
Class-based outlier detection: staying zombies or
awaiting for resurrection?

Leona Nezvalová, Luboš Popeĺınský, Luis Torgo, and Karel Vacuĺık

KD Lab, FI MU Brno and F.Sci. U.Porto
xnezva36@mail.muni.cz, popel@fi.muni.cz, ltorgo@dcc.fc.up.pt,

xvaculi4@fi.muni.cz

Abstract. This paper addresses the task of finding outliers within each
class in the context of supervised classification problems. Class-based
outliers are cases that deviate too much with respect to the cases of the
same class. We introduce a novel method for outlier detection in labelled
data based on Random Forests and compare it with existing methods
both on artificial and real-world data. We show that it is competitive
with the existing methods and sometimes gives more intuitive results.
We also provide an overview for outlier detection in labelled data. The
main contribution are two methods for class-based outlier description
and interpretation.

1 Introduction

Outlier detection [2] is an area of data analysis that aims at finding anomalies in
data. Data cleansing to improve statistical model fraud detection or computer
network intrusion detection are examples of some successful application areas of
outlier analysis. Main stream of outlier detection defines, for a given statistical
distribution, an outlier (or a series of outliers in the case of contextual outliers) as
a case that differs from normal cases. This is typically taken as an unsupervised
task in the sense that there are no labels indicating to the models which are
the normal and the outlier cases. Nevertheless, there are also approaches that
assume the existence of a supervised training set with examples of outlier cases
and normal cases where the goal is to obtain a model that is able to accurately
discriminate these two situations. Moreover, semi-supervised approaches have
also been used in these application areas, where only a part of the available data
is labelled.

In this paper we address another type of use of the concept of outliers. The
context of the problem we are tackling is that of standard supervised classifica-
tion tasks. Cases are labelled into a set of pre-defined classes in these problems
and the goal is to learn a classification model from a provided training set. Out-
lier detection in labelled data, as a specific task, was initiated in [9, 16] and
further elaborated in [8]. Class-based outliers are those cases that look anoma-
lous when the class labels are taken into account, but they do not have to be
anomalous when the class labels are ignored. In [8] two class outlier detection

2 Leona Nezvalová et al.

methods have been introduced as adaptations of methods for classical outlier
detection setting, one based on frequent pattern mining, the other on clustering,
and their use for Custom Relation Management was demonstrated. A distance
and density-based approach has been published in [10] and its slightly improved
version is now available in RapidMiner. Usability of these methods in Custom
Relation Management and also in educational data was demonstrated [8, 18].

In [3] a novel unsupervised way of detecting outliers for two-class problems
by Inductive Logic Programming is presented. In the following text we will call
it CB-ILP. The essential idea is that the outliers somehow disrupt the model
of the data. The detection is done by creating a model, then for each possible
outlier (or a set of outliers) excluding this outlier(s), learning a new model and
comparing it with the original model. The same is done for a dual problem
where positive and negative examples have been swapped. If coverages of two
learned rule sets (with and without an example) differ more than a threshold,
the example is an outlier. This approach then allows, by comparison of coverages
of those four learned models, us to characterize the anomalies more finely, and
to divide outliers into three groups according to the way they disrupt models
learned with the whole data set - Irregularities, Anomalies and Outliers. The
main drawback is its computational complexity.

Class-based outlier detection can be seen similar to label noise detection in
classification tasks [7], more precisely to its sub-part of noise elimination. The
first work that exploited class-based outliers, although not explicitly named,
was C45Robust [11], where detected misclassified cases were removed before
learning a new model. A similar idea has been recently elaborated for SVM [17].
The most important difference from our approach lies in a different measure of
interestingness (rank). For noise elimination it seems to correspond only to the
influence of a potential outlier to learning the correct hypothesis. In class-based
outlier detection, the detection of an outlier is the goal and its interestingness
may not depend only on classification accuracy but also on its novelty. Class-
based outlier detection is also close to works on Exceptional model mining [13].

