VISUALIZATION OF MOLECULAR STRUCTURES

CURRENTLY USED METHODS AND FUTURE CHALLENGES

Barbora Kozlíková

08. 03. 2021

Visualization II

INTRODUCTION

- Molecular visualization is one of the oldest branches of data visualization
 - Builds up on pre-computer era depictions and models of molecules
- Molecular visualization is a vast and diverse field of research
- → We will focus on
 - Interactive 3D Visualization of
 - Biomolecules (DNA, proteins, lipids etc.) described by
 - Classical Models (no quantum effects, atoms depicted by hard spheres)

INTRODUCTION

INTRODUCTION

BIOMOLECULES

- Molecules
 - Atoms (117 chemical elements)
 - Oxygen, carbon, nitrogen, hydrogen
 - Bonds (e.g., covalent, disulfide, hydrogen)
- Small molecules & ions
 - Lipids (membranes)
 - Ligands/metabolites
 - Solvent molecules (e.g., water)
 - etc.

http://en.wikipedia.org/wiki/Phospholipid

BIOMOLECULES

- Proteins
 - Building blocks of the "machinery of life"
 - Consist of amino acids
 - One or more linear chains of amino acids that form a functional complex
 - Secondary structure (helix, sheet, turn, coil)

http://en.wikipedia.org/wiki/Amino_acid

http://en.wikipedia.org/wiki/Protein_structure

BIOMOLECULES

- DNA & RNA
 - DNA stores the "genetic code"
 - Blueprint for proteins
 - Chain of nucleotides
 - Sugar backbone
 - Phosphate
 - Nucleobase
 - cytosine, guanine, adenine, thymine/uracil)
 - 3 nucleotides encode 1 amino acid

http://en.wikipedia.org/wiki/DNA

TAXONOMY

TAXONOMY

MOLECULAR REPRESENTATION MODELS

- Atomistic Representations
 - Bond-centric Models
 - Surface Models
- Abstract and Illustrative Representations
 - Representations of Molecular Architecture
 - Surface Abstractions
- Structural Level of Detail

TAXONOMY

ATOMISTIC REPRESENTATIONS

- Molecular models that show the position of the atoms
- Bond-centric Models
 - Bonds define the topology of the molecule
 - Lines, Sticks, Balls-and-Sticks → spheres and cylinders

GPU-BASED GLYPH RAY CASTING

- State-of-the-art for rendering implicit objects
 - Upload implicit description of object to GPU
 - Proxy geometry that covers the object in Vertex/Geometry Shader
 - Object/ray intersection in Fragment Shader

MOLECULAR SURFACES

- Show molecular properties
- Depict boundary

VDW AND SAS SURFACE

- Van der Waals (vdW) surface
 - vdW radius: distance between non-bonded atoms
 - Molecular volume
 - Does not consider ligands or solvent molecules
- Solvent Accessible Surface (SAS)
 - Surface with respect to a certain solvent radius
 - Interior not reachable by solvent
 - Theory: Rolling probe (radius r_p)
 - Practice: Inflation of vdW radius by r_p
- Rendering via GPU ray casting

VDW AND SAS SURFACE

- Van der Waals (vdW) surface
 - vdW radius: distance between non-bonded atoms
 - Molecular volume
 - Does not consider ligands or solvent molecules
- Solvent Accessible Surface (SAS)
 - Surface with respect to a certain solvent radius
 - Interior not reachable by solvent
 - Theory: Rolling probe (radius r_p)
 - Practice: Inflation of vdW radius by r_p
- Rendering via GPU ray casting

vdW surface

SAS

- Defined by rolling probe of radius r_p
 - Probe surface traces out SES
- Smooth, tight surface
 - Boundary with respect to solvent
 - No inflation (molecular volume is preserved)
- Three types of patches
 - Concave spherical triangles
 - Convex spherical patches
 - Saddle-shaped toroidal patches
- Parallel computation
 - Interactive for 100k atoms
 - CPU [Lindow et al. 2010] or GPU [Krone et al. 2011]

- GPU ray casting of patches
- Implicit description [Parulek et al. 2012]
 - Direct ray casting via sphere tracing
 - Computationally expensive

Image: [Krone et al. 2010]

 Interactive CPU-based Ray Tracing of Solvent Excluded Surfaces [Rau et al. 2019]

Image: [Rau et al. 2019]

- Dynamic visibility-driven molecular surfaces [Bruckner 2019]
 - Fully operating in image space, no preprocessing

Image: [Bruckner 2019]

LIGAND EXCLUDED SURFACE

- Recent extension of the SES [Lindow et al. 2014]
 - Shows a more accurate contact surface with respect to a specific ligand
- No analytic computation (yet?)
 - Computationally expensive, grid-based sampling method

LIGAND EXCLUDED SURFACE

- Extension of the SES [Lindow et al. 2014]
 - Shows a more accurate contact surface with respect to a specific ligand
- No analytic computation (yet?)
 - Computationally expensive, grid-based sampling method

GAUSSIAN SURFACES

- Defined in 1982 by Jim Blinn (aka Metaballs/Convolution Surfaces)
 - Sum of Gaussian radial basis function for each atom (\Rightarrow density field in \mathbb{R}^3)
 - Model electron density
 - Isosurface can approximate SES (surface shape and surface area)

Two atoms with radial symmetric Gaussian density kernels

Images: [Krone et al. 2012]

GAUSSIAN SURFACES

- Interactive Rendering
 - Direct ray casting using depth peeling (~1M atoms) [Kanamori et al. 2008]
 - Grid-based sampling of the density (GPU-parallelized: ~10M atoms)
 - Isosurface extraction via Volume Ray Marching or Marching Cubes/Tetrahedra
 - Interactive image-based method for molecular dynamics [Bruckner, 2019]

