
Concurrency and Security
PA193 Secure Coding Principles

Vladimír Štill
based on materials by Petr Ročkai

Faculty of Informatics, Masaryk University

PA193 Secure Coding Principles: Concurrency and Security 1 / 50



Overview

1 Concurrent Programs
2 Race Conditions
3 Security Implications
4 Going Deeper (Hardware & More)
5 Valgrind

Examples mostly in C++(20) and C/POSIX API

PA193 Secure Coding Principles: Concurrency and Security 2 / 50



Concurrent Programs

PA193 Secure Coding Principles: Concurrency and Security 3 / 50



What is Concurrency?
events that can happen at the same time
it is not important if it does, only that it can
events can be given a happens-before partial order
they are concurrent if unordered by happens-before

std::atomic< int > x = 0, y = 0, z = 0;

void thread_a() { void thread_b() {
x = 1; if ( x > 0 ) {
z = 1; y = 1;

z = 2;

x = 1 and x > 0 are concurrent
x = 1 happens before y = 1
z = 1 and z = 2 are concurrent

PA193 Secure Coding Principles: Concurrency and Security 4 / 50



Why Concurrency?

higher throughput on multicore computers
serving multiple clients at once
multiple tasks that are largely independent

How?

multiprocessing vs multithreading
different resource vs isolation trade-offs

(some) asynchronous mechanism
distributed computing over network

PA193 Secure Coding Principles: Concurrency and Security 5 / 50



What is a Process?

an isolated address space
executing a single program
owns OS-level resources

virtual memory
access to the CPU
open file descriptors
including network connections

created by fork() on UNIX

PA193 Secure Coding Principles: Concurrency and Security 6 / 50



Multiprocessing

example: httpd (web server)
each client connection gets a new process
expensive: slow fork, needs more memory
safe: no interference from other processes
less safe but faster: process pools

PA193 Secure Coding Principles: Concurrency and Security 7 / 50



What is a Thread?

a sequence of instructions
each physical CPU core can run 1 thread at a time

more with SMT-capable cores (2–8)
one process can contain many threads

instructions within a thread run in a sequence
no guarantees on operation ordering between threads
also applies to threads from different processes

PA193 Secure Coding Principles: Concurrency and Security 8 / 50



Multithreading

think about httpd again
each client connection gets a single thread
threads are lightweight
less context switching overhead
further optimisation: thread pools

Multithreading in HPC
HPC = high-performance computing
threads can share data much more easily
easier to write fast algorithms
usually not security-relevant

PA193 Secure Coding Principles: Concurrency and Security 9 / 50



Multithreading

think about httpd again
each client connection gets a single thread
threads are lightweight
less context switching overhead
further optimisation: thread pools

Multithreading in HPC
HPC = high-performance computing
threads can share data much more easily
easier to write fast algorithms
usually not security-relevant

PA193 Secure Coding Principles: Concurrency and Security 9 / 50



The OS Kernel

also runs concurrently with itself
many processes can be doing system calls at once
possibly preemptible
“big kernel lock”: slows everything down
preemptible kernels: fast but dangerous

Linux kernel is preemptible

PA193 Secure Coding Principles: Concurrency and Security 10 / 50



Processes and Communication

IPC = inter-process communication
message passing: (relatively) safe but slow
stdio, sockets or networks: even slower
shared memory: fast but dangerous

PA193 Secure Coding Principles: Concurrency and Security 11 / 50



Race Conditions

PA193 Secure Coding Principles: Concurrency and Security 12 / 50



Shared Resources

memory can be shared by multiple threads
or even processes, through IPC mechanisms
when is it safe to access/use a shared resource?

Critical Section
any section of code that must not be interrupted
the statement x++ (x = x + 1) could be a critical section
what is a critical section is domain-dependent

another example could be a bank transaction
or an insertion of an element into a linked list

PA193 Secure Coding Principles: Concurrency and Security 13 / 50



Shared Resources

memory can be shared by multiple threads
or even processes, through IPC mechanisms
when is it safe to access/use a shared resource?

Critical Section
any section of code that must not be interrupted
the statement x++ (x = x + 1) could be a critical section
what is a critical section is domain-dependent

another example could be a bank transaction
or an insertion of an element into a linked list

PA193 Secure Coding Principles: Concurrency and Security 13 / 50



Race Condition
consider a shared counter, i
and the following two threads

int i = 0;
void thread1() { i++; }
void thread2() { i--; }

What is the value of i after both finish?

