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Abstract

This thesis deals with mining in dynamic graphs where dynamic
graphs are graphs changing in time.

Frequent pattern mining in binary trees is presented first. We show
a method that allows us to represent binary trees by a set of subgraphs
and then apply classification or anomaly detection methods on them.
This method performs a generalization that helps us deal with vertices
with diverse labels. We applied this method to resolution proof trees
and it found unusual proofs that were not detected by an automatic
corrector. Another presented method for binary trees is based on se-
quence mining and clustering and it allows us to group and analyse
different strategies for solving the resolution proofs.

Most of the existing pattern mining algorithms so far has been
restricted to specific classes of patterns expressing only specific types
of changes in the graphs. We present DGRMiner, an algorithm which
is able to mine more general frequent patterns than the other algo-
rithms. The patterns are in the form of graph rules capturing various
types of changes, i.e. addition and deletion of vertices and edges,
and relabelling of vertices and edges. Furthermore, we show an ex-
tension of this algorithm that is able to mine anomalous patterns
that deviate from the frequent ones. The frequent patterns then serve
as an explanation for the anomaly patterns. Usefulness of DGRMiner
is demonstrated by extraction of frequent and anomalous patterns
from ENRON email network and resolution proof trees.

Next, we present WalDis, an algorithm for discriminative pattern
mining in dynamic graphs. It differs from other approaches, which
typically discriminate whole static graphs. The algorithm is able to dis-
criminate between different events on a local level of dynamic graphs,
i.e. events related to vertices or edges. The algorithm uses random
walks and either a greedy method or a genetic algorithm to find
patterns through inexact matching. Inexact matching helps us deal
with intrinsic variability of timestamps and attributes in graphs. Dis-
covered patterns allow us to understand the context of one group
of events in contrast to another group. We verified this property on real-
world datasets DBLP and ENRON, in which we discriminated machine
learning conferences and email messages, respectively.
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1 Introduction

Importance of data mining and machine learning techniques increases
in a large number of domains due to availability of data. For instance,
data mining is used in areas such as biology [21], linguistics [3], or
World Wide Web [61]. The majority of standard data mining algo-
rithms assumes data instances to be independent. Attribute-value
representation, e.g. a table in a relational database or a spreadsheet, is
very common for such data. However, there is a lot of real-world sce-
narios where relationships between data instances exist and relational
learning [43] can be used. For example, there are relationships between
people in social networks, between chemical elements in chemical
compounds, etc. Algorithms considering also the relationships may
achieve significantly higher performance than algorithms that take
only the information about individual objects into account.

In many situations, graphs can be used for data representation.
There is already a lot of algorithms designed for graphs. Moreover,
graphs do not have to represent only static or persistent relationships
but also dynamic ones, such as communication between people or
electronic devices. Besides communication, dynamic graphs can also
represent a general evolution of networks in time, e.g. addition and
removal of individuals, change of linking between individuals, change
of values associated with individuals, etc. In the context of data mining,
terms graph and network are often interchanged. Nevertheless, term
graph is more common in the sense of mathematical or computer
representation, and term network is more common for real instances,
such as computer networks.

1.1 Problem Statement

In this thesis, we are interested in the area of graph mining [29]
on dynamic graphs, which is a data mining field considering dy-
namic graphs as the input. Graph mining can be performed at a global
or a local level. Global-level mining focuses on properties of whole
graphs and their evolution in time. An example of an analysis of global
properties is described in [59], where shrinking diameter and network
densification were observed in real-world networks through time.

1



1. Introduction

On the other hand, local-level mining is concerned with graph
evolution on the node, the edge, or the subgraph level. Similarly
as in the previous case, we can track some properties of these ele-
ments, such as node degree or node betweenness. In order to capture
more complex dependencies, we can also mine graph patterns. In static
graphs, these patterns typically correspond to subgraphs, which are
mostly connected. However in dynamic graphs, the locality can be
expressed also from the perspective of time. Thus, patterns in dynamic
graphs can be represented by subgraphs and their evolution in a short
time interval. This thesis focuses on mining methods of various types
of local-level patterns in dynamic graphs.