In this paper, we present RF–OEX, a new approach to class-based outlier
detection based on Random Forests (RF) implemented in Weka [6]. It consists
of two parts, an outlier detection module and an outlier interpretation module.
We compare outliers obtained with RF–OEX with results of eCODB [10] and
CB–LOF, an adaptation of LOF to labelled data. We show that RF–OEX is
comparable with them, both on artificial data and real-world data, or gives even
more intuitive results. Two new methods for class-based outlier interpretation,
one based on tree reduction, the other on finding frequent branches in those
trees, have been implemented. We describe these methods and compare the
results with CB-ILP, an ILP approach to outlier detection [3].

In the following section we give an overview of the class-based outlier detec-
tion problem. In Section 3 we describe class outlier detection with RF–OEX,
experimental evaluation of RF–OEX and comparison with the other methods.
Two novel methods for outlier interpretation are described in Section 4. There
we also bring a review of existing methods for class-based outlier interpretation

Class-based outlier detection 3

and compare the results of RF–OEX with their interpretation. We conclude with
discussion of results and directions for future work. Supplementary information
can be found at http://www.fi.muni.cz/~popel/685269.

2 Class-based outlier detection

Class-based outliers are cases that are different from the rest of the members of
their own class. There are two main types of ways of being different from the
members of the same class:

1. Cases that are too far (in terms of distance) from the bulk of cases of the
same class.

2. Cases that, although not too far from the same class, are nearer to cases of
another class.

Fig. 1 illustrates both situations. (a) shows the first situation, where the case
in red is too far from the members of the same class (x), while (b) illustrates
the second situation, where the red case is nearer to members of the other class
(y), even though it is not too far from the members of the same class (x), and
thus regarded by us as a class-based outlier.

Fig. 1. The first (a) and the second (b) type of class-based outliers.

While the case (a) could be easily detected by standard distance-based outlier
detection algorithms, the case (b) would not be captured by these methods as
they are class-agnostic. This means that detecting this second type of class-based
outliers is the key issue / innovation on this research line.

The concept of class outliers – outliers in labelled data – was introduced in
[8] as a generalisation of two concepts: semantic outliers, i.e. data points that
differ from other members of the same class while looking normal (similar) to
data points in another class [9], and cross-outliers that deviate from data points
in another class [16]. In [8] the authors define the problem of Class Outlier
Detection as finding observations (data points) with class labels that arouse
suspicions when those class labels are taken into account. Let

– Ci be a set of observations with the same class label cli,
– DB = {C1, C2, ..., Cm}, Ci ∩ Cj = ∅ for i 6= j, be a data set,
– Sp(DB) be the set of all unions of subsets of DB,

4 Leona Nezvalová et al.

– T be an element of DB (i.e. T = Cj for j ∈ {1, 2, ...,m}),
– p ∈ T where p is an observation and T a target set.

The Class Outlier Detection problem is to find for two classes Ci, Cj , i 6= j,
those observations p ∈ Ci that differ from members of Ci and Cj . Let COF (p, Ci)
be the class outlier factor for p ∈ T . If Ci = T , i.e. the problem is to find those
observations p ∈ T that differ from other members of the same class T , then
we call it Local Class Outlier Detection and use LCOF (p) as the local class
outlier factor. If Ci 6= T , i.e. the problem is to find those observations p ∈ T
that differ from members of the other class Ci, then we call it Reference Class
Outlier Detection and use RCOF (p, Ci) as the reference class outlier factor.
If DB = T then the class outlier detection problem is reduced to the common
outlier detection problem.

For example, assume a two-class problem, where C1 are positive and C2

negative examples, p ∈ C1, then p may be a local outlier, i.e. a reference class
outlier w.r.t class C1 with class outlier factor LCOF (p) = RCOF (p, C1) (or a
semantic outlier in terms of [9]). It may be a reference class outlier w.r.t class
C2 with class outlier factor RCOF (p, C2) (or a cross-outlier by [16]).