Definition
(anomalous) behaviour that depends on timing
typically among multiple threads or processes
an unexpected sequence of events happens
recall that ordering is not guaranteed

PA193 Secure Coding Principles: Concurrency and Security 14 / 50



Race Condition
consider a shared counter, i
and the following two threads

int i = 0;
void thread1() { i++; }
void thread2() { i--; }

What is the value of i after both finish?

Definition
(anomalous) behaviour that depends on timing
typically among multiple threads or processes
an unexpected sequence of events happens
recall that ordering is not guaranteed

PA193 Secure Coding Principles: Concurrency and Security 14 / 50



Mutual Exclusion

only one process (thread) can access a resource at once
ensured by a mutual exclusion device (a.k.a mutex)
a mutex has 2 operations: lock and unlock
those must be correctly paired up
lock may need to wait until another thread unlocks

int i = 0;
std::mutex m;
void thread1() { m.lock(); i++; m.unlock(); }
void thread2() { m.lock(); i--; m.unlock(); }

POSIX: pthread_mutex_{init,lock,unlock,destroy}

PA193 Secure Coding Principles: Concurrency and Security 15 / 50



Mutual Exclusion: Deadlocks

happens if 2 or more threads cannot proceed
each is waiting for a mutex locked by the other thread
many other scenarios (not specific to mutexes)

files, sockets, other IPC, …

std::mutex a, b;
void thread_1() { std::unque_lock lA( a );

std::unque_lock lB( b ); }
void thread_2() { std::unque_lock lB( b );

std::unque_lock lA( a ); }

PA193 Secure Coding Principles: Concurrency and Security 16 / 50



Semaphore
somewhat more general than a mutex
allows multiple interchangeable instances of a resource
and equal number of threads in the critical section
basically an atomic counter

std::counting_semaphore< 2 > sem;
void t1() { sem.acquire();

puts( "1 in" ); puts( "1 out" );
sem.release(); }

void t2() { … } void t3() { … }

possible output:
1 in; 3 in; 1 out; 2 in; 2 out; 3 out;

POSIX: sem_init, sem_wait, sem_post, sem_destroy
PA193 Secure Coding Principles: Concurrency and Security 17 / 50



Monitors

a programming language device (not OS-provided)
often encapsulated class
Java, Ada, …

internally uses standard mutual exclusion
data of the monitor is only accessible to its methods
only one thread can enter the monitor at once

PA193 Secure Coding Principles: Concurrency and Security 18 / 50



Condition Variables
what if a thread needs to wait for something?
imagine a bounded queue implemented as a monitor

what happens if it becomes full?
the writer must be suspended

condition variables have wait and signal operations
connected with mutex or monitor

std::condition_variable cv; std::mutex m; int i = 0;

void t1() {
std::unique_lock lk( m );
cv.wait( lk, []{ return i == 1; } );

}
void t2() { i = 1; cv.notify_all(); }

POSIX: pthread_cond_*
PA193 Secure Coding Principles: Concurrency and Security 19 / 50



Spinlocks

a spinlock is the simplest form of a mutex
the lock method repeatedly tries to acquire the lock

this means it is taking up processor time
also known as busy waiting

spinlocks contention on the same CPU is very bad
but can be very efficient between CPUs
waiting without extra context switches

POSIX: pthread_spin_* (nothing in C++ standard)

PA193 Secure Coding Principles: Concurrency and Security 20 / 50



Suspending Mutexes

these need cooperation from the OS scheduler
when lock acquisition fails, the thread sleeps

it is put on a waiting queue in the scheduler
unlocking the mutex will wake up the waiting thread
needs a system call → slow compared to a spinlock

PA193 Secure Coding Principles: Concurrency and Security 21 / 50



Condition Variables Revisited

same principle as a suspending mutex
the waiting thread goes into a wait queue
the signal method moves the thread back to a run queue
many implementations can have spurious wakeup
the busy-wait version is known as polling

PA193 Secure Coding Principles: Concurrency and Security 22 / 50



Readers and Writers

imagine a shared database
many threads can read the database at once
but if one is writing, no other can read nor write
what if there are always some readers?

C++: std::shared_mutex
POSIX: pthread_rwlock_*

PA193 Secure Coding Principles: Concurrency and Security 23 / 50



Shared Resources Revisited

the filesystem is also a shared resource
shared even between processes
race conditions with other programs

possibly under the control of the attacker
deadlocks without race conditions

writing to full pipe, …
same with network resources etc.