TAXONOMY

- Representations of Molecular Architecture
 - Show functional structure (derived from atom positions)
 - Cartoon Representation for DNA and proteins
 - Seamless transition [van der Zwan et al. 2011]

AndDemos/Zwan2011IMV

- Cartoon Rendering
 - − Complex shapes \rightarrow no ray casting
 - GPU-acceleration polygonal rendering
 - Vertex shader [Wahle et al. 2011]
 - Geometry shader [Krone et al. 2008]

- Surface Abstractions
 - Coarsening of Gaussian surfaces (LoD, bounding spheres) [Krone at al. 2012]
 - Smoothing of high-frequency surfaces like SES [Cipriano, Gleicher 2007]
 - Mapping of molecular surface to a sphere (e.g., [Rahi, Sharp 2014])

- Surface Abstractions
 - Coarsening of Gaussian surfaces (LoD, bounding spheres) [Krone at al. 2012]
 - Smoothing of high-frequency surfaces like SES [Cipriano, Gleicher 2007]
 - Mapping of molecular surface to a sphere (e.g., [Rahi, Sharp 2014])

Images: [Cipriano, Gleicher 2007]

- Surface Abstractions
 - Coarsening of Gaussian surfaces (LoD, bounding spheres) [Krone at al. 2012]
 - Smoothing of high-frequency surfaces like SES [Cipriano, Gleicher 2007]
 - Mapping of molecular surface to a sphere (e.g., [Rahi, Sharp 2014])
 - Molecular surface maps [Krone at al. 2017]

TAXONOMY

STRUCTURAL LEVEL OF DETAIL

- Derive all-atom representation from coarse-grained simulations
 - Cellular environment \rightarrow many instances of the same molecules
 - Special GPU-accelerated rendering methods
 - Interactive rendering of up to 10 billion particles

MOLECULAR RENDERING

- Enhances
 - Image quality
 - Perception of geometric shapes and depth complexity
- Achieved by
 - Shading
 - Depth cues
 - Computable for dynamic data in real-time

COLOR

Barbora Kozlíková

CEL SHADING

- Artistic or non-photorealistic renderings with a comic-like look
- Resembles hand-drawn illustrations

Mycoplasma cell [Goodsell] B-Raf protein rendered in MegaMol [Grottel et al. 2015]

Barbora Kozlíková

CEL SHADING

- cellVIEW
 - Aiming to resemble hand-drawn illustrations of David Goodsell

FEATURE LINES AND HATCHING

molecular surfaces [Lawonn et al. 2014]

space filling models

[van der Zwan et al. 2011]

cartoon representations

DEPTH CUE TECHNIQUES

- Sihouettes, halos, depth darkening
- Ambient Occlusion
 Real-time Ambient Occlusion
- Depth of Field

ORDINAL DEPTH CUES

• Silhouettes

Computed in image space in postprocessing

• Halos

Extended from the object boundaries

Depth darkening

Visually separates distant overlapping objects

RELATIVE DEPTH CUES - AMBIENT OCCLUSION

- Mimicking the transport of diffuse light between objects
- Local shadowing, increases depth perception

• Computationally expensive, accelerated approaches developed

REAL-TIME AMBIENT OCCLUSION

- Screen-Space Ambient Occlusion
 - Image space technique, approximates the effects in postprocessing
 - Considers the visible neighborhood of fragments
- Object-Space Ambient Occlusion
 - Considers the entire local neighborhood of atoms

DEPTH OF FIELD

- Separating foreground from background
- Image-space and object-space based approaches
- Draw the attention to a specific region or semantic properties

Semantic-based [Kottravel et al. 2015]

VISUALIZATION OF MOLECULAR DYNAMICS

VISUALIZATION OF MOLECULAR DYNAMICS

TAXONOMY

VISUALIZATION OF FLEXIBILITY

 Probability distribution depicting the varying molecular conformations

Modulated tube [Lv et al. 2013]

Normal Mode Analysis [Bryden et al. 2012]

TAXONOMY

AGGREGATION

• Spatial

Aggregating atom densities using property grids

[Rozmanov et al. 2014]

AGGREGATION

Temporal

- Aggregated diffusional motion
- Combination of temporal and spatial aggregation

[Chavent et al. 2014]

[Ertl et al. 2014]

TAXONOMY

INTERACTIVE SIMULATIONS

- Visualization has to be interactive → simulation performance has to be the limiting factor
- Haptic rendering 1000 Hz refresh rates
- Cheaper and better hardware → haptic steering is very attractive
 Applied to systems with more
 than 1 million atoms

[Dreher et al. 2013]

Viral Scale Atomically Precise HIV Structure

TAXONOMY

- Several existing tools for the visualization of reaction networks
- Particle simulations are very crowded Methods visually emphasizing interesting aspects of simulations

particle trajectory [Falk et al. 2009]

- Several existing tools for the visualization of reaction networks
- Particle simulations are very crowded

Methods visually emphasizing interesting aspects of simulations

focus on reactions [Le Muzic et al. 2014]

Visualization of polymerization

[Kolesár et al. 2014]

• Visualization of molecular orbitals, electron densities, bonds

MOLECULAR VISUALIZATION SYSTEMS

PyMOL

MOLECULAR VISUALIZATION SYSTEMS

FUTURE CHALLENGES

- Recent trend is to use GPU based rendering and computations
 Programmable GPUs and multi-core GPUs enable parallelization
- Increasing amount of captured data sets in terms of particle numbers and time steps
 - Complexity of data will require new visual representations Visual analysis
- Quantum mechanics simulations will require novel visualization methods
- Visual language for biomolecules