The main idea presented in [8] lies in the computation of class-based outlier
factor as an aggregation of the local factor and reference factors.

3 RF–OEX: Outlier detection

3.1 Method

Random Forests [4] is an ensemble method that combines bagging (each tree is
constructed by a different bootstrap sample from the original data) with the idea
of random selection of features. More specifically, each split of a tree is chosen
from a random subset of the data set features. Only these features are then used
for selecting the best split at each node and this random process is repeated for
all splits and all trees.

Random Forests can be used as an outlier detection method1 in the following
way. After each tree is built, all of the data are run down the tree, and proximity
values are computed for each pair of cases. If two cases occupy the same terminal
node, their proximity is increased by one. At the end of the run, the proxim-
ity values are normalized by dividing by the number of trees and the average
proximity is computed for each instance.

The main idea of RF–OEX lies in a different way of exploitation of the prox-
imity matrix. The main difference then lies in the fact how RF–OEX exploits
the information about the class label. The outlier factor for an instance p is com-
puted as a sum of three different measures of proximity or outlierness – proximity
to the members of the same class OF1, misclassification measure (proximity to
the members of other classes) OF2 and ambiguity measure OF3. A similar idea,
but only for the first two addends, has been elaborated in [8]. In the following,

1 https://www.stat.berkeley.edu/~breiman/RandomForests/cc home.htm#outliers

Class-based outlier detection 5

p stands for an element for which we compute the outlier factor. The value of
the outlier factor is given by:

OF (p) = OF1(p)same−class + OF2(p)misclassification + OF3(p)ambiguity

OF1(p)same−class. In this case, only proximities to points from the same class
are taken into account. Proximity of point p from class Cp is computed as an ag-
gregation of proximities to all points from the same class. Four aggregation func-
tions have been implemented: sum, sum of squared proximity values, product, and
cube root of sum of cubic values. For simplicity, we will use sum function in the re-
sulting formula. In principle, the higher the proximity is, the lower its outlierness
is, so we use the inverse value of the proximity: OF1(p) = 1∑

cl(p)=cl(q) Prox(p,q) .

where cl(p) is the class label of element p. Finally, we normalize the result be-
cause of different sizes of different classes.

OF2(p)misclassification. We already stated that the similarity with members of
a different class should increase the class outlier factor of p. We define Top|Cp|(p)
as |Cp| poins that are closest to point p. Then we compute how many of those
points are labelled by different class than point p belongs to. To be comparable
with OF1 and OF3, the value is multiplied by constant c, which is computed

as the maximum from all values OF1 divided by 4: c =
maxq∈DBOF1(q)

4 . The

resulting formula is then defined as OF2(p) = c · |{q | cl(q)6=cl(p) & q∈Top|Cp|(p)}|
|Cp| .

OF3(p)ambiguity. To increase the importance of outliers that are far from all
points, we add the third addend OF3. We compare the sum of proximites of
points Top|Cp|(p) to point p with the ideal situation when proximity to all ex-
amples is 1 and the sum is equal to |Cp|. At the end, we multiply it with the

same constant as in the case of OF2: OF3(p) = c ·
|Cp|−

∑
q∈Top|Cp|(p)

Prox(p,q)

|Cp| .

3.2 Parameter settings

The RF–OEX method has a few parameters but in most cases the user does not
need to change the default values of these parameters. At most the user may
need to try a few alternatives for the parameter that controls how many random
features are used for split selection at each tree node. Below we describe the
values used for the parameters of our method. More information on parameter
settings and work with RF–OEX can be found on the supplementary web page.