PA193 Secure Coding Principles: Concurrency and Security 24 / 50



Security Implications

PA193 Secure Coding Principles: Concurrency and Security 25 / 50



Two Types of Races

within a single application (program)
bugs, not necessarily security-relevant
unexpected behaviour due to concurrency
eg. deadlocks/livelocks, memory corruption, etc.
races on file descriptors (write vs close)

on resources shared with third parties
file system, network, etc.
almost always a security problem

PA193 Secure Coding Principles: Concurrency and Security 26 / 50



Single-Program Races

not always, but sometimes security problems
CVE-2017-2636: race condition in the Linux kernel

unprivileged user can cause a timing-related double free
and possibly gain root privileges

PA193 Secure Coding Principles: Concurrency and Security 27 / 50

https://a13xp0p0v.github.io/2017/03/24/CVE-2017-2636.html


The Systrace Race

systrace was a BSD syscall restriction tool (sandbox)
works by interposing every system call
inspected at runtime by a user-space program
syscall performed by the kernel if OK’d by the helper
typical check–perform (TOC/TOU) race condition

replace argument between checking in wrapper and the actual syscall
path, other pointed-to arguments
file contents

PA193 Secure Coding Principles: Concurrency and Security 28 / 50



Denial of Service: Deadlocks

denial of service is a type of security problem
the attacker can cause the system to malfunction
deadlocks often lead to denial of service
a deadlocked program cannot proceed executing

PA193 Secure Coding Principles: Concurrency and Security 29 / 50



Non-Resource Deadlocks

not all deadlocks are due to resource contention
imagine a message-passing system
process A is waiting for a message
process B sends a message to A and waits for reply
the message is lost in transit

PA193 Secure Coding Principles: Concurrency and Security 30 / 50



File System: Permission Checks

imagine a program is executing as root
it can send files to users
subject to standard permission checks
what happens if it does stat() to check access
then opens the file and sends content?

Exploiting FS Races: Symlink Attacks
the attacker creates, say, /tmp/innocent
it requests access to that file via the above app
replaces the file after the app does its stat()
by a symlink pointing to, say, /etc/shadow

PA193 Secure Coding Principles: Concurrency and Security 31 / 50



File System: Permission Checks

imagine a program is executing as root
it can send files to users
subject to standard permission checks
what happens if it does stat() to check access
then opens the file and sends content?

Exploiting FS Races: Symlink Attacks
the attacker creates, say, /tmp/innocent
it requests access to that file via the above app
replaces the file after the app does its stat()
by a symlink pointing to, say, /etc/shadow

PA193 Secure Coding Principles: Concurrency and Security 31 / 50



File System: Changing Ownership

a program creates a file or a directory
then calls chown to change the owner
also vulnerable to symlink attacks
CVE-2012-6095 (ProFTPd)

PA193 Secure Coding Principles: Concurrency and Security 32 / 50



File System: Changing Permissions

a file is written (with sensitive content)
it’s immediately chmod-ed
but the attacker can read it in a narrow time window
CVE-2013-2162
solution:

set umask (for shell scripts)
pass restrictive mode to open()
fchmod() before write()

PA193 Secure Coding Principles: Concurrency and Security 33 / 50



File System: Closing the Window

file names are sensitive to symlink attacks
but file descriptors are not
fchown(), fstat(), fchmod() and so on
open first, check using the file descriptor
if the file is deleted, the fd still points to original

PA193 Secure Coding Principles: Concurrency and Security 34 / 50



File System: Temporary Files

race between picking a free name and creating a file
always use O_CREAT, O_EXCL for creation
never use mktemp(), use mkstemp() instead

also applies to creating directories
never create with mkdir -p
either mkdtemp() or mkdir, mktemp -d with error checking

should be created in a safe location
either owned by the same user as the process
or with the sticky permission bit set

PA193 Secure Coding Principles: Concurrency and Security 35 / 50



Symlink Attacks: Not Just Races

GDM did chmod("/tmp/.X11-unix", 1777)
the attacker can symlink anything to /tmp/.X11-unix
they get write access to that file
instant root privileges
CVE-2013-4169

PA193 Secure Coding Principles: Concurrency and Security 36 / 50



Going Deeper (Hardware & More)

