
DATA SCIENCE

Hyperparameter
tuning for machine
learning models.

JEREMY JORDAN
2 NOV 2017 8 MIN READ•

When creating a machine learning model, you'll be presented
with design choices as to how to define your model architecture.
Often times, we don't immediately know what the optimal model
architecture should be for a given model, and thus we'd like to be
able to explore a range of possibilities. In true machine learning
fashion, we'll ideally ask the machine to perform this exploration
and select the optimal model architecture automatically.
Parameters which define the model architecture are referred to
as hyperparameters and thus this process of searching for the
ideal model architecture is referred to as hyperparameter
tuning.

These hyperparameters might address model design questions
such as:

What degree of polynomial features should I use for my
linear model?

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

decision tree?

What should be the minimum number of samples
required at a leaf node in my decision tree?

How many trees should I include in my random forest?

How many neurons should I have in my neural network
layer?

How many layers should I have in my neural network?

What should I set my learning rate to for gradient
descent?

I want to be absolutely clear, hyperparameters are not
model parameters and they cannot be directly trained from
the data. Model parameters are learned during training when
we optimize a loss function using something like gradient
descent.The process for learning parameter values is shown
generally below.

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

Whereas the model parameters specify how to transform the
input data into the desired output, the hyperparameters define
how our model is actually structured. Unfortunately, there's no
way to calculate “which way should I update my hyperparameter
to reduce the loss?” (ie. gradients) in order to find the optimal
model architecture; thus, we generally resort to experimentation
to figure out what works best.

In general, this process includes:

1. Define a model

2. Define the range of possible values for all
hyperparameters

3. Define a method for sampling hyperparameter values

4. Define an evaluative criteria to judge the model

5. Define a cross-validation method

Specifically, the various hyperparameter tuning methods I'll
discuss in this post offer various approaches to Step 3.

Model validation
Before we discuss these various tuning methods, I'd like to
quickly revisit the purpose of splitting our data into training,
validation, and test data. The ultimate goal for any machine
learning model is to learn from examples in such a manner that
the model is capable of generalizing the learning to new
instances which it has not yet seen. At a very basic level, you

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

generalize - in other words, "how well will my model do on data
which it hasn't directly learned from during training?"

When you start exploring various model architectures (ie.
different hyperparameter values), you also need a way to
evaluate each model's ability to generalize to unseen data.
However, if you use the testing data for this evaluation, you'll
end up "fitting" the model architecture to the testing data -
losing the ability to truely evaluate how the model performs on
unseen data. This is sometimes referred to as "data leakage".

To mitigate this, we'll end up splitting the total dataset into three
subsets: training data, validation data, and testing data. The
introduction of a validation dataset allows us to evaluate the
model on different data than it was trained on and select the
best model architecture, while still holding out a subset of the
data for the final evaluation at the end of our model
development.

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

You can also leverage more advanced techniques such as K-fold
cross validation in order to essentially combine training and
validation data for both learning the model parameters and
evaluating the model without introducing data leakage.

Hyperparameter tuning methods
Recall that I previously mentioned that the hyperparameter
tuning methods relate to how we sample possible model
architecture candidates from the space of possible
hyperparameter values. This is often referred to as "searching"
the hyperparameter space for the optimum values. In the
following visualization, the and dimensions represent two
hyperparameters, and the dimension represents the model's
score (defined by some evaluation metric) for the architecture
defined by and .

Note: Ignore the axes values, I borrowed this image as noted
and the axis values don't correspond with logical values for the
hyperparameters.

x y
z

x y

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

Photo by SigOpt

If we had access to such a plot, choosing the ideal
hyperparameter combination would be trivial. However,
calculating such a plot at the granularity visualized above would
be prohibitively expensive. Thus, we are left to blindly explore
the hyperparameter space in hopes of locating the
hyperparameter values which lead to the maximum score.

For each method, I'll discuss how to search for the optimal
structure of a random forest classifer. Random forests are an
ensemble model comprised of a collection of decision trees;
when building such a model, two important hyperparameters to
consider are:

How many estimators (ie. decision trees) should I use?

What should be the maximum allowable depth for each

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

Grid search
Grid search is arguably the most basic hyperparameter tuning
method. With this technique, we simply build a model for each
possible combination of all of the hyperparameter values
provided, evaluating each model, and selecting the architecture
which produces the best results.

For example, we would define a list of values to try for both n_e
stimators and max_depth and a grid search would build a
model for each possible combination.

Performing grid search over the defined hyperparameter space

n_estimators = [10, 50, 100, 200]

max_depth = [3, 10, 20, 40]

would yield the following models.

RandomForestClassifier(n_estimators=10, max_depth=3)

RandomForestClassifier(n_estimators=10, max_depth=10)

RandomForestClassifier(n_estimators=10, max_depth=20)

RandomForestClassifier(n_estimators=10, max_depth=40)

RandomForestClassifier(n_estimators=50, max_depth=3)

RandomForestClassifier(n_estimators=50, max_depth=10)

RandomForestClassifier(n_estimators=50, max_depth=20)

RandomForestClassifier(n_estimators=50, max_depth=40)

RandomForestClassifier(n_estimators=100, max_depth=3)

RandomForestClassifier(n_estimators=100, max_depth=10)

RandomForestClassifier(n_estimators=100, max_depth=20)

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

RandomForestClassifier(n_estimators=200, max_depth=10)

RandomForestClassifier(n_estimators=200, max_depth=20)

RandomForestClassifier(n_estimators=200, max_depth=40)

Each model would be fit to the training data and evaluated on
the validation data. As you can see, this is an exhaustive
sampling of the hyperparameter space and can be quite
inefficient.

