PB138:
Introduction to CSS

What is CSS

CSS (Cascading Style Sheets) is used to define styles for your
web pages, including the design, layout and variations in
display for different devices and screen sizes.

There is a clear separation of concerns between HTML and
CSS. HTML caries content and it's meaning while CSS is
responsible for look and feel.

How connect CSS with HTML

There are 3 ways how we can add CSS to your website:

e Link external CSSfile
e [nline CSS inside <style> tag
e |nline CSS in style="" attribute

Linking external file

"UTF-8"
"viewport" "width=device-width, initial-scale=1.0
"stylesheet" "text/css" "theme.css"
"stylesheet" "text/css" "theme-override.css"
"stylesheet"” "text/css" "custom-styles.css"

1
2
3
4
5
6
7
8
9

Using <style>

n UTF— 8 n
"viewport" "width=device-width, initial-scale=1.0"

// In this example we are using style element

/*

O oo JoO0r b WD -

Some websites dump all their css into this element.
They are trying to optimize performace of their website by

mimizing number of requests to server.

*/

Using style=""

n UTF— 8 n
"viewport" "width=device-width, initial-scale=1.0"

1
2
3
4
5
6
7
8
)

"color: red;">Red title

What is the meaning of
cascading?

Styles are applied in specific order:

1. Default browser styles
2. External CSS or <style>
3. Styles inside style attribute

All styles are applied. Later applied style
overrides previously applied style.

CSS Selectors

In order to apply a style to some elements,
we must use CSS selectors.

There are:

1. element selectors

2. 1D selectors

3. class selectors

4. pseudo element selectors

Element Selectors

{

font-size:

font-size: 2.5rem;

1
2
K
4
5
6
7
8

O

font-size:

e
wWN = O

’ {

font-size:

N
Ul

|ID Selectors

#important-header {
color: dark-gray;
font-size: 3rem;

"UTF-8"
Document

0O Jo0r WD B

"important-header"
This is main header

0O Jo0r WD B

"UTF-8"
Document

"header header-blue'
This is blue header

1

electors

.header {
font-size: 3rem;

}

.header-blue {
color: blue;

}

Pseudo Selectors

:link {

color: #FF0000;
"UTF-8"

Document

}

:visited {
color: #00FFO00;

0O Jo0r WD B
0O Jo0r WD B

"#link"
I link somewhere }

thover ({
color: #FFOOFF;

}

tactive {
color: #000OFF;
}

Selecting children

{

color: gray;

n UTF— 8 n
Document

0O Jo0r WD B

"header header-blue"
Lorem Ipsum

Lorem Ipsum is simply dummy
text of the printing and
typesetting industry. Lorem
Ipsum has been the industry's
standard dummy text ever
since the 1500s

Selecting children

> p {

color: gray;

n UTF— 8 n
Document

0O Jo0r WD B

"header header-blue"
Lorem Ipsum

Lorem Ipsum is simply dummy
text of the printing and
typesetting industry. Lorem
Ipsum has been the industry's
standard dummy text ever
since the 1500s

Selecting siblings

> + {
font-style: italic;
"UTF-8"
Document

0O Jo0r WD B

"header header-blue"
Lorem Ipsum

Lorem Ipsum is simply dummy
text of the printing and
typesetting industry. Lorem
Ipsum has been the industry's
standard dummy text ever
since the 1500s

Secondary text

Selector Specificity

style="" ID Cljssi element
attribute p>EUdOciass,
attribute

HIGHEST SPECIFICITY > LOWEST SPECIFICITY

Selector Specificity

; chor: {white; O O O 2
3}
Style ID Class Element
b et 0 0 2 (0
3}
Style ID Class Element

= second selector wins

Selector Specificity

.container #hero-container .button a:hover { }

Pseudo
Element 1D Element
Class Class
0 1 3 2
Style 1D Class Element
+

Pseudo

Now how it works internaly

.container #hero-container .button { }

1. Things are evaluated from right to left

2. This means we get a list of all <a>in
document

3. In this list there is filter applied and only
subset with parrent .button is returned

4. In this subset, we apply filter again and get
those with parrent #hero-container

5. ...

Now you understand
selectors.