Frequent Patterns. The most basic patterns are the frequent patterns
and they are the primary focus of this thesis. From the perspective
of graph mining on static graphs, the frequent patterns are typically
subgraphs that occur in a large portion of the input set of graphs or
frequently in a single graph. For example, given a set of chemical
compounds, a Benzene ring may be considered a frequent pattern [27].
Frequent patterns in dynamic graphs, such as email communication
networks, can represent patterns of communication. For example, if
a manager receives several emails concerning some problems, he or
she may frequently send some more emails to deal with the problems.
Frequent patterns are useful for several reasons. First, they can help
with the interpretation of the graphs in the process of exploratory
analysis. Second, frequent patterns can be exploited for other tasks
of data mining and machine learning. They are appropriate as features
representing the graphs and thus can be used for graph classification,
clustering, or indexing [29].

Anomaly Patterns. Frequent patterns represent common behaviour
in graphs. Contrariwise, anomaly patterns occur infrequently and they
characterise deviations from the common behaviour. Although in-
frequent, these patterns may be of a great significance. For example,
they can be used for fraud detection, network intrusion detection or
identification of suspicious behaviour.

Discriminative Patterns. Previous two types of patterns are mainly
mined in an unsupervised manner. This means that there are no classes
or other output variables that are crucial in the mining process. Con-
trarily, mining of discriminative patterns belongs to the group of super-
vised methods because the patterns are extracted in such a way that

2



1. Introduction

different sets of graphs can be distinguished by them. For example,
considering the chemical compounds once again, there may be sub-
structures that typically occur in the compounds having a toxic effect
and do not occur in those that do not have such an effect. Discrimina-
tive patterns can be used for distinguishing different types of vertices,
edges, or subgraphs as well.

1.2 Contribution Summary

This section summarises the contribution of the thesis. Several meth-
ods for pattern mining in dynamic graphs have been created as a part
of author’s research. Here we give a brief overview of the most signifi-
cant publications. Full list can be found in Appendix A.

• K. Vaculík, L. Nezvalová, and L. Popelínský. Graph mining and
outlier detection meet logic proof tutoring. In Proceedings of EDM
2014 Ws Graph-based Educational Data Mining (G-EDM), CEUR-
WS.org, pp. 43–50, ISSN 1613-0073, 2014.

K. Vaculík, L. Nezvalová, and L. Popelínský. Educational data
mining for analysis of students’ solutions. In Artificial Intelli-
gence: Methodology, Systems, and Applications (AIMSA), London,
Springer, pp. 150–161, 2014.

These two publications deal with analysis and patter mining
in resolution proof graphs created by students. The first one
presents a method for subgraph pattern mining that uses do-
main knowledge about resolution proofs. Extracted patterns
are used for classification of proofs and class-based anomaly
detection. The second one describes a method that employs a se-
quence mining approach, whose results are then used for clus-
tering of resolution proofs. The methods and their results are
presented in Chapter 3.

• K. Vaculík. A Versatile Algorithm for Predictive Graph Rule
Mining. In Proceedings ITAT 2015: Information Technologies - Ap-
plications and Theory, Prague, CEUR-WS.org, pp. 51–58, 2015.

3



1. Introduction

This publication proposes a new algorithm DGRMiner for fre-
quent pattern mining in dynamic graphs. These patterns are
in the form of predictive rules and, in comparison to other
existing approaches, they are able to capture various changes
in graphs, such as addition and deletion of vertices and edges,
and relabelling of vertices and edges. The algorithm as well
as patterns found in real-world and synthetic dynamic graphs
can be found in Chapter 4.

• K. Vaculík, and L. Popelínský. DGRMiner: Anomaly Detection
and Explanation in Dynamic Graphs. In Advances in Intelligent
Data Analysis XV - 15th International Symposium (IDA), Stockholm,
Sweden, pp. 308–319, 2016.