Photo by SigOpt

Random search
Random search differs from grid search in that we longer

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

each hyperparameter from which values may be randomly
sampled.

We'll define a sampling distribution for each hyperparameter.

from scipy.stats import expon as sp_expon

from scipy.stats import randint as sp_randint

n_estimators = sp_expon(scale=100)

max_depth = sp_randint(1, 40)

We can also define how many iterations we'd like to build when
searching for the optimal model. For each iteration, the
hyperparameter values of the model will be set by sampling the
defined distributions above. The scipy distributions above may
be sampled with the rvs() function - feel free to explore this in
Python!

One of the main theoretical backings to motivate the use of
random search in place of grid search is the fact that for most
cases, hyperparameters are not equally important.

A Gaussian process analysis of the function from hyper-
parameters to validation set performance reveals that
for most data sets only a few of the hyper-
parameters really matter, but that different
hyper-parameters are important on different
data sets. This phenomenon makes grid search a poor
choice for configuring algorithms for new data sets. -
Bergstra, 2012

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

influence on optimizing the model score - the distributions
shown on each axis represent the model's score. In each case,
we're evaluating nine different models. The grid search strategy
blatantly misses the optimal model and spends redundant time
exploring the unimportant parameter. During this grid search,
we isolated each hyperparameter and searched for the best
possible value while holding all other hyperparameters constant.
For cases where the hyperparameter being studied has little
effect on the resulting model score, this results in wasted effort.
Conversely, the random search has much improved exploratory
power and can focus on finding the optimal value for the
important hyperparameter.

Photo by Bergstra, 2012

As you can see, this search method works best under the
assumption that not all hyperparameters are equally important.
While this isn't always the case, the assumption holds true for
most datasets.

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

Photo by SigOpt

Bayesian optimization
The previous two methods performed individual experiments
building models with various hyperparameter values and
recording the model performance for each. Because each
experiment was performed in isolation, it's very easy to
parallelize this process. However, because each experiment was
performed in isolation, we're not able to use the information
from one experiment to improve the next experiment. Bayesian
optimization belongs to a class of sequential model-based
optimization (SMBO) algorithms that allow for one to use the
results of our previous iteration to improve our sampling
method of the next experiment.

We'll initially define a model constructed with hyperparameters

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

values to compute a posterior expectation of the hyperparameter
space. We can then choose the optimal hyperparameter values
according to this posterior expectation as our next model
candidate. We iteratively repeat this process until converging to
an optimum.

We'll use a Gaussian process to model our prior probability of
model scores across the hyperparameter space. This model will
essentially serve to use the hyperparameter values and
corresponding scores we've observed thus far to
approximate a continuous score function over the
hyperparameter space. This approximated function also includes
the degree of certainty of our estimate, which we can use to
identify the candidate hyperparameter values that would yield
the largest expected improvement over the current score. The
formulation for expected improvemenet is known as our
acquisition function, which represents the posterior distribution
of our score function across the hyperparameter space.

λ1,...i

v1,...i

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

Photo by SigOpt

Note: these visualizations were provided by SigOpt, a company
that offers a Bayesian optimization product. It's not likely a
coincidence that the visualized hyperparamter space is such
that Bayesian optimization performs best.

Further reading
Random Search for Hyper-Parameter Optimization

Tuning the hyper-parameters of an estimator

A Conceptual Explanation of Bayesian Hyperparameter
Optimization for Machine Learning

Common Problems in Hyperparameter Optimization

Gilles Louppe | Bayesian optimization with Scikit-
Optimize

Hyperparameter Optimization with Keras

A Tutorial on Bayesian Optimization of Expensive Cost
Functions, with Application to Active User Modeling and
Hierarchical Reinforcement Learning

Population based training of neural networks

Hyperparameter optimization libraries (free and open source):

Ray.tune: Hyperparameter Optimization Framework

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

Hyperopt

Polyaxon

Talos

BayesianOptimization

Metric Optimization Engine

Spearmint

GPyOpt

Scikit-Optimize
Hyperparameter optimization libraries (everybody's favorite
commerial library):

SigOpt

Implementation examples:

Bayesian optimisation for smart hyperparameter search

Bayesian optimization with scikit-learn

Bayesian optimization with hyperopt

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

MORE IN

2 Jan 2021 – 10 min read

DATA SCIENCE

After revisiting my 2017 resolutions
and evaluating how well I adhered
each resolution, I'd like to set forth my
resolutions for the coming year. This

RESOLUTIONS

Subscribe to Jeremy Jordan
Get the latest posts delivered right to your inbox

youremail@example.com

ALSO ON JEREMYJORDAN

0 Comments JeremyJordan 🔒 Disqus' Privacy Policy Login"1

t Tweet f Share Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Do Not Sell My Data⚠

Recommend(8

Subscribe

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

a year ago 6 comments

This blog post will provide
an introduction to
Kubernetes so that you …

An introduction to
Kubernetes.

• 3 years ago 25 comments

In my introductory post on
autoencoders, I discussed
various models …

Variational
autoencoders.

• 2 years ago 2 comments

Jump to: What is nearest
neighbors search? K-d trees
Quantization Product …

Scaling nearest
neighbors search …

•

JEREMY JORDAN
16 OCT 2017 8 MIN READ

Lately, I've been talking more and more about blockchain and its potential impact. As
I've been learning more about the technology and sharing what I've learned with my
friends, I've decided it would be useful to write an introductory post to the
technology, paving

What the heck is blockchain?

•

Jeremy Jordan © 2021 Latest Posts Twitter Ghost

Jeremy Jordan HOME ABOUT DATA SCIENCE READING LIST

