124 Mar 19 11:01 texstyle

$ stat access-control.md
[…]
Access: (0644/-rw-r--r--) Uid: (22572/xstill) Gid: (985/users)

stat()
PA193 Secure Coding Principles: Access Control 32 / 61

Changing File Ownership

on Linux root can change file owners
owner can change only group, to some group they belong
to

chown and chgrp system utilities
or via the C API

chown(), fchown(), fchownat(), lchown()
same set for chgrp

PA193 Secure Coding Principles: Access Control 33 / 61

Changing File Permissions

available to the owner and to root

chmod user space utility

either numeric argument: chmod 644 file.txt
or symbolic: chmod +x script.sh, chmod
u+x,g-w,g+r,o= …

and the corresponding system call (numeric, macros)

// rwxrwxr-x
chmod("script.sh",

S_IRWXU | S_IRWXG | S_IROTH | S_IXOTH);

PA193 Secure Coding Principles: Access Control 34 / 61

setuid and setgid

special permissions on executable files
they allow exec to also change the process owner
often used for granting extra privileges

e.g. the mount and sudo commands run as the super-user
significantly increases safety requirements of the program

PA193 Secure Coding Principles: Access Control 35 / 61

Sticky Directories

file creation and deletion is a directory permission
this is problematic for shared directories
in particular the system /tmp directory

in a sticky directory, different rules apply
new files can be created as usual
only the owner can unlink a file from the directory

PA193 Secure Coding Principles: Access Control 36 / 61

Access Control Lists

ACL is a list of ACE’s (access control elements)
each ACE is a subject + verb pair
it can name an arbitrary user

ACL is attached to an object (file, directory)
more flexible than the traditional UNIX system

PA193 Secure Coding Principles: Access Control 37 / 61

ACLs and POSIX

part of POSIX.1e (security extensions)
most POSIX systems implement ACLs

this does not supersede UNIX permission bits
instead, they are interpreted as part of the ACL

specific permissions for given user/group
+ default permissions for newly created entities in
directory
+ mask

file system support is not universal (but widespread)
Ext2/3/4, XFS, Btrfs, …

setfacl/getfacl utilities, <sys/acl.h> header
(libacl)

setfacl -m u:xstill:rw file.txt
setfacl -m g:pa193:r file.txt

PA193 Secure Coding Principles: Access Control 38 / 61

Device Files

UNIX represents devices as special i-nodes
this makes them subject to normal access control
usually under /dev

the particular device is described in the i-node
only a super-user can create device nodes
users could otherwise gain access to any device

PA193 Secure Coding Principles: Access Control 39 / 61

Sockets and Pipes

named sockets and pipes are just i-nodes
also subject to standard file permissions

especially useful with sockets
a service sets up a named socket in the file system
file permissions decide who can talk to the service
e.g. local communication with database

PA193 Secure Coding Principles: Access Control 40 / 61

Special Attributes

flags that allow additional restrictions on file use
e.g. immutable files (cannot be changed by anyone)
append-only files (for logfile integrity protection)
compression, copy-on-write controls

non-standard (Linux lsattr/chattr, BSD chflags)
depends on filesystem too (man xfs, man ext4, …)

$ touch file.txt
$ sudo chattr +a file.txt
$ lsattr file.txt
-----a---------------- file.txt
$ echo append_is_ok >> file.txt
$ echo rewrite_is_forbidden > file.txt
bash: file.txt: Operation not permitted

PA193 Secure Coding Principles: Access Control 41 / 61

Network File System

different computers can have different user maps
NFS 3.0 simply transmits numeric uid and gid

the numbering needs to be synchronised
can be done via a central user database
a machine that is allowed to mount shares must be
trusted

NFS 4.0 uses per-user authentication
the user can authenticate to the server directly using
Kerberos
filesystem uid and gid values are mapped

PA193 Secure Coding Principles: Access Control 42 / 61

File System Quotas

storage space is limited, shared by users
files take up storage space
file ownership is also a liability

quotas set up limits space use by users
exhausted quota can lead to denial of access

depends on filesystem

aisa$ quota -vs
[…]
home.fi.muni.cz:/export/home/[…]
17689M 19532M 24415M 386k 600k 700k
home.fi.muni.cz:/export/usrdata/[…]
25004M 97657M 144G 501k 600k 700k