The previous publication presents DGRMiner for frequent pat-
terns. In this publication, we present an extension of DGRMiner
for anomaly detection and explanation. These anomaly patterns
are deviating from the frequent ones and, in addition, the fre-
quent ones serve as an explanation of the deviations. The algo-
rithm is described and again checked on a set of dynamic graphs
in Chapter 5.

• K. Vaculík, and L. Popelínský. WalDis: Mining Discriminative
Patterns within Dynamic Graphs. In Proceedings of the 22nd Inter-
national Database Engineering & Applications Symposium (IDEAS),
ACM, New York, NY, USA, pp. 95–102, 2018.

The last publication describes WalDis, a novel method for dis-
criminative pattern mining in dynamic graphs. The patterns
discriminate events on the level of vertices and edges. For exam-
ple, events may represent changes of vertices’ attributes. Given
two different sets of events, positive and negative, WalDis mines
subgraph patterns that appear in the neighbourhood of posi-
tive events but not negative ones. Discriminative patterns allow
us to understand the context of positive events and how these
events differ from the negative events. WalDis uses random
walks as a sampling method and a greedy approach to extract
patterns. More information about WalDis can be found in Chap-
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1. Introduction

ter 6. This chapter also presents EWalDis, an extension of WalDis
that uses a genetic algorithm instead of the greedy approach.

1.3 Organisation of the Thesis

The thesis is organized as follows. Chapter 2 provides basic definitions
regarding the dynamic graphs and an overview of the state-of-the-art
in the area of patter mining in dynamic graphs. In the rest of the thesis,
we present several methods for pattern mining in dynamic graphs.
Specifically, we present methods for mining resolution proofs in logic
in Chapter 3. Chapter 4 describes DGRMiner, an algorithm for fre-
quent pattern mining in dynamic graphs. An extension of DGRMiner
for anomaly detection and explanation is introduced in Chapter 5.
Next, Chapter 6 presents WalDis, an algorithm for discriminative pat-
tern mining in dynamic graphs. Finally, conclusion and directions
for future work can be found in Chapter 7.

5





2 Graph Mining in Static and Dynamic Graphs

This chapter contains basic definitions and the state of the art of pat-
tern mining in dynamic graphs. It also covers description of all graph
datasets mentioned in the subsequent chapters. The first section pro-
vides definitions for static graphs and an overview of techniques
for static graphs, which serve as a base case and preliminaries for dy-
namic graphs. The second section covers the main part – dynamic
graphs. It contains necessary definitions regarding dynamic graphs
and an overview of research on the topic of pattern mining in dynamic
graphs. Specifically, it provides an overview of frequent, anomaly, and
discriminative pattern mining. The third section closes this chapter
with a description of the datasets.

2.1 Pattern Mining in Static Graphs

Before describing particular techniques, we give formal notations
and definitions regarding the static graphs. A large number of min-
ing algorithms work with labelled graphs so we define a static graph
as a labelled graph. Let us denote a set of all 2-element subsets of A
by [A]2.

Definition 1 (Static labelled graph). A static labelled undirected graph
is a 5-tuple G = (VG, EG, fG, lG,V , lG,E), where VG is a set of vertices (also
called nodes), EG is a set of edges, fG : EG → [VG]

2 is a map assigning
a set of two vertices {u, v}, u 6= v, to every edge, lG,V : V → LV and
lG,E : E → LE are two maps describing labelling of the vertices and edges,
respectively. In the same way, we define a static labelled directed graph,
with the exception of function fG, which now assigns a pair of vertices (u, v),
u 6= v, to every edge, i.e. fG : EG → VG ×VG.

This definition is general and covers multigraphs as well. If a graph
has no multi-edges, i.e. f (e1) 6= f (e2) for all e1 6= e2, we say that
the graph is simple. If all vertices of a graph are pairwise adjacent, then
the graph is complete.