Number of Trees was set to 1000. We also checked smaller values, between
100 and 1000, and for a lot of situations 100 was sufficient. Number of Random
Features for each split selection step was set to half of the number of input at-
tributes. Minimum cases per node is equivalent to -m parameter of C45. It does
not allow to grow the tree when few examples reached the node. We set this
parameter to 10 for real-world data sets and 0 for artificial data because they
contained very few instances. Maximum depth of Trees was set to 0, i.e. depth
of trees was not limited. Attribute distribution of multiset for Random tree was
set to Normal, so each tree starts with the same original set of attributes. The

6 Leona Nezvalová et al.

information gain of attributes is then taken into account before building each
node of tree. Variant of summing point’s proximities denotes the method of
summing sample proximities and was set to Addition squared values. Normal-
ize according to affects the normalization of outlier factor within the bounds
of experiment. The Average option was chosen for this parameter. We checked
both Count with mistaken class penalty and Count with ambiguous classification
penalty parameters to consider similarity of given instance with the rest of sam-
ples (OF2(p)misclassification and OF3(p)ambiguity) when calculating the outlier
factor. The Use data bootstrapping parameter was checked to generate trees of
different quality.

3.3 Data sets used for experiments

For experiments we used the following data sets.

Artificial data. We created several artificial data sets – two-class problems,
with two numeric attributes – to check the behaviour of the systems on controlled
situations. An example of such a dataset with two classes is in Fig. 2, all the
data sets can be found at http://www.fi.muni.cz/~popel/685269/Results/
OutlierDetection/top 5 artificial.pdf.

Votes. The Votes (or House Votes 84 – Republicans vs. Democrats) data set
contains 16 key congress votes for each U.S. House of Representatives Congress-
man, 267 democrats and 168 republicans and was also used in [8, 10]. It has
been observed that several congressmen have opinions almost exactly opposite
to what is common in their political party (meaning they vote similarly to their
political opponents).

Student solutions data. The data [18] (a total of 873 student solutions) was
obtained in a bachelor course on Introduction to Logic at FI MU. It contains
the resolution tree together with dynamics of the solutions, i.e. all the actions
performed together with temporal information. Here we use only the resolution
trees. First all subgraphs that correspond to an application of the resolution rule
were found and generalized. Then each resolution tree has been transformed to
0/1 matrix where those graphs served as boolean attributes (1=the subgraph
appeared in the tree, 0=otherwise). Among these 873 different students’ solu-
tions of resolution proofs in propositional calculus, 101 of them were classified
as incorrect and 772 as correct [18].

As calculation of proximity matrix is quadratic to the number of instances, the
method becomes time-consuming for big data sets. Therefore, we have restricted
our selection of data sets to those having less than 1000 instances. For example,
runtime of Votes data set, which has 423 instances, is less than one minute. Run-
ning the student solutions data set, which has 873 instances, takes 10 minutes.
Optimization of our method to be applicable to bigger data sets is part of future
extensions.

Class-based outlier detection 7

●

●

●

● ● ●

●

0.04

0.04

0.02

0.01 0.17 0.35 1

0.21
0.10.450.83

0.07

0.04

0.01

0.04

0.9

0.35

0.1

000

0

0

0.01
−4

0

4

8

−9 −6 −3
x

y

class

●

n

p

Rectangle Positive Negative One Positve Negative dataset (RF−OEX)

Fig. 2. Results of RF–OEX on an artificial data set; outlier factors are above the
datapoints and they are normalized to [0,1] interval, where 1 means the most outlying.

3.4 Experiments and results

We compared results of RF–OEX with eCODB [10] and a variant of LOF that fol-
lows the model described in Section 2. eCODB [10] combines distance-based and
density-based approach w.r.t class attribute. The Class Outlier Factor COF (T)
for an instance T and parameter K (K nearest neighbors of the instance T) is
computed as

COF (T,K) = PCL(T,K)− norm(Deviation(T)) + norm(Kdist(T,K))

where PCL(T,K) is the probability of the class label of T w.r.t. the K near-
est neighbors (i.e. the frequency of the class label among those K neighbors),
Deviation(T) is the sum of distances from all elements from the same class,
and Kdist(T,K) is the distance between T and its K nearest neighbors. norm()
means normalization. eCODB is now a part of RapidMiner2. Following the model
from [8], we implemented CB–LOF, a variant of LOF that is capable to manage
class labels. We compute CB–LOF (class-based local outlier factor) as an ag-
gregation of two factors, dissimilarity of the case to members of the same class
and similarity to members of other classes. As aggregation functions we tested
maximum and average. For comparison we use the latter, which performs better
in general than maximum.

