
PA193 - Semminar on concurrency

Miroslav Jaroš

6th April 2021

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 1 / 19

Quick quiz

What is concurrency?
Thread x Process difference
Who provides threads?

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 2 / 19

Quick quiz

What is concurrency?
Concurrency is the decomposability property of a program, algorithm, or
problem into order-independent or partially-ordered components or units.

Thread x Process difference
Thread is minimal runnable unit for OS that can be deployed on
processor, unlike process it does not own virtual memory, but uses
virtual memory of parent process.
Every process has at least one thread, which is main for execution.

Who provides threads?
Threads are provided by OS, although many languages has their own
implementation due to optimization.

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 3 / 19

Threads

UNIX
Pthread library part of POSIX
#include <pthread.h>

WINDOWS
Defined in WIN32 API
#include <windows.h>

MULTI PLATFORM
Since C11 and C++11
standards are threads part of
standard library
Qt Framework
Boost library

LANGUAGES
GO: gorutines
ERLANG: processes
ADA: tasks
Java: java.lang.Thread
Python: thread and threading
module

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 4 / 19

Pthread library

Part of POSIX library
Provides basic interface for Thread management and mutual exclusion
techniques
All types and functions are prefixed with pthread string
Needs to be compiled with -pthread argument, to link pthread library
into binary
All types and functions are descirbed in pthread.h header file

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 5 / 19

Pthread library
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

Creates new thread, which will start execution in start_routine function
thread in/out attribute, after pthread_create is called, it’s set to
threads identifier
attr thread attributes, typically passed NULL
start_routine entry point of newly created thread
arg arguments passed to start_routine
man 3 pthread_create

int pthread_join(pthread_t thread, void **retval);

Waits for thread to end execution and collect return value
thread thread identifier, set by pthread_create
retval if not set to NULL pthread_join will store start_routine return
value in it.
man 3 pthread_join

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 6 / 19

Helgrind

Part of valgrind tool for dynamic analysis
Designed to find bugs in threaded code
Executed similarly to memcheck
valgrind --tool=helgrind ./your_code
Your code should be compiled with debugging symbols “gcc -g”
http://valgrind.org/docs/manual/hg-manual.html

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 7 / 19

CRITICAL SECTION

Point of code where shared resource is manipulated.
Must be executed exclusively - only one thread at time
Even read operations must be exclusive

Context switch can happen in the middle of read operation
Then data can be inconsistent

Goal is to make critical section as small as possible
Use mutual exclusion to achieve exclusivity

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 8 / 19

Mutual exclusions

Posix defines several methods of mutual exclusion
Mutex - Mutual Exclusion
Condition variable
Semaphore

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 9 / 19

Mutex

Object which can be in two states, locked and unlocked
When thread wants to enter critical section, it locks mutex
When other thread tries to lock mutex, the execution will be stopped
and will wait until mutex is unlocked by blocking thread
When thread is leaving critical section, it unlocks the mutex
man 3 pthread_mutex_lock

#include <pthread.h>
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 10 / 19

Condition Variable
Critical section can be entered after condition is met
Typically in producer-consumer applications, where consumer needs to
wait for producer
Consumer locks mutex, but finds, that it cannot enter critical section
It calls pthread_cond_wait and sleeps, mutex is unlocked
When producer creates new resource, it calls pthread_cond_signal
All threads waiting for condition are waked and tries to obtain lock,
check condition and if its met, they enter critical section with locked
mutex
man 3 pthread_cond_init

#include <pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);
Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 11 / 19

Semaphores

Integer value that identifies how many resources are consumable
Every time the new resource is created, or released the counter is
increased
Every time resource is consumed the counter is decreased.
Thread that tries to use resource sleeps until resource is allocated
This allows multiple threads enter critical section when there are
enough resources
Sometimes it needs to be used with mutex, due to possible
inconsistencies.
man 3 sem_init

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_destroy(sem_t *sem);
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 12 / 19

Tasks

Work on any UNIX computer
1 Create program which will increase one variable to 10000 from 3

different threads
2 Increase number of threads to 100 and wait for problems to appear
3 Try to find problems with helgrind
4 Add locking to your program
5 Try helgrind to find possible race conditions
6 Modify your code to create deadlock
7 Test it with helgrind
8 Fix your code, so deadlock won’t happen.

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 13 / 19

Tasks II.

1 Create a program, where one thread is putting random numbers into
the array and several others are verifying if those numbers are primes.

2 The time needed to produce the numbers should be unpredictable (use
random numbers again) so the worker threads will need to wait for new
elements to appear

3 Use an appropriate technique for mutual exclusion to avoid busy
waiting.

4 Try helgrind to navigate you through the “hell” of the problems.

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 14 / 19

Assignment
Simple thread pool
You are provided with a simple queue and worker interface
Deadline: 2021-04-13 24:00 CEST (22:00 UTC) - soft deadline with
penalisation as usual

Goals:

Make the queue thread-safe - enqueue and dequeue can happen from
different threads
Do not busy-wait for the elements to appear in the queue. The pop
function must be blocking - use an appropriate technique to achieve
this.
Modify worker, so that it will in worker_init spawn several threads,
which will wait for jobs to appear in the queue
You can add any attribute to structures to achieve thread-safety
You should write your own tests for queue and worker to prove their
safety
Test all with helgrind, and save the outputs
Write tests, that will execute your worker and queue in specified
situations - the pop of empty queue, push to empty queue etc.
(Without tests up to 2 points might be deducted)

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 15 / 19

Assignment

Report:

As a part of the assignment, you will submit a report
There you’ll describe how did you achieve thread safety
What bugs you have found during development with helgrind
If you can’t or won’t make any bugs during development, then try to
make some in tests and describe them in the report as well.
You should report at least 5 different errors found by helgrind, how
those bugs were made, and how you fixed them

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 16 / 19

Conclusion

Don’t be afraid of threads
Use threads in your applications
You should keep in mind dangers that concurrency can create in your
code
Always try to make critical sections as minimal as possible
Use mutexes, semaphores and other tools to avoid race conditions,
deadlocks and other possible issues
Check your code with helgrind, it can save you many hours of
debugging

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 17 / 19

Conclusion

Write your code with concurrency in mind, you might not want to
write concurrent library, but someone will eventually try to use it with
threads
Many frameworks and libraries uses threads, even though you don’t
know it
Last but not least: Test your code!

Multi threaded applications are hard to debug, you need to be sure, that
particular function/method is doing what it should do!

Miroslav Jaroš PA193 - Semminar on concurrency 6th April 2021 18 / 19

