Dependency scanning /
SAST

Jan Masarik

Agenda

- Dependency scanning (45 min)
- Intro
- python safety - hands-on
- triage of issues found

- SAST (35 min)
- Intro
- python bandit - hands-on
- triage of issues found

- HW & Questions (10 min)

Table 3: Characterization of package dependency graphs
(without disconnected nodes)

npm PyPI
#Nodes 577943 84188
Avg node outdegree 4.27 2.95

Avg dependency tree size 86.55 7.33
Avg dependency tree depth 4.39 171

https://www.researchgate.net/publication/331587729 Security Issues in Langquage-based Sofware Ecosystems

https://www.researchgate.net/publication/331587729_Security_Issues_in_Language-based_Sofware_Ecosystems

New vulnerabilities each year by ecosystem

2000

1500 @ PHP Packagist

Maven Central

@
/ .
@)
o o
.7 e Golang
500 g © ryp

0
2014 2015 2016 2017 2018 snyk

https://res.cloudinary.com/snyk/image/upload/v1551172581/The-State-Of-Open-Source-Security-Report-2019-Snyk. pdf

https://res.cloudinary.com/snyk/image/upload/v1551172581/The-State-Of-Open-Source-Security-Report-2019-Snyk.pdf

Dependency scanning - hands-on

git clone https://gitlab.com/janmasarik/kiwi-xssable && cd kiwi-xssable

Run python dependency scan (called safety) and sort findings to 3 priority buckets
(high priority, medium priority, low/zero priority)

- Via Docker
S cat requirements.txt | \
docker run -i --rm sldve/safety safety check --stdin --full-report

- Via python package:
$ pip install safety
S safety check --full-report -r requirements.txt

https://gitlab.com/janmasarik/kiwi-xssable
https://github.com/pyupio/safety

Dependency scanning - hands-on - part 2

- Run safety, or register on snyk.io and run it on a project of your choice.
- Try to understand impact of the vulnerabilities

- Might not work in case requirements are not

in pinned (expected) format: |EAUSIEEERTL
cffi==1.12.1

click==7.0

- How to pin dependencies in python:
S pip install pip-tools

S pip-compile --output-file=requirements.txt requirements.in

, L virtualenv Sandbox escape #1207/
CVE ! — Va I Id Vu I n e ra bl I Ity BakedPotato999 opened this issue on 30 Sep 2018 - 30 comments

™

- Can be d |Sputed (CVE_201 8_1 7793) =" BakedPotato999 commented on 30 Sep 2018 « edited by Ivoz ~

Exploit Title: virtualenv Sandbox escape
- CVSS Score: 10.0 Date: 2018-9-30
Exploit Author: Topsec Technologies Inc. - vr_system
Version: 16.0.0
Tested on: kali linux
CVE : None

o W B o " _
\ (V). / \ (V). /
——\ ‘:/ /—— root@kal%:~#p%p install virtualenv
- - root@kali:~#virtualenv test_env
root@kali:~#cd test_env/

root@kali:~/test_env#source ./bin/activate
(test_env) root@kali:~/test_env#’

- virtualenv is a tool to create isolated Python "2, sandbox escape
. . (test_env) root@kali:~/test_env#python $(bash >&2)
environments. virtualenv creates a folder root@kali:z~i#
. . (test_env) root@kali:~/test_env#python $(rbash >&2)
which contains all the necessary executables tc root@kaliz~s' "

use the packages that a Python project would
need. F3d @29 €2

https://www.cvedetails.com/cve/CVE-2018-17793/
http://pypi.org/project/virtualenv

CVE != valid vulnerability vol. 2

** DISPUTED ** An issue was discovered in Jinja2 2.10. The from_string function is prone to
- CVE-2019-8341 Server Side Template Injection (SSTI) where it takes the "source” parameter as a template
object, renders it, and then returns it. The attacker can exploit it with {{INJECTION
COMMANDS?}} in a URL. NOTE: The maintainer and multiple third parties believe that this
vulnerability isn't valid because users shouldn't use untrusted templates without sandboxing.

- “Exploit” repo got deleted shortly after the guy realized his mistake. Thumbnail:

Actually, check this:
= ThiefMaster

That's like saying subprocess.call() is insecure because it cannot be used with

untrustd input...
Comments
2

JameelNabbo/Jinja2-Code-execution Feb 15th Added by GitHub

https://access.redhat.com/security/cve/cve-2019-8341

Dependency scanning - lessons learned

- Always check the reliability of the dependency vulnerability database
- Every tool might have different DB

- Don'’t blindly trust the findings
- Triage them and check if those issues are valid for your implementation/stack
- Try to understand the root cause of the issue

- Existing CVE does not always imply that a vulnerability is valid
- Check for disputed CVEs and understand the impact

SAST - hands-on

git clone https://gitlab.com/janmasarik/kiwi-xssable && cd kiwi-xssable

Run python SAST

- Semgrep via docker (recommended - has more rules and is language agnostic)
$ docker run -v "/path/with/kiwi-xssable/:/src" returntocorp/semgrep
--config "p/r2c-security-audit"

- Replace the </path/to/...> according to your machine
- v mounts the volume inside the docker container
- Feel free to install via https://semgrep.dev/docs/getting-started/#run-semgrep-locally

- Bandit via Docker:
$ docker run -v </path/to/directory/with/kiwi-xssable>:/src/ sldve/bandit

- Bandit via python package:
$ pip install bandit && bandit -r /path/to/directory/with/kiwi-xssable /

https://gitlab.com/janmasarik/kiwi-xssable
https://semgrep.dev/docs/getting-started/#run-semgrep-locally

SAST - hands-on

1. Triage bandit results and split issues to 3 categories:
Fix ASAP
Fix some day
False positive / best practice / accepted risk

2. Run bandit/semgrep on a project of your choice and check results

SAST - lessons learned

- Run SAST in the same version of language as the project
- You may not be able to run python 3.7 code in python 2.7 and vice versa

- Think while triaging issues
- If you have trusted input (e.g. source is directly from repository), even unsafe functions might be
safe

https://github.com/PyCQA/bandit#under-which-version-of-python-should-i-install-bandit

Homework - setup

- Register to hackerone - https://hackerone.com/users/sign_up
Afterwards, go to https://ctf.hacker101.com -> Login

- Join MUNI group by clicking on invite link:
https://ctf.hacker101.com/groupl/join?invite=54ff0f11211d6aaf9c06182ac192
d366e87c30ae225a5b354d22ea21a993adb8 (if the link is expired, please ping
me at 433634@mail.muni.cz)

- Invite link expires in 48 hours. Register and click on it now.

https://hackerone.com/users/sign_up
https://ctf.hacker101.com/
https://ctf.hacker101.com/group/join?invite=54ff0f11211d6aaf9c06182ac192d366e87c30ae225a5b354d22ea21a993adb8
https://ctf.hacker101.com/group/join?invite=54ff0f11211d6aaf9c06182ac192d366e87c30ae225a5b354d22ea21a993adb8
mailto:433634@mail.muni.cz

Homework - task

- Get 26 points (1 invite to private program) - 50% of HW points
- Choose challenges based on your skill level
- Easy difficulty is relative, so don’t get discouraged and try harder
- You can use hints, but at least fry without them
- Check out videos from Hackerone 101 University in case you have no idea where to start

- Write a short report (1 page) - 50% of HW points
- Format can be txt/md/pdf
- Put as many images as you want
- You can write even about failed paths
- Include your hackerone username in report

- Deadline as usual
- Bonus points possible in case of 52+ points or exceptional report

https://www.hacker101.com