When compared with RF–OEX, eCODB returned much worse results on the
Student solution data. The reason is mainly because of the use of too rough
metrics – density and distances – to nearest neighbours and to all members of
the class, which does not work well for this 0/1 multidimensional data (number
of attributes = 20). Moreover, it is much more difficult to obtain a comprehensive

2 http://docs.rapidminer.com/studio/operators/data transformation/
data cleansing/outlier detection/detect outlier cof.html

8 Leona Nezvalová et al.

●

●

●

● ● ●

●

0.56

0.54

0.39

0.37 0.41 0.59 0.33

0.21
0.340.380.54

0.37

0.32

0.34

0.33

0.83

0.37

0.18

0.230.230.19

0.17

0.12

0.15
−4

0

4

8

−9 −6 −3
x

y

class

●

n

p

Rectangle Positive Negative One Positve Negative dataset (eCODB k=5)

Fig. 3. Results of eCODB (k=5) on an artificial data set; outlier factors are above the
datapoints and they are normalized to [0,1] interval, where 1 means the most outlying.

explanation why a particular instance is an outlier. The situation was similar for
CB–LOF, although the results were slightly better than with eCODB. For one
of the artificial data sets, results of RF–OEX and eCODB can be found in Fig.
2 and 3. More results can be found on www.fi.muni.cz/~popel/685269.

4 Outlier interpretation

As argued elsewhere [1], the outlier factor alone, i.e. the rank of an example, is
insufficient for adequate outlier interpretation and explanation. Thus, finding the
reason, or reasons, for being an outlier is highly relevant on several application
domains. Several methods for constructing an interpretation of outliers have
been recently published [1, 5, 14, 15] but only two for class-based outliers.

The first one is CB-ILP [3] briefly described in Section 1. The explanation
that CB-ILP offers actually consists of two rule sets - the starting theory (i.e.
the rules that have been learned from the full data set) and the ending theory
(rules learned after removing an outlier(s)).

The method in [8] analyses frequent patterns that cover an instance/example
and takes supports of those patterns for finding the most significant attribute-
value couples as an explanation. They define the contradict-ness of an itemset
X with respect to a transaction t (in terms of association rule mining) in the
following way:

Contradictness(X, t) = (card(X) - card(t ∩X)) ∗ support(X)

The motivation is as follows. The more the itemset X deviates from t, the more
contradictory it is. Moreover, the greater the support of X is, the more t deviates
from other instances.

Class-based outlier detection 9

We observed that this method gives counter-intuitive results even in very sim-
ple situations. The problem is that itemsets containing more items from t can
have the same contradict-ness score as itemsets which do not have these items.
It is enough if these items occur at least in those transactions in which the other
items occur. For example, assume a transaction t = {A1, A2, ..., An}, itemsets
X0 = {B}, X1 = {B,A1}, X2 = {B,A1, A2}, ..., Xn = {B,A1, A2, ..., An}, and
support{A1, A2, ..., An} = 1. It is clear that support of all these itemsets is the
same, i.e. it is equal to support(X0). Furthermore, it holds for all these itemsets
that card(X) - card(t ∩X) = 1. Thus, the contradict-ness of all these itemsets
is equal to support(X0). In such a case the contradict-ness score is not appro-
priate for outlier explanation because items A1, A2, ..., An do not distinguish t
from other instances at all and therefore they are superfluous. Another example,
for the ZOO data set, can be found on the supplementary web page. For that
drawback we did not use this method.

For class outlier explanation we developed two new methods. Both use al-
ready learned random trees and return interpretation of outliers as a set of con-
junctions of attributes or attribute-value couples with weights, where a weight
is proportional to the expressive power of the conjunction.

