
https://crocs.fi.muni.cz @CRoCS_MUNI

PA193 - Secure coding principles and

practices

LAB: Static analysis of source code

Petr Švenda svenda@fi.muni.cz @rngsec

Centre for Research on Cryptography and Security, Masaryk University

https://crocs.fi.muni.cz @CRoCS_MUNI

Disclaimer

• The slides for this seminar (and part of the lecture) are taken from

newly created lecture for PV080.

– (you will also see pv080 on screenshots)

• If you already absolved this course, try to enjoy it again ☺

• But new content was created only this autumn and most of you

already absolved PV080 long before that (and GitHub introduced

decent support for static analysis only in Summer 2020)

• (for next years, I will update accordingly)

2 PA193 | LABS | Static checking

https://crocs.fi.muni.cz @CRoCS_MUNI

Idea of the seminar

• Prepare repo with vulnerable code (IS->buggycode.zip)

• Enable automatic static analysis via GitHub Actions

– Several providers of analysis environment (custom or standard tools)

• Trigger by commit, investigate warnings/errors found

• Fix it, review again

• (Analyze your own homework before submission)

• Warning: Code scanning Actions are relatively new to GitHub, they

may be glitches, UI bugs and tool failures

PA19

3 |

LABS

|

Static
5

https://crocs.fi.muni.cz @CRoCS_MUNI

CODE SCANNING WITH GITHUB +

ACTIONS + CODACY

Basic analysis of C/C++ source code with various tools

PA193 | LABS | Static checking
6

https://crocs.fi.muni.cz @CRoCS_MUNI

Steps

1. Create repo on GitHub

2. Enable code analysis

3. Clone repo locally

4. Insert code with vulnerability, commit and push

5. Investigate results of analysis

6. Fix selected issue, rerun analysis

7. Repeat from step 5.

PA19

3 |

LABS

|

Static
7

https://crocs.fi.muni.cz @CRoCS_MUNI

Create repo on GitHub

• Online at github.com

• Make repo public

– GitHub Actions are free only for public ones

• Add readme, .gitignore, license

– Generally good practice

• For start, don’t mix languages

– Put code of single lang in repo (e.g, c++)

– Makes automatic analysis more difficult

– E.g., ‘pv080_test_cpp’ & ‘pv080_test_java’
PA19

3 |

LABS

|

Static
8

https://crocs.fi.muni.cz @CRoCS_MUNI

Enable code scanning actions

• Online at github.com

• Github→Repo→Security→Set up code scanning

• Select Codacy Security Scan (scroll down in offered scans)

– ‘Set up this workflow’ button

PA19

3 |

LABS

|

Static
9

https://crocs.fi.muni.cz @CRoCS_MUNI

Commit configuration file for Codacy scan

PA193 | LABS | Static checking
10

• No changes required to codacy_analysis.yml
• Start commit →Commit new file

• Can be found at /.github/workflows/ codacy_analysis.yml for later edits

https://crocs.fi.muni.cz @CRoCS_MUNI

Prepare repo content

• Locally on your PC

• Clone repository on your PC

– GitHub Desktop File→Clone

– git checkout your_repository.git

• Copy example buggy code into

your repo and commit

– IS → Study materials, buggycode.zip

– Commit new files, push to repo

(Push origin)PA19

3 |

LABS

|

Static
11

https://crocs.fi.muni.cz @CRoCS_MUNI

Analyze results I.

• Observe scheduled, running and finished

actions

• Online at github.com

• Github→Repo→Actions

• Re-run jobs if desired

– Done on same commit!

– Useful if Action failed due to external service

PA19

3 |

LABS

|

Static

https://crocs.fi.muni.cz @CRoCS_MUNI

Analyze results II.

• Online at github.com

• Github→Repo→Security

– When actions are finished

• Code scanning alerts

– Sorted by tool (e.g., Cppcheck)

• Shown similarly to Issues

– Open, Closed

– Can be filtered (severity…)

– But visible only to repo developers
PA19

3 |

LABS

|

Static

https://crocs.fi.muni.cz @CRoCS_MUNI

Update: 8.3.2021

14 PA193 | LABS | Static checking

• More bugs are reported currently (8.3.2021) than end of last year

– More analysis tools were added in meantime (e.g., Bandit)

https://crocs.fi.muni.cz @CRoCS_MUNI

Notes

• Standard Issues are used to report bugs or ask for / plan

enhancements and new features (usually opened manually)

• Code scanning alerts are similarly treated, but opened automatically,

visible only to developers

• Results from tool(s) are transformed to standardized ‘OASIS Static

Analysis Results Interchange Format (SARIF) TC’, which GitHub can

process, and display issues based on it

PA19

3 |

LABS

|

Static
15

https://crocs.fi.muni.cz @CRoCS_MUNI

Analyze results III.