Plain (unlabelled) graphs are graphs without labels, i.e. LV = LE =
{∅}. If we use numeric values instead of nominal labels, we get
weighted graphs. Graphs with nominal or numeric values on vertices

7



2. Graph Mining in Static and Dynamic Graphs

and/or edges are generally denoted as attributed graphs. Moreover,
this broader class of graphs allows also sets of key-value pairs on ver-
tices and edges, or even more complex structures. From now on, we
will assume all graphs to be simple and labelled, unless stated otherwise.
Furthermore, for the sake of simplicity, if it is clear from the context
or a particular claim holds for both directed and undirected graphs,
we will use static graph expression without further specification.

Let G = (VG, EG, fG, lG,V , lG,E) and G′ = (VG′ , EG′ , fG′ , lG′,V , lG′,E)
be two static undirected graphs. G and G′ are said to be isomorphic,
written as G ' G′, if there exist bijections ϕ : VG → VG′ and ψ : EG →
EG′ satisfying fG′(ψ({x, y})) = {ϕ(x), ϕ(y)} for all x, y ∈ VG. Next,
we say that G is a subgraph of G′ (or G′ is a supergraph of G), written
as G ⊆ G′, if VG ⊆ VG′ , EG ⊆ EG′ , and fG(e) ⊆ VG for all e ∈ EG.
That means that all ends of EG must be in VG for G to be a graph.
Furthermore, if G ⊆ G′ and G contains all the edges {x, y} ∈ E′

with x, y ∈ V, then G is an induced subgraph of G′. A subgraph that is
complete is called a clique. Let G and H be two static undirected graphs.
If there is a subgraph G0 of G such that H and G0 are isomorphic, we
say that H is subgraph isomorphic to G and denote this relationship
by H v G. If we want to point out that a specific functions ϕ and
ψ are used, we write H vϕ,ψ G. We also say that G0 is an embedding
(or occurrence) of H in G. Clearly, G ' G′ implies G v G′ and G′ v
G. Determining whether G contains such an embedding is known
as the subgraph isomorphism problem, which is NP-complete [42].

The above definition of isomorphism and subgraph isomorphism
does not take into account the labels of the vertices and edges. How-
ever, graph mining algorithms for pattern mining typically check
the labels too when checking isomorphism. We define label-preserving
isomorphism'∗ and label-preserving subgraph isomorphismv∗ by extend-
ing the previous definitions by adding the following two conditions:
lG,V(u) = lG′,V(ϕ(u)) for all u ∈ VG and lG,E(e) = lG′,E(ψ(e)) for all
e ∈ EG. The above definitions can be easily modified for directed
graphs.

Examples of isomorphisms are show in Fig. 2.1. For G1 and G2
relation G1 ' G2 holds. However, G1 6'∗ G2 because of the labels
on edges. Next, G3 v∗ G1 and G3 v G2, but G3 6v∗ G2.

Given a graph G, the support (or frequency) of a graph H in G is
the number of edge-disjoint occurrences of H in G [29]. There are

8



2. Graph Mining in Static and Dynamic Graphs

Figure 2.1: Illustration of isomorphism on graphs. Letters in vertices
and next to the edges represent vertex and edge labels, respectively.

also definitions of support using vertex-disjoint or other types of con-
straints in the literature, e.g. [19, 39]. The definitions can vary for differ-
ent types of graphs. However, it is important for a support definition
to satisfy the anti-monotonic property, which states that the support
of a graph cannot be larger than the support of any of its subgraphs.
This property allows algorithms to search for the frequent patterns
effectively – see below. For a set of graphs G = {G1, G2, ..., Gk}, the sup-
port of a graph H is typically defined as the number of graphs of G
having an embedding of H [29]. In this case, it is possible to express
the support relatively as percentage. Given a minimum support value,
graph H is frequent if its support is greater than or equal to the mini-
mum support threshold.

An example of a set of three graphs with a pattern found in these
graphs is given in Fig. 2.2. The occurrences of the pattern are depicted
by dashed lines. The pattern occurs in two graphs and thus its support
is 2/3. Now if we consider a single-graph scenario with graph G3, we
can see that there are two occurrences of the pattern. However, these
occurrences are not disjoint and we have to count only one into support.
Otherwise anti-monotonic property would not have to hold for some
patterns.