4.1 Reduction of random trees

For an outlier, we take all trees that classified this instance into an incorrect
class. Actually, we now work with two classes – O as outlier and N as normal –
like in the classical outlier detection settings, which allows us to prune the trees,
see Fig. 4. Specifically, all subbranches that classify into N can be removed. In
the next step, we remove internal nodes in the branch that do not influence
classification by checking all values the nodes can have. After this pruning is
done, sets of attributes are collected by running outlying instance down each
tree. Each of those attribute sets interprets outlierness of the examined point
with a weight that is given by the occurrence frequency in the pruned trees. Let
us inspect the interpretation of three instances belonging to the most outlying
instances in the iris data set. The full list of interpretations can be found on the
web page.

Instance number: 71, Class: Iris-versicolor petalwidth>=1.6, 0.6

Instance number: 84, Class: Iris-versicolor petallength>=4.9, 0.63

Instance number: 37, Class: Iris-setosa sepallength>=5.4 &&

sepalwidth<3.7, 1

This method is much more efficient when compared with the ILP approach.
However, it prefers short interpretations and sometimes oversees more complex
interpretations. The following method is able to find also longer conjunctions.

4.2 Analysis of frequent branches

The second method looks for a frequent combination of attributes, i.e. a combi-
nation with support higher than min supp, again on the trees that classify the
instance incorrectly. For each frequent combination we express the whole data

10 Leona Nezvalová et al.

Fig. 4. Tree pruning.

set only by attributes that appeared in that frequent combination and observe
how much the outlier factor changed. To compare these two values of the outlier
factor, we first have to normalize each one of them. The results are as follows.

Instance number: 71, Class: Iris-versicolor petalwidth=1.8, 0.88

It means that the outlierness of instance no. 71 is caused from 88% by value
1.8 of attribute petalwidth. Now let us have a look at the third most outlying
instance number 84:

Instance number: 84, Class: Iris-versicolor

petallength=5.1, 0.74

sepallength=6 && petallength=5.1, 0.26

Instance outlierness is caused from 74% by the value of petallength. There is
also a significant increase in outlierness if we combine attribute petallength with
attribute sepallength. This combination participates in outlierness with 26%.
Thus, frequent attribute set allows to find more complex interpretation more fre-
quently than the first method. As previously mentioned, supplementary material
and results for other data sets can be found on www.fi.muni.cz/~popel/685269.

4.3 Comparison with CB-ILP

For comparison we used Votes data set. The runtime of CB-ILP was 30 minutes,
compare to less than a minute of RF–OEX, and it detected 3 negative (republi-
can) and 2 positive (democrat) outliers with gains varying from 0.15 to 0.67. 16
negative examples were labelled as irregularity for being a fact in direct theory
as well as 3 positive. There were 7 other positive irregularities, with gain just

Class-based outlier detection 11

Fig. 5. Comparison-Votes-RF-CODB-ILP.

a little over 0.05. We also detected 6 negative anomalies with gain up to 0.53
and 6 positive anomalies with gain up to 0.68. Detected cases with the highest
gain are in Fig. 5 together with results of RF–OEX and eCODB. CB-ILP de-
tected Example 389 (democrat) as anomaly with gain 0.68, because he voted for
freezing physician fee, against Synfuels corporation cutback and against duty
free exports. Negative example 268 (republican) was identified as outlier with
positive gain 1.00

5 Conclusion

In this contribution we argue that outlier detection in labelled data is challenging
area both for research and for applications. We brought a review of existing
approaches to that problem and introduced a novel method based on Random
Forests that is competitive or overcome existing method. Two new methods
for class-based outlier description and interpretation were presented and their
results were compared with the ILP-based approach.

The open question is evaluation of class-based outlier detection. We per-
formed only a small step in this direction and built several artificial data sets.
Building benchmark data for this task more systematically will be the next step.
To improve efficiency of RF–OEX, especially its interpretation part, ensemble-
based noise elimination and also local models [7] look as good starting points.