PA19

3 |

LABS

|

Static
16

• Bug triage

– atm, bug properties cannot be changed

– (expect UI change in future)

• Can be dismissed (=> will not be fixed)

– E.g., if False positive, not relevant…

– Severity is set by original tools

• Expect unification in future

– Dismiss only bugs you are sure about!

https://crocs.fi.muni.cz @CRoCS_MUNI

Fix bug(s)

PA19

3 |

LABS

|

Static
17

• Locate reported bug in source code
– (Note: for the moment, bug preview at Github is not working)

– Use file and line number to locate (e.g., fail.cpp#L7 => line 7 in fail.cpp)

• Fix bug
– E.g., Static[5]; → Static[101];

– (Note: not proper fix, check length instead)

• Commit, Push
– Will trigger analysis again

• Fixed issues are now in ‘Closed’ category
– Introducing and fixing commit is visible in history

https://crocs.fi.muni.cz @CRoCS_MUNI

ADDITIONAL SCANNING OF PYTHON

CODE WITH SHIFTLEFT SCANNER

Scanning of python source code with

PA193 | LABS | Static checking 18

https://crocs.fi.muni.cz @CRoCS_MUNI

Setup ShiftLeft actions on repo

• Create new repository (or reuse previous), clone locally

• Enable code scanning actions

– Set up more scanning tools – pick ‘Scan by ShiftLeft‘

• No need to change shiftleft-analysis.yml before commit

• Copy buggy python code to repo, push, analyze results

PA19

3 |

LABS

|

Static
19

https://crocs.fi.muni.cz @CRoCS_MUNI

Notes

• ShiftLeft scan requires no special configuration (same as Codacy)

• Will find additional bug in Python code

• Provides better explanation of bug (results from tools are likely to

improve in future)

PA19

3 |

LABS

|

Static
20

https://crocs.fi.muni.cz @CRoCS_MUNI

CODE SCANNING WITH GITHUB +

ACTIONS + CODEQL

Bit more advanced setup, CodeQL code analysis, configurable build steps

PA193 | LABS | Static checking 21

https://crocs.fi.muni.cz @CRoCS_MUNI

CodeQL basics

• Your source code → CodeQL code → rules executed on that canonical code
– Adding support for new language (e.g., Go) => just convert Go source code to CodeQL

canonical form and then use all already existing rules

• CodeQL uses own language to write analysis rules
– Many existing security rules are already written, you don’t need to learn this language or

write own rules to use it

• CodeQL is integrated in GitHub Actions or can be run for external CI
– We will use integrated option

– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-
errors-in-your-code/enabling-code-scanning-for-a-repository

• Note: difference between dedicated tool (e.g., cppcheck) and CodeQL
– Single tool for single language – detection rules must be written again for new lang

– CodeQL – detection rules are written for canonical code, new lang requires only to write
conversion between lang code and canonical code

PA19

3 |

LABS

|

Static
22

https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/enabling-code-scanning-for-a-repository

https://crocs.fi.muni.cz @CRoCS_MUNI

Setup CodeQL actions on repository

• Create new repository (e.g., pv080_test_python), clone locally

• Enable code scanning actions

– Pick CodeQL (instead of Codacy)

• Check codeql-analysis.yml before commit

– Modify set of target languages

• language: ['cpp']

• Copy buggy code to repo, push

PA19

3 |

LABS

|

Static
23

https://crocs.fi.muni.cz @CRoCS_MUNI

Fixing build for CodeQL

• CodeQL Action may fail with:

• Reason

– Analysis for some languages works on the compiled code/bytecode (e.g.,

Java)

– Static analysis generally runs on unfinished code, but not always

– One shall not commit broken code to repo anyway

• Fix: tell CodeQL how to build
PA19

3 |

LABS

|

Static
24

https://crocs.fi.muni.cz @CRoCS_MUNI

Fixing build for CodeQL I.

• GitHub CodeQL tries to compile your code
– But how it knows how to compile your project?

• Autobuild feature is only heuristic (=> can be wrong, can fail)
– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-

and-errors-in-your-code/configuring-the-codeql-workflow-for-compiled-languages

– Depends on CI operating system

– Search for .sln or .vcxproj (MS Visual Studio), then call MSBuild.exe

– Search for build.bat, build.cmd, and build.exe, then run it

– Search for Makefile, then call make

– Starts in repo root, then try in subdirectories…

• Tip: Start with simplest example, make it work, then make more
complicatedPA19

3 |

LABS

|

Static
25

https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-the-codeql-workflow-for-compiled-languages

https://crocs.fi.muni.cz @CRoCS_MUNI

Fixing build for CodeQL II.