Task of frequent subgraph mining is to find all frequent subgraphs
in a given graph or a set of graphs for a given minimum support value.
In the context of graph mining, subgraphs are also frequently called
patterns. The anti-monotonic property allows an algorithm to search
the space of all patterns in an effective manner. Such an algorithm can

9



2. Graph Mining in Static and Dynamic Graphs

Figure 2.2: An example of a set of graphs and a pattern. Letters in ver-
tices represent labels. There are no edge labels for the sake of simplicity.
The occurrences of the pattern are depicted by dashed lines.

start with smaller patterns and it does not have to check superpatterns
(supergraphs) of a pattern whose support is too low. Nevertheless,
finding all frequently occurring patterns is generally nontrivial be-
cause in order to check an existence of a pattern, it is necessary to solve
the subgraph isomorphism problem as we stated earlier and it has
been shown that the problem be NP-complete [42].

Moreover, graphs can contain a large number of frequent patterns
in practice. One way of avoiding this is to use a higher value of mini-
mum support. However this approach is not always appropriate and
it is better to restrict the frequent patterns to the closed or the max-
imal ones. A frequent pattern is closed if and only if there does not
exist a superpattern of this pattern that has the same support. A fre-
quent pattern is maximal if and only if it does not have a frequent
superpattern.

In the following paragraphs, we discuss several existing algorithms
and approaches for pattern mining in static graphs.

2.1.1 Basic Algorithms for Frequent Pattern Mining

gSpan. Given a set of undirected graphs and a value of minimum
support, the gSpan algorithm [108] is able to find all frequent sub-
graphs in the given set. gSpan maps subgraphs to a unique mini-
mum depth-first search (DFS) code and uses a lexicographic order
on these codes to order subgraphs. Based on this lexicographic or-

10



2. Graph Mining in Static and Dynamic Graphs

der, gSpan employs a DFS strategy to mine frequent subgraphs effi-
ciently. Specifically, gSpan traverses a DFS Code Tree, where the code
of a node corresponds to the parent’s code extended by one edge and
the siblings are ordered according to the lexicographic order. Using
this approach, the traversal starts from the smallest subgraphs and it
backtracks if the corresponding subgraph is not frequent. Neverthe-
less, NP-completeness of the subgraph isomorphism problem makes
the runtime of gSpan, and also similar algorithms, exponential. Fortu-
nately, in practice, graphs with diverse labels can decrease the runtime
substantially. Another problem of gSpan, and algorithms for frequent
subgraph mining in general, is that for large or dense graphs, the num-
ber of frequent subgraphs is very large and it is not practical to mine
all of them [29].

Subdue. The previous algorithm evaluates subgraphs according
to their support. Subdue algorithm [28], on the other hand, searches
for subgraphs that can best compress the input graph or the set of input
graphs1. The compressibility is evaluated by the Minimum Descrip-
tion Length (MDL) principle [91]. The best substructure is the one that
minimizes DL(S) + DL(G|S), where DL(S) is the description length
of the substructure and DL(G|S) is the description length of the in-
put graph G after compression of S. After the best substructure is
found, the input graph is compressed by replacing the occurrences
of this substructure with pointers and the whole process repeats. This
method yields a hierarchical description of the input graph in terms
of discovered substructures.

Sleuth. Another algorithm based on depth-first search strategy is
Sleuth [120], which is designed for mining frequent subtrees from a set
of rooted trees. An extended version of Sleuth, described in [29], is
able to mine both ordered and unordered and both induced and embedded
trees. Ordered trees differ from the unordered ones in that the or-
der of sibling nodes matters in the ordered trees. Sleuth uses term
induced trees for trees whose embeddings in the input trees preserve
the parent-child relationship, i.e. if two nodes are in a parent-child
relationship in the induced tree then they are in this relationship
also in the input trees. On the other hand, embedded trees require only

1. A set of graphs can be seen as one graph having several components.
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the ancestor-descendant relationship to be preserved, i.e. if two nodes
are in a parent-child relationship in the embedded tree then the path
connecting these two nodes in the input graphs can contain other
nodes.

