PB138: React and
State Management

presented by Lukas Grolig

What is state management?

e Something that stores data for your components so
you don'‘t have to pass them from the parent.

e |t also handles actions that happen in your
components.

e Shares state across multiple components

What is Flux?

e |tis architure for building client-side websites. It is
utiling unidirectional data flow between component.
It's pattern implemented by state management
frameworks.

mponent routin r i ibi
Component routing data to stores Object describing what

(usually by registered callbacks) happened

1 1
1 1
1 1
1 1
1 1
v v

ya
N

<N

Holds some part of state

and maintains related

’

.-~ logic

Different
Implementations of
Flux

React Context

Context provides a way to pass data
through the component tree without
having to pass props down manually at
every level

Creating context

1 const ThemeContext = React.createContext('light');

First create context and provide default
value. We suggest to export context and
import it in components later.

Providing values in
context

App React.Component {
render() {
(
<ThemeContext.Provider value="dark">
<Toolbar />
</ThemeContext.Provider>

1
2
3
4
5
)
7
8
9

The provider will pass a value to all
components in the tree below. No matter
how deep.

Or pass state from any component to the
top.

Consuming values
from context

MyComponent React.Component {
render() {
(
<ThemeContext.Consumer>
{(context) => {
<Toolbar theme={context} />

+}

</ThemeContext .Consumer>

1
2
3
4
5
6
7
8
)
0

)
}

1

Component consuming context is
wrapped by it.

Or using hooks

ThemedButton() {
theme = useContext (ThemeContext);
(
{{

background: theme.background,
color: theme.foreground }}>
I am styled by theme context!

1
2
3
4
5
6
7
8
)
0

1

MobX

e |tis asimple, scalable, and battle-tested state
management solution.

e MobX uses an object-oriented approach to state
management.

e Realy easy to use.

Data flow in MobX is
similar as in Flow

notifies

v

reaction

g Observer(component)

How to implement a
store

Observable

import { makeObservable, observable, computed, action,

Doubler {

constructor () {
makeObservable (P

: observable,
: computed,

10 increment: action,

11 fetch: flow

12 })

13 s =

14

15 }

1
2
K
4
5
)
7
8
9

makeObservable will provide notification
mechanisms for your data to be
consumed by the observer.

If you don't have subclasses or inherit
from super try to use
makeAutoObservable.

Computed property

Doubler {

constructor (

The computed
value uses other observables to
calculate some value on top of them.

Observer

doubler = new Doubler(2);

DoublerView = observer(({ doubler })
=> Double: {doubler.double})

Observer enables a component to listen to
store changes. The store is passed in

props.

Action

import { makeObservable, observable, action }

Doubler {
=0

constructor () {
makeObservable(TR
: observable,
increment: action

1
2
3
4
5
6
7
8
)

})
}

increment () {

If some function in the store modifies
state, it is an action.

Autorun

counter = observable(({

disposer = autorun(() => {
console.log(counter.)

})

When something in the store changes than
your reaction is called. Autorun is like
reaction, but you don't specify on what

props you listen.

Integration of a store

{observer} 'mobx-react-lite'
{createContext, useContext} "react"

TimerContext = createContext<Timer>()

TimerView observer(() => {

timer useContext (TimerContext)

(

O 00O IO U1 WD -

Seconds passed: {timer.secondsPassed}

ReactDOM. render (
15
16
17
18 document.body
19

Redux

Redux is a predictable state container for JavaScript
apps. As the requirements for JavaScript single-page
applications have become increasingly complicated, our
code must manage more state than ever before.

This state can include server responses and cached data,
as well as locally created data that has not yet been
persisted to the server.

Ul state is also increasing in complexity, as we need to
manage active routes, selected tabs, spinners, pagination
controls, and so on.

Reducer hooks

initialState = {count: 0};

reducer (state, action) {
(action.type) {
'"increment':

{count: state.count + 1};
'decrement’:

{count: state.count - 1};

0 Jo U1l WD -

Error();

Counter() {
[state, dispatch] = useReducer(reducer, initialState);

(

Count: {state.count}
{() dispatch({type: 'decrement'})}>-
{() dispatch({type: 'increment'})}>+

State is read-only

The only way to change the state is to emit an action, an
object describing what happened.