• The solution depends on build system for your project
– Make, gradle, ant, maven…

– We will only discuss simple direct build with g++ and makefile

• Option 1: Makefile into repo root (g++ fail.cpp)
– Feel free to use improved makefile scripts

– Generally better solution than option 2

• Option 2: Direct specification in codeql-analysis.yml
– Disable autobuild by commenting it out with #

– Insert conditional statement based on language

• Example here for cpp and java

• Python is left with autobuild

– More flexibility in configuration, more changes to scripts

PA19

3 |

LABS

|

Static

26

main:

g++ ./fail.cpp

https://crocs.fi.muni.cz @CRoCS_MUNI

CHECKING SECURITY OF

DEPENDENCIES GITHUB + DEPENDABOT

Setup Action to observe new vulnerabilities in your dependencies, notify you and even

propose automatic patch

PA193 | LABS | Static checking 27

https://crocs.fi.muni.cz @CRoCS_MUNI

Enable dependabot

• Enable Dependabot alerts

– You will receive notification about

vulnerable dependency

• Enable Dependabot security

updates

– You will receive automatic pull requests

fixing vulnerable dependency

– Always analyze automatic pull requests

for correctness

PA19

3 |

LABS

|

Static
28

https://crocs.fi.muni.cz @CRoCS_MUNI

Notes

• Dependabot is well established feature of GitHub

• GitHub checks for vulnerabilities in major libraries (dependencies) and

notify you if tour repo use it

PA19

3 |

LABS

|

Static
29

https://crocs.fi.muni.cz @CRoCS_MUNI

RUNNING TOOL(S) LOCALLY

Run cppcheck locally without Github Actions. Suitable for projects with proprietary code,

troubleshooting, execution with non-standard parameters etc.

PA193 | LABS | Static checking 30

https://crocs.fi.muni.cz @CRoCS_MUNI

Cppcheck for C++ files

• For small files, you may try cppcheck online

– https://cppcheck.sourceforge.net/demo/

– Paste fail.cpp into browser and Check

– Compare with errors as reported by Codacy

• Run cppcheck from command line

– Get latest release

• https://github.com/danmar/cppcheck/releases

– Run cppcheck --enable=all fail.cpp

• Run cppcheck via GUI

– Allows for analysis of folders, sorting by severity…PA19

3 |

LABS

|

Static
31

https://cppcheck.sourceforge.net/demo/
https://github.com/danmar/cppcheck/releases

https://crocs.fi.muni.cz @CRoCS_MUNI

Other tools

• There are many tools for different languages

• Codacy Action is “just” running preconfigured tools

• Try it!

PA19

3 |

LABS

|

Static
32

https://crocs.fi.muni.cz @CRoCS_MUNI

STILL WANT MORE? TRY ON YOUR OLD

PB071 HOMEWORK ☺

PA193 | LABS | Static checking 33

https://crocs.fi.muni.cz @CRoCS_MUNI

TROUBLESHOOTING

Some hints on common issues

PA193 | LABS | Static checking 34

https://crocs.fi.muni.cz @CRoCS_MUNI

Troubleshooting

• Analysis is not finished yet
– Wait an hour, try to make another bogus commit (update file)

• Start from small working examples, then extend to larger project
– E.g., simple main.java, only later large java project via ant

• Analyze failed to start for specific language
– GitHub Actions usually requires code to be compilable

• Analysis for some languages works on the compiled code/bytecode (e.g., Java)

• (static analysis runs on unfinished code, but one shall not commit broken code to repo)

– Github will invoke autobuild feature

• Tries to build various languages as defined here

– https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-
code/configuring-the-codeql-workflow-for-compiled-languages

• Paths case sensitivity
– Linux is case-sensitive for path names while Windows isn’t

• /java/ and /Java/ are the same on Windows, but not on Linux

• Clicking on log of ‘Perform Code QL Analysis’ shows nothing
– Likely GitHub bug, click left on the Analyze (language), then again on ‘Perform Code QL Analysis’

• Makefile requires tabs, not spaces
PA19

3 |

LABS

|

Static
35

https://crocs.fi.muni.cz @CRoCS_MUNI

Some tips

• Setup scanning tools at the beginning of new project

– And make sure all bugs are always fixed (similar to “compile cleanly” mantra)

• Look at the text logs produced by actions (click on named Action)

– What tool was executed, what configuration…

• Tools will improve over the time (detected bugs, visualization on

GitHub side)

PA19

3 |

LABS

|

Static
36

https://crocs.fi.muni.cz @CRoCS_MUNI

NO HOMEWORK ASSIGNMENT THIS

WEEK ☺

PA193 | LABS | Static checking 37

https://crocs.fi.muni.cz @CRoCS_MUNI

CHECK-OUT

38 PA193 | LABS | Static checking

https://crocs.fi.muni.cz @CRoCS_MUNI

Checkout

• Which of the seminar parts you enjoyed most?

• Write three items you liked (ideally, single word)

• Write to sli.do when displayed

39 PA193 | LABS | Static checking

40 PA193 | LABS | Static checking

Write a topic from the seminar you enjoyed most

ⓘ Start presenting to display the poll results on this slide.

https://crocs.fi.muni.cz @CRoCS_MUNI

THANK YOU FOR COMING, SEE YOU

NEXT WEEK

41 PA193 | LABS | Static checking