2.1.2 Other Approaches

Network motifs. There is also another type of patterns similar to fre-
quent subgraphs, known as network motifs [68]. Network motifs are
n-node subgraphs in a directed network, where n typically ranges
over small values (e.g., 3 ≤ n ≤ 7). For each value n from a given range
of values, all non-isomorphic weakly connected subgraphs with n
nodes are found in the given network. Number of occurrences of each
subgraph is compared to the numbers of occurrences of the same sub-
graph in randomly generated networks. If the number of occurrences
in the original graph is significantly higher, the subgraph is regarded
as a network motif.

Graph Queries. The problem of pattern mining in graphs can
be also formulated from a different perspective. A user can specify
a query in the form of a graph and the task is to find the occurrences
of such a query graph in an input graph or in a set of graphs. This topic
is close to graph databases and there is a lot of research done, for ex-
ample [14, 110, 113, 114] just to name a few research papers. Although
the task of graph querying may seem straightforward, the algorithms
can be quite diverse. For example, the algorithm presented in [114]
searches for top-k diversified subgraphs, i.e. k occurrences with the min-
imum number of overlapping nodes.

Discriminative patterns. Besides algorithms for frequent patterns,
there are also ones that search for other types of patterns. There
is a number of methods for discriminative pattern mining in static
graphs [41, 54, 98, 109]. These methods assume two sets of either di-
rected or undirected graphs and they search for subgraphs that are
frequent in one set and not in the other set.

Anomaly patterns. Anomaly detection in static graphs can be tack-
led from different perspectives. The most straightforward methods
compute various features from graphs, such as node centralities, or
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compute distances between considered entities, e.g. nodes or edges,
and then employ rudimental anomaly detection algorithms to find
outlying nodes, edges, or graphs [7]. The problem of finding unusual
or infrequent subgraphs, i.e. patterns, in static graphs was addressed,
for example, by Subdue algorithm [79] mentioned earlier. Subdue per-
forms anomaly detection on labelled graphs with regard to a measure
that is inversely related to Minimum Description Length principle.
Graphs with numerical attributes can be processed by a discretization
technique [31] so that it is easier to search for anomaly patterns. A dif-
ferent approach is presented in [37], where patterns that differ only
a little from regular patterns are mined. This approach is different
from the one focusing on infrequent patterns and it can be useful
when searching for fraudulent behaviour, for example, because frauds
are typically done in such a way so that they do not arouse suspicion.
More information about anomaly detection in graphs can be found
in survey [7].

2.2 Pattern Mining in Dynamic Graphs

This section on pattern mining in dynamic graphs is further divided
into several parts. First, we provide a notion of a dynamic graph (also
known as time-evolving graph [13] or temporal graph [90]). Then we
give an overview of mining techniques for various types of patterns.
Specifically, we go through subgraph, rule, sequence, anomaly and
discriminative patterns.

Before defining a dynamic graph, we extend each static graph G
by timestamp functions tG,V : VG → T and tG,E : EG → T, which map
each vertex and edge to a point in time, respectively. We will work
with discretized time and thus T will be the set of integers, i.e. T = Z.
A dynamic graph is then given by a finite sequence of such extended
static graphs.
Definition 2 (Dynamic labelled graph). A dynamic graph is a finite se-
quence DG = (G1, G2, ..., Gn), where Gi is a static graph extended by times-
tamp functions tGi,V , tGi,E for all 1 ≤ i ≤ n. Graph Gi is referred to as
the snapshot of DG at time i.