Besides the applications mentioned earlier, there are many others that can
exploit information about class-based outliers or employ similar techniques, e.g.
in the field of subgroup discover [12]. A challenging one is fake text recognition,
e.g. an email that pretends to be written by a woman (or a member of a particular
group in general), or a similar kind of fake chat contribution.

Now it is up to the reader to answer the question that is in the title of this
contribution.

12 Leona Nezvalová et al.

Acknowledgments. We thanks to IDA reviewers for valuable comments and
suggestions and to Vaclav Blahut for implementation and experiments with CB-
ILP. We would like to thank also to the members of KDLab FI MU for their
help. This work has been partially supported by Faculty of Informatics, Masaryk
University, Brno.

References

[1] ODD2 Ws on Outlier Detection & Description under Data Diversity, KDD 2014.
[2] C. C. Aggarwal. Outlier Analysis. Springer, 2013.
[3] F. Angiulli and F. Fassetti. Exploiting domain knowledge to detect outliers. Data

Min. Knowl. Discov., 28(2):519–568, 2014.
[4] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.
[5] X. H. Dang, B. Micenková, I. Assent, and R. T. Ng. Local outlier detection with

interpretation. In ECML PKDD 2013, Prague, Czech Republic, September 23-27,
2013, Proceedings, Part III, pages 304–320, 2013.

[6] M. Hall et al. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, November 2009.

[7] B. Frenay and M. Verleysen. Classification in the presence of label noise: A survey.
Neural Networks and Learning Systems, IEEE Transactions on, 25(5):845–869,
May 2014.

[8] Z. He, X. Xu, J. Z. Huang, and S. Deng. Mining class outliers: concepts, algorithms
and applications in CRM. Expert Syst. Appl., 27(4):681–697, 2004.

[9] Zengyou He, Shengchun Deng, and Xiaofei Xu. Outlier detection integrating
semantic knowledge. In Advances in Web-Age Information Management, volume
2419 of LNCS, pages 126–131. Springer, 2002.

[10] N. Hewahi and M. Saad. Class outliers mining: Distance-based approach. Inter-
national Journal of Intelligent Technology, 2(1):5568, 2007.

[11] George H. John. Robust decision trees: Removing outliers from databases. In
Knowledge Discovery and Data Mining, pages 174–179. AAAI Press, 1995.

[12] Rob M. Konijn, Wouter Duivesteijn, Wojtek Kowalczyk, and Arno J. Knobbe.
Discovering local subgroups, with an application to fraud detection. In Proceedings
of PAKDD 2013, pages 1–12, 2013.

[13] Dennis Leman, Ad Feelders, and Arno J. Knobbe. Exceptional model mining. In
ECML/PKDD, volume 5212 of LNCS, pages 1–16. Springer, 2008.

[14] B. Micenková, R. T. Ng, X. H. Dang, and I. Assent. Explaining outliers by
subspace separability. In IEEE ICDM 2013, pages 518–527, 2013.

[15] E. Müller, F. Keller, S. Blanc, and K. Böhm. Outrules: A framework for outlier
descriptions in multiple context spaces. In ECML PKDD 2012, Bristol, UK,
September 24-28, 2012. Proceedings, Part II, pages 828–832, 2012.

[16] Spiros Papadimitriou and Christos Faloutsos. Cross-outlier detection. In Advances
in Spatial and Temporal Databases, volume 2750 of Lecture Notes in Computer
Science, pages 199–213. Springer Berlin Heidelberg, 2003.

[17] Michael R. Smith and Tony R. Martinez. Improving classification accuracy by
identifying and removing instances that should be misclassified. In IJCNN, pages
2690–2697. IEEE, 2011.

[18] K. Vacuĺık, L. Nezvalová, and L. Popeĺınsky. Educational data mining for analysis
of students’ solutions. In AIMSA 2014, Varna, Bulgaria, September 11-13, 2014.
Proceedings, volume 8722 of Lecture Notes in Computer Science. Springer.