Let's get to some
concepts

Display

One of commonly used property is display.
There is display: inline for elements:
<a>, ,

and display: block for elements:
<div>, <h1> - <h6>, <p>,
<form>, <header>, <footer>, <section>

Display: inline

You cannot set the width and height of the inline
element.

Also, it does not respect margins and paddings on top
and bottom.

It does NOT add line break before and after element.

Display: inline-block

You can set the width and height of the inline-block
element.

Also, it DOES respect margins and paddings on top and
bottom.

It does NOT add line break before and after element.

Display: block

You can set the width and height of the block element.

Also, it does respect margins and paddings on top and
bottom.

It adds line break before and after element.

Box Model

margin

padding

content

content-box

margin

border

padding

content

width

border-box

margin

border

padding

content

width

For some elements,
there is default
content-box. For
other border-box.

Always set border-box

1 {
box-sizing:

Now how to set
margins/paddings

values are set

clockwise

Now how to set
margins/paddings

ttttttttt

left&right

Now how to set
margins/paddings

Often there is need
to hide element

beware of visibility: hidden. This also hides
element but still reserves space for itin
your layout.

Overflow

.no-overflow {
overflow: hidden;

}

.visible-overflow {
overflow: auto; // same as visible

}

.display-scrollbar {
overflow: scroll;

}

1
2
3
4
5
6
7
8
9
0
1

1
1

and this is often connected with
truncatenation

.truncate {
white-space: nowrap;
overflow: hidden;

text-overflow: ellipsis;

}

Floating

.to-left {
float: left;

}

.to-right {
float: right; // same as visible

}

if we want to continue it is good to clear
floating afterwards

.clearfix::after {
content: "";
clear: both;

display: table;
}

Now some more
advanced concepts

CSS Variables

troot {
--main-bg-color: coral;

}

#divl {
background-color: var(--main-bg-color);

}

#div2 {
background-color: var(--main-bg-color);

}

1
2
3
4
5
6
7
8
)
0
1

1
1

We can say the same as for magic
numbers and constants in classic
programming. Use variables as much as
possible. You can create a hierarchy of
variables.

Sass, less and other
preprocessors

® |n past there we no variables in CSS
e This was the reason why people introduces

preprocessors
e They provided variables, calculated values and
inheritance (now CSS have composes - but this is talk

for later)

Many different
devices

Mobile First Approach

We must support mobile, tablet and desktop views
It is recommended to develop primarily for mobile

= Especially in Asia most of users and revenue is
coming from mobile.

So open your developer tools and switch to mobile
view when developing.
Add tablet and desktop specific styles later.

Media Queries

screen (max-width: 600px) {

{
background-color: lightblue;

}
}

Media Queries

.col-1 {width: 8.33%;}
.col-2 {width: 16.66%;}
.col-3 {width: 25%;
.col-4 {width: 33.33%;}
.col-5 {width: 41.66%;}
.col-6 {width: 50%;
.col-7 {width: 58.33%;}
.col-8 {width: 66.66%;}
.col-9 {width: 75%;
.col-10 {width: 83.33%;}
.col-11 {width: 91.66%;}
.col-12 {width: 100%;}

screen (max-width: 768px) {

[class*="col-"] {
width: 100%;
}

}

But let's do it right

Mobile Tablet Desktop

[class*="col-"] {
width: 100%;
}

screen (min-width:

O ~Nou b WD -

.col-s-1 {width: 8.33%;}
.col-s-2 {width: 16.66%;}
.col-s-3 {width: 25%;}

11 .col-s-4 {width: 33.33%;}
12 .col-s-5 {width: 41.66%;}
13 .col-s-6 {width: 50%;

14 .col-s-7 {width: 58.33%;}
15 .col-s-8 {width: 66.66%;}
16 .col-s-9 {width: 75%;}
17 .col-s-10 {width: 83.33%
18 .col-s-11 {width: 91.66%
19 .col-s-12 {width: 100%;}
20 }

21

22 screen (min-width:
23

24 .col-1 {width: 8.33%;

25 .col-2 {width: 16.66%;

26 .col-3 {width: 25%;}

27 .col-4 {width:

28 .col-5 {width:

A .col-6 {width:

30 .col-7 {width:

31 .col-8 {width:

32 .col-9 {width:

33 .col-10 {width: 83.33%;}

34 .col-11 {width: 91.66%;}

35 .col-12 {width: 100%;}

36 }

=
o L

)
)

Typical Device
Breakpoints

1. Extra small devices (phones, 600px and down)

2. Small devices (portrait tablets and large phones,
600px and up)

3. Medium devices (landscape tablets, 768px and up)

4. Large devices (laptops/desktops, 992px and up)

5. Extra large devices (large laptops and desktops,
1200px and up)}

You can even detect if
device is Iin landscape or
portrait mode

Flexbox

Often you must create one dimensional layout with items
shrinking, aligning or filling available space. For this you
can use display: flex.

1 .flex-container {
2 display: flex;
3}

Flexbox

Often you must create one dimensional layout with items
shrinking, aligning or filling available space. For this you
can use display: flex.

.flex-container {
display: flex;
flex-direction: row | column

}

justify-content

flex-end
center

space-around

Space-evenly

G

]
[
|

align items

flex-start flex-end

.flex-container {
: flex;
: row;
: stretch

baseline

text text text text text text text text

flex item

flex-start
f .flex-item {

T

. // flex-grow flex-shrink flex-ba
flex-end }

space-around

—

Space-evenly

G

CSS Grid

If thinking in one dimension is not
sufficient for your use case thank use CSS
Grid.

It can be used for layouts, dashboards and
other things where you need complex
layout.

r40px; - BOpX oo auto —------- - 50px - 40px- .container {

f N [-4] grid-template-columns:

40px 50px auto 50px 40px;
[2] grid-template-rows: 25% 100px auto;
[-3] }

3]
-2]

r40px+ - 50pX < ——--- auto - -—--- - 50px -r40px-
rh', - - . . ,'_-[row1-start] 1 .container {
I 2 grid-template-columns:
25% 3 [first] 40px [line2] 50px [line3]
%:: ~[rowl-end] [auto [cold4-start] 50px [five] 40px [end];
| 5 grid-template-rows:
| 6 [rowl-start] 25% [rowl-end]
100px 7 100px [third-line] auto [last-line];
| 8)
:;:: - - [third-line]
|
F
auto
|
'.
L_ L J [last-line]

[firL‘t] [lin|e2] [Iin'e3] [col4-|start] [fil/e] [e:1d]

CSS Grid

.item-b {
grid-column-start: 1;
o grid-column-end: col4-start;
) grid-row-start: 2;
grid-row-end: span 2;
}
Item-b
4 _J__
| | ' | | |
| |
[first] [line2] [line3] [col4-start] [five] [end]

Note: Items can overlap each other. You
can use z-index to control their stacking
order.

Now let's explore
practices on

OOCSS

The purpose of OOCSS is
to encourage code reuse
and, ultimately, faster and
more efficient stylesheets
that are easier to add to
and maintain.

DOES:

e Use classes for styling
e Separate container and
content

Avoid the descendent
selector (i.e. don't use
.sidebar h3)

Avoid IDs as styling hooks
Avoid attaching classes to
elements in your stylesheet
(i.e. don't do div.header or
h1.title)

Except in some rare cases,
avoid using limportant
Use CSS Lint to check your
CSS

Use CSS grids

BEM

A standalone entity A part of a block that

that is meaningful on has no standalone

its own. meaning and is
semantically tied to
its block.

A flag on a block or
element. Use them to

change appearance
or behavior.

menu elements

® P Github ‘

GitHUb Explore Fealures Enterprise Blog

Sign In

Build software
better, together.

Powerful collaboration, code review, and code management for
open source and private projects. Need private repositories?

\A vy vima L v C2HT R

O 00O IO UL WDN P

.button {
display: inline-block;
border-radius: 3px;
padding: 7px 12px;
border: 1lpx solid #D5D5D5;
background-image: linear-gradient (#EEE, #DDD);
font: 700 13px/18px Helvetica, arial;

1
2
3
4
5
6
7
8

}

.button--state-success {
color: #FFF;
background: #569E3D linear-gradient(#79D858, #569E3D) repeat-x;
border-color: #4A993E;
}
.button--state-danger {
color: #900;

}

Questions?

Ok.
That's 1t
for today.

Thanks for
watching.