1 store.dispatch({
2 : 'COMPLETE TODO‘,
3 index: 1

4°})

Changes are made with
pure functions

To specify how the state tree is transformed by actions,
you write pure reducers.

1 function todos(= [], action) {

2 switch (action.type) {

3 case 'COMPLETE TODO':

4 return .map((todo, index) => { ... })
5 .

6

7

return

}

Actions

Actions are payloads of information that
send data from your application to your
store. They are the only source of
information for the store. You send them
to the store using store.dispatch().

addTodoAction = {
type: 'todos/todoAdded',

payload: 'Buy milk'
}

Reducers

Reducers specify how the application's state changes in
response to actions sent to the store. Remember that
actions only describe what happened, but don't describe
how the application's state changes.

initialState = { value: 0 }
counterReducer(state = initialState, action) {

(action.type === 'counter/incremented') {

1
2
3
4
5
)
7
8

{

...state,

value: state.value + 1

Store

The Store is the object that brings everything together.
The store has the following responsibilities:
Holds application state;

Allows access to state via selectors;

Allows the state to be updated via dispatch(action),
Registers listeners via subscribe(listener),
Handles unregistering of listeners via the function
returned by subscribe(listener)

{ configureStore } '@reduxjs/toolkit’

store = configureStore({ reducer: counterReducer })

console.log(store.getState())

00O O Ul WDN B

Selector

React 'react’
{ useSelector } 'react-redux'
TodoListItem './TodoListItem'

selectTodos = state => state.todos

TodoList = () => {
todos = useSelector(selectTodos)

renderedListItems = todos.map(todo => {
{todo.id} {todo}

"todo-list">{renderedListItems}

TodoList

Dispatch

React, { useState } 'react’
{ useDispatch } 'react-redux'

Header = () => {
[text, setText] = useState('')
dispatch = useDispatch()

O OOl s WDN K

handleChange = e => setText(e.target.value)

handleKeyDown = e => {
trimmedText e.target.value.trim()

(e.key === 'Enter' && trimmedText) {

dispatch({ type: 'todos/todoAdded', payload: trimmedText })

setText('")

}
}

(

type="text"

placeholder="What needs to be done?"
autoFocus={true}

value={text}

onChange={handleChange}
onKeyDown={handleKeyDown}

Pass store using Context

React 'react'
ReactDOM 'react-dom'
{ Provider } 'react-redux'

App './App'
store './store'

ReactDOM. render (

1
2
K
4
5
6
7
8
9

4

document.getElementById('root')
)

Recoil

New kid on the block

1
2
3
4
5
6
7
8
9

React

{
RecoilRoot,
atom,
selector,
useRecoilState,
useRecoilValue,

'recoil';

App() {
(

1
2
3
4
5
6
7
8
9

React

{
RecoilRoot,
atom,
selector,
useRecoilState,
useRecoilValue,

'recoil';

App() {
(

Atom

textState = atom({
key: 'textState',
default: '',

)

useRecoilState

CharacterCounter() {

(

O 00 o Ul WDN K-

TextInput() {
[text, setText] = useRecoilState(textState);

onChange = (event) => {
setText (event.target.value);

{onChange}

Selector

charCountState = selector({
key: 'charCountState',
get: ({get}) => {
text = get(textState);

text.length;

-
~

CharacterCount () {
count = useRecoilValue(charCountState);

Character Count: {count}

Working with REST
API

1
2
3
4
5
)
7
8
9
10

Using SWR

useSWR
fetcher = url => fetch(url).then(r => r.json());

Profile() {
{ data, error } = useSWR('/api/user', fetcher)

(error) failed to load
(!data) loading...
hello {data.name}!

Using SWR with
boundaries

{ ErrorBoundary, Suspense }
useSWR 'swr'

Profile () {
{ data } = useSWR('/api/user', fetcher, { suspense:
hello, {data.name}

1
2
3
4
5
6
7
8
)

App () |

(
{ Could not fetch posts.

Loading posts... >

Questions?

Ok, that's it for
today.