PA193 Secure Coding Principles: Access Control 43 / 61

Removable Media

access control at file system level makes little sense
other computers may choose to ignore permissions
user names or id’s would not make sense anyway

option 1: encryption (for denying reads)
option 2: hardware-level controls

usually read-only vs read-write on the entire medium

PA193 Secure Coding Principles: Access Control 44 / 61

The chroot System Call

each process in UNIX has its own root directory
for most, this coincides with the system root

the root directory can be changed using chroot()
can be useful to limit file system access

e.g. in privilege separation scenarios

PA193 Secure Coding Principles: Access Control 45 / 61

Uses of chroot

chroot alone is not a security mechanism
a super-user process can get out easily
but not easy for a normal user process

also useful for diagnostic purposes
and as lightweight alternative to virtualisation
or when repairing a system (live USB + chroot)

PA193 Secure Coding Principles: Access Control 46 / 61

Sub-User Granularity

PA193 Secure Coding Principles: Access Control 47 / 61

Users are Not Enough

users are not always the right abstraction
creating users is relatively expensive
only a super-user can create new users

you may want to include programs as subjects
or rather, the combination user + program

PA193 Secure Coding Principles: Access Control 48 / 61

Naming Programs

users have user names, but how about programs?
option 1: cryptographic signatures

portable across computers but complex
establishes identity based on the program itself

option 2: i-node of the executable
simple, local, identity based on location

PA193 Secure Coding Principles: Access Control 49 / 61

Program as a Subject

program: passive (file) vs active (processes)
only a process can be a subject
but program identity is attached to the file

rights of a process depend on its program
exec() will change privileges

PA193 Secure Coding Principles: Access Control 50 / 61

Mandatory Access Control

delegates permission control to a central authority
often coupled with security labels

classifies subjects (users, processes)
and also objects (files, sockets, programs)

the owner cannot change object permissions

PA193 Secure Coding Principles: Access Control 51 / 61

The Bell-LaPadula Model

1 simple security property
you can’t read what is beyond your clearance

2 the star property
also called no write down
you cannot write to ‘more public’ files

PA193 Secure Coding Principles: Access Control 52 / 61

Capabilities

not all verbs (actions) need to take objects
e.g. shutting down the computer (there is only one)
mounting file systems (they can’t be always named)
listening on ports with number less than 1024

PA193 Secure Coding Principles: Access Control 53 / 61

Dismantling the root User

the traditional root user is all-powerful
“all or nothing” is often unsatisfactory
violates the principle of least privilege

many special properties of root are capabilities
root then becomes the user with all capabilities
other users can get selective privileges

some of these privileges can be granted using setuid bit
and/or groups

mounting selected mounts defined in /etc/fstab
viewing system logs
shutdown, suspend

PA193 Secure Coding Principles: Access Control 54 / 61

Linux Capabilities

man capabilities, man libcap (<sys/capability.h>)
can replace setuid – binaries can be assigned capabilities
to grant them some super-user abilities

capabilities on files
needs filesystem support (widespread)

can be also set from (more privileged) process; by systemd
capability bounding set – limits what capabilities can be
get by exec*()
lower security risk

but many capabilities actually enable root access
e.g. CAP_CHOWN (change file owner), CAP_NET_ADMIN
(network, firewall, routing, …), CAP_NET_RAW (raw
sockets), CAP_SYS_CHROOT, CAP_SYS_NICE
getcap, setcap, capsh, setpriv, …

PA193 Secure Coding Principles: Access Control 55 / 61

Security and Execution

security hinges on what is allowed to execute
arbitrary code execution are the worst exploits

this allows unauthorized execution of code
same effect as impersonating the user
almost as bad as stolen credentials

PA193 Secure Coding Principles: Access Control 56 / 61

Untrusted Input

programs often process data from dubious sources
think image viewers, audio & video players
archive extraction, font rendering, …

bugs in programs can be exploited
the program can be tricked into executing data

PA193 Secure Coding Principles: Access Control 57 / 61

Process as a Subject

some privileges can be tied to a particular process
those only apply during the lifetime of the process
often restrictions rather than privileges
this is how privilege dropping is done

processes are identified using their numeric pid
restrictions are inherited across fork()

PA193 Secure Coding Principles: Access Control 58 / 61

Sandboxing

tries to limit damage from code execution exploits
the program drops all privileges it can

this is done before it touches any of the input
the attacker is stuck with the reduced privileges
this can often prevent a successful attack

PA193 Secure Coding Principles: Access Control 59 / 61

Untrusted Code

traditionally, you would only execute trusted code
usually based on reputation or other external factors
this does not scale to a large number of vendors

it is common to execute untrusted, even dubious code
this can be okay with sufficient sandboxing

PA193 Secure Coding Principles: Access Control 60 / 61

Android/iOS Permissions

applications from a store are semi-trusted
typically single-user computers/devices
permissions are attached to apps instead of users
partially virtual users, partially API-level

PA193 Secure Coding Principles: Access Control 61 / 61

	Multi-User Systems
	File Systems
	Sub-User Granularity