Even though the definition is somewhat specific, it still gives us
a number of possibilities how to represent network relationships evolv-
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ing in time and we will show in subsequent chapters that it is useful
enough for many graph mining problems. For example, graph snap-
shots can represent states of a network obtained at fixed time periods,
or states after individual changes in a network. The vertices and edges
can appear and disappear in such a network and also their labels can
change over time.

An example of a dynamic graph representing a simple social net-
work is shown in Fig. 2.3. There are four users in the network: Alice,
Bob, Carol, and Dave. Edges represent friendship relationships among
these users in four consecutive months, depicted by four graph snap-
shots. In this example, Carol and Dave connected with Alice and Bob
within the second and the third month. However, Bob left the social
network in the fourth month.

By using the timestamp functions, we can add more information
about the processes in the graphs and it is also possible to compare
the processes by looking at the relative differences between times-
tamps. For example, we can discover that some changes in graph typi-
cally happen at the same or similar time. Vertex and edge timestamps
can represent the creation of these vertices and edges or the change
time of their labels. If the timestamps are not necessary for a specific
scenario, it is possible to omit them or use a constant value. It is also
possible to create a simple temporal graph from a single static graph
extended by the timestamp functions. Timestamps in such a single
graph allow us to distinguish timestamps at which edges and vertices
appeared in the graph. This simplified version of a dynamic graph
still captures a great deal of temporal information and as we shall
see shortly, some algorithms use similar representation for dynamic
graphs.

Nevertheless, there is a lot of other definitions of dynamic graphs
in the literature. Moreover, there is also a lot of different definitions
of patterns in dynamic graphs. We present various types of patterns
and dynamic graphs in the following subsections. The simplest pat-
terns, which are similar to those in static graphs, are covered in the first
subsection and we call them dynamic subgraphs. The following subsec-
tions describe patterns that are composed of two or more graphs and
we denote them as rule and sequence graph patterns. Separate subsec-
tions are also dedicated to discriminative and anomaly patterns.
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Figure 2.3: An example of a dynamic graph with four snapshots. Ver-
tices represent users of a social network and edges friendship relation-
ships among them.

2.2.1 Dynamic Subgraph Mining

We start the overview with methods that focus on subgraph min-
ing from dynamic graphs and are not very different from those used
for static graphs. Briefly put, the mining process typically involves
solving a subgraph isomorphism problem similar to the one for static
graphs. In this case, however, it is also necessary to take into consider-
ation various time constrains. More complex patterns are discussed
in later sections.

Dynamic GREW. Mining of frequent dynamic subgraphs is con-
sidered in [16], where Dynamic GREW algorithm is proposed. It is
assumed that the input dynamic graph has a fixed set of nodes, and
edges are inserted and deleted over time. Presences and absences
of edges are expressed by sequences of 1s and 0s called existence strings.
A dynamic subgraph of length k of a dynamic graph is then a subgraph
from the topological view and also the dynamic view, i.e. the existence
strings of the dynamic subgraph have length k and they are substrings
of existence strings of the original graph starting from the same po-
sition. Frequent dynamic subgraph is a dynamic subgraph with at
least t occurrences for a given value of t. Dynamic GREW is based
on pattern mining on static graphs and it allows the user to integrate
other algorithms for this task too.

Such a dynamic graph can also be viewed as a union graph, in which
an existence string is assigned to each edge. This approach is further
elaborated in [106], where a novel framework for frequent subgraph
discovery is proposed. Here, the existence strings are over an alphabet
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L ∪ ε, where L is a set of edge labels and ε denotes an edge absence.
In this way, the existence strings are able to capture also the edge labels
and their change. This framework also allows to use node labels and,
as in the case of Dynamic GREW, the user can choose to integrate
a different algorithm for subgraph mining on static graphs.

Dynamic subgraph enumeration. An algorithm for solving the Dy-
namic Subgraph Enumeration (DSE) problem is presented in [1]. This
problem is stated as follows. Given a subgraph H and a sequence G
of graphs G1, G2, . . . , in which Gt+1 is obtained by modifying a single
edge in Gt, the goal is to maintain a dynamic data structure for each
Gt so that the number of subgraphs of Gt+1 isomorphic to H can be es-
timated efficiently, significantly faster than recomputing them in Gt+1
from scratch.