PA193 Secure Coding Principles: Concurrency and Security 37 / 50



Modern CPU

modern CPUs are very complex
up to 300 million transistors per core (2021)
pipelining, caches, speculative execution
relaxed memory behaviour

many security features are rooted in hardware
process separation (privileged mode, virtual address space separation)

separation must be enforced even if multiple processes are switched on the
same CPU

danger of side-channel attacks
leaking of data through cache lookup speeds, speculation speeds …

PA193 Secure Coding Principles: Concurrency and Security 38 / 50



Meltdown & Spectre
hardware vulnerabilities CVE-2017-5754, CVE-2017-5753, CVE-2017-5715, …

Meltdown

hardware race condition between instruction effect (including filling caches)
and accesibility check
reading from memory of other applications, kernel

passwords, keys, secret files, …
Linux workaround by stronger address-space separation between userspace
and kernel → 5 % slowdown (with up to 30 % extremes)

Spectre

class of branch-predictor-based vulnerabilities
inside program memory space
e.g. reading browser memory from JavaScript (cookies, passwords!)

PA193 Secure Coding Principles: Concurrency and Security 39 / 50

https://meltdownattack.com/


SMT (Hyper-Threading)

allows multiple threads to run on a single core
this means such threads share certain resources
this opens a window for side-channel attacks
threads from different processes should not SMT

but in practice, this is often allowed

PA193 Secure Coding Principles: Concurrency and Security 40 / 50



Speculative Execution, Pipelining

instruction are not actually executed in-order of appearance
out-of-order execution, branch prediction
branches can be executes speculatively, later possibly invalidated

pipelining and multi-issue execution means several instructions are executed
at once
effects are supposed to be hidden from single-threaded programs

but timing effects are visible
can be very visible for concurrent programs

PA193 Secure Coding Principles: Concurrency and Security 41 / 50



Atomic Variables, Memory Models

low-level synchronisation can be done using atomic variables
faster then locking if properly used
much more error-prone

std::atomic< int > i = 0;
void thread1() { i++; }
void thread2() { i--; }

… result is always 0

memory access between threads subject to memory model
delaying of writes (Intel & almost everyone)
delaying/reordering both reads and writes (ARM, POWER, …)
recover ordering by atomics, synchronisation with mutexes, …
any synchronisation is costly

PA193 Secure Coding Principles: Concurrency and Security 42 / 50



Valgrind

PA193 Secure Coding Principles: Concurrency and Security 43 / 50



Why Valgrind: Memory Safety

we have seen many memory bugs so far
buffer overflows
use-after-free
double free

C (and C++) are memory unsafe

PA193 Secure Coding Principles: Concurrency and Security 44 / 50



Buffer Overflow

out-of-bounds write to a buffer
does not matter if heap or stack
both are usually (and fatally) exploitable

Examples

gets() … never use this function
scanf( "%s", buffer ) likewise
sprintf(), strcpy(), etc. are often used wrong

PA193 Secure Coding Principles: Concurrency and Security 45 / 50



Use After Free

allocate some memory
call free later, but retain the pointer
read or (worse) write through the pointer
usually exploitable

char *mem = malloc( 1024 );
if ( error )

free( mem );
strncpy( mem, 1024, some_input );

PA193 Secure Coding Principles: Concurrency and Security 46 / 50



Double Free

call free on memory that was already freed
usually causes heap corruption
may very well be exploitable

char *mem = malloc( 1024 );
if ( error )

free( mem );
// ...
free( mem )

PA193 Secure Coding Principles: Concurrency and Security 47 / 50



Finding Memory Bugs

memory bugs are notoriously hard to debug
valgrind (specifically its memcheck tool)
only finds bugs that were actually triggered by a test
clean report does not mean your program is secure
works by instrumenting/interpreting binary code

PA193 Secure Coding Principles: Concurrency and Security 48 / 50



Helgrind

races are even harder to find & fix than memory bugs
use valgrind to detect concurrency issues (helgrind tool)
data races, locking problems and so on
you will learn more in the seminar

PA193 Secure Coding Principles: Concurrency and Security 49 / 50



Some Other Tools

static: LockLint (Sun)
fast but false positives

runtime
address sanitiser, thread sanitiser (GCC/clang/MSVC)
Visual Threads (HP)
Thread Checker (Intel)
DRDT (Data Race Detection Tool; Sun)

verification: DIVINE
slow but exact

PA193 Secure Coding Principles: Concurrency and Security 50 / 50


	Concurrent Programs
	Race Conditions
	Security Implications
	Going Deeper (Hardware & More)
	Valgrind

