
Dependency scanning /
SAST
Jan Masarik

Agenda
- Dependency scanning (45 min)

- Intro
- python safety - hands-on
- triage of issues found

- SAST (35 min)
- Intro
- python bandit - hands-on
- triage of issues found

- HW & Questions (10 min)

https://www.researchgate.net/publication/331587729_Security_Issues_in_Language-based_Sofware_Ecosystems

https://www.researchgate.net/publication/331587729_Security_Issues_in_Language-based_Sofware_Ecosystems

https://res.cloudinary.com/snyk/image/upload/v1551172581/The-State-Of-Open-Source-Security-Report-2019-Snyk.pdf

https://res.cloudinary.com/snyk/image/upload/v1551172581/The-State-Of-Open-Source-Security-Report-2019-Snyk.pdf

Dependency scanning - hands-on
git clone https://gitlab.com/janmasarik/kiwi-xssable && cd kiwi-xssable

Run python dependency scan (called safety) and sort findings to 3 priority buckets
(high priority, medium priority, low/zero priority)

- Via Docker
$ cat requirements.txt | \
 docker run -i --rm s14ve/safety safety check --stdin --full-report

- Via python package:
$ pip install safety
$ safety check --full-report -r requirements.txt

https://gitlab.com/janmasarik/kiwi-xssable
https://github.com/pyupio/safety

Dependency scanning - hands-on - part 2
- Run safety, or register on snyk.io and run it on a project of your choice.
- Try to understand impact of the vulnerabilities

- Might not work in case requirements are not
in pinned (expected) format:

- How to pin dependencies in python:
$ pip install pip-tools
$ pip-compile --output-file=requirements.txt requirements.in

CVE != valid vulnerability
- Can be disputed (CVE-2018-17793)

- CVSS Score: 10.0

¯_(ツ)_/¯ ¯_(ツ)_/¯
 ¯_(ツ)_/¯

- virtualenv is a tool to create isolated Python
environments. virtualenv creates a folder
which contains all the necessary executables to
use the packages that a Python project would
need.

https://www.cvedetails.com/cve/CVE-2018-17793/
http://pypi.org/project/virtualenv

CVE != valid vulnerability vol. 2
- CVE-2019-8341

- “Exploit” repo got deleted shortly after the guy realized his mistake. Thumbnail:

https://access.redhat.com/security/cve/cve-2019-8341

Dependency scanning - lessons learned
- Always check the reliability of the dependency vulnerability database

- Every tool might have different DB

- Don’t blindly trust the findings
- Triage them and check if those issues are valid for your implementation/stack
- Try to understand the root cause of the issue

- Existing CVE does not always imply that a vulnerability is valid
- Check for disputed CVEs and understand the impact

SAST - hands-on
git clone https://gitlab.com/janmasarik/kiwi-xssable && cd kiwi-xssable

Run python SAST

- Semgrep via docker (recommended - has more rules and is language agnostic)
$ docker run -v "/path/with/kiwi-xssable/:/src" returntocorp/semgrep
--config "p/r2c-security-audit"

- Replace the </path/to/...> according to your machine
- v mounts the volume inside the docker container
- Feel free to install via https://semgrep.dev/docs/getting-started/#run-semgrep-locally

- Bandit via Docker:
$ docker run -v </path/to/directory/with/kiwi-xssable>:/src/ s14ve/bandit

- Bandit via python package:
$ pip install bandit && bandit -r /path/to/directory/with/kiwi-xssable /

https://gitlab.com/janmasarik/kiwi-xssable
https://semgrep.dev/docs/getting-started/#run-semgrep-locally

SAST - hands-on
1. Triage bandit results and split issues to 3 categories:

- Fix ASAP
- Fix some day
- False positive / best practice / accepted risk

2. Run bandit/semgrep on a project of your choice and check results

SAST - lessons learned
- Run SAST in the same version of language as the project

- You may not be able to run python 3.7 code in python 2.7 and vice versa

- Think while triaging issues
- If you have trusted input (e.g. source is directly from repository), even unsafe functions might be

safe

https://github.com/PyCQA/bandit#under-which-version-of-python-should-i-install-bandit

Homework - setup
- Register to hackerone - https://hackerone.com/users/sign_up

- Afterwards, go to https://ctf.hacker101.com -> Login

- Join MUNI group by clicking on invite link:
https://ctf.hacker101.com/group/join?invite=54ff0f11211d6aaf9c06182ac192
d366e87c30ae225a5b354d22ea21a993adb8 (if the link is expired, please ping
me at 433634@mail.muni.cz)

- Invite link expires in 48 hours. Register and click on it now.

https://hackerone.com/users/sign_up
https://ctf.hacker101.com/
https://ctf.hacker101.com/group/join?invite=54ff0f11211d6aaf9c06182ac192d366e87c30ae225a5b354d22ea21a993adb8
https://ctf.hacker101.com/group/join?invite=54ff0f11211d6aaf9c06182ac192d366e87c30ae225a5b354d22ea21a993adb8
mailto:433634@mail.muni.cz

Homework - task
- Get 26 points (1 invite to private program) - 50% of HW points

- Choose challenges based on your skill level
- Easy difficulty is relative, so don’t get discouraged and try harder
- You can use hints, but at least try without them
- Check out videos from Hackerone 101 University in case you have no idea where to start

- Write a short report (1 page) - 50% of HW points
- Format can be txt/md/pdf
- Put as many images as you want
- You can write even about failed paths
- Include your hackerone username in report

- Deadline as usual
- Bonus points possible in case of 52+ points or exceptional report

https://www.hacker101.com