Time-respecting subgraphs. Subgraph mining from interaction
temporal graphs is considered in [90]. An interaction temporal graph is
a static directed graph, where edges represent interactions between
nodes and each edge has assigned two values standing for the start
time and the duration of the interaction. Presented algorithm mines
connected subgraphs, called time-respecting subgraphs, in which the in-
teraction of an edge does not start long after the interactions of the ad-
jacent edges.

Motifs. Using the terminology from the previous paragraph, min-
ing of maximal motifs that are simultaneously time-respecting sub-
graphs is considered in [58]. The algorithm is focused on interaction
networks too, but now there can be more interactions between a pair
of nodes with the restriction that at any given time at most one event
can be assigned to a node. A different type of temporal motifs, called
trend motifs, is considered in [53]. A trend motif describes a recurring
connected subgraph where each of its vertices or edges exhibits simi-
lar dynamics over a user defined period. Vertices have weights and
a trend on a vertex over a time interval is given either by increasing or
decreasing weight. Each vertex in a trend motif has a constant trend,
labelled either by symbol + or −. Frequent subgraphs describing
trends are also mined by the MINTAG algorithm [32], which takes
undirected attributed graphs as input. In this case, vertices do not have
only one numeric value but a set of values and each value corresponds
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to one ordinal attribute. Trend dynamic subgraph is an induced subgraph
of limited diameter, whose vertices follow the same trend over a subset
of attributes. Different algorithm for fast motif mining in temporal
networks is presented in [84]. These temporal networks possess edge
timestamps but there are no attributes. The instances of each motif
pattern must satisfy the same time order on the edges, i.e. isomor-
phism bijection preserves order of edges’ timestamps. Furthermore,
the timestamps of the motifs have to fit into a time window of a given
size. A similar problem is solved by algorithm COMMIT [44] for motif
mining in dynamic interaction networks. Each edge of these interac-
tion networks possesses a timestamp but no duration. Motifs have
to satisfy the following constraints imposed on edges. First, timestamp
differences of adjacent edges in a motif cannot exceed a given times-
tamp threshold. Second, the isomorphism of two patterns requires
the same time order on edges. For a given value of minimum support
and timestamp threshold, the task is to find all motifs. COMMIT can
also find top-k motifs with the highest support.

Closeness-based patterns. Trends in a graph express certain type
of stability. The opposite, changes in a graph, is investigated in [62].
An algorithm for finding significant changing subgraphs is proposed
for dynamic undirected graphs whose edges can be deleted or added.
The idea of changing subgraphs is based on a closeness of vertices
and on the assumption that only a part of the graph is changed be-
tween two consecutive snapshots. Specifically, the algorithm finds
those subgraphs in which closeness of nodes is significantly changed
between two consecutive snapshots by the change of edges. It is moti-
vated by the fact that not only the change itself, but also the context is
important in some scenarios.

DATA-PEELER. Considering general n-ary relations, the DATA-
PEELER algorithm [20] is designed to find all closed patterns satisfying
given piecewise (anti)-monotonic constraints. Informally, a constraint
C is monotonic (antimonotonic) on an argument with attribute domain
D if and only if ∀E ⊆ D for which C holds it also holds for its super-
sets (subsets). Since dynamic graphs can be represented by ternary
relations, i.e. adjacency matrices with time as the third dimension,
DATA-PEELER is appropriate also for dynamic subgraph mining.
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Durable patterns. Patterns appearing for the longest period of time
in a dynamic graph are mined by an algorithm proposed in [94]. In par-
ticular, sequence of snapshots is used to represent a directed labelled
graph evolving in time. Given such a sequence of graph snapshots,
authors of the paper seek to find the most durable matches of an input
graph pattern query. This means the matches that exist for the longest
period of time. More specifically, they seek pattern matches with largest
continuous duration, i.e. with largest number of consecutive snapshots
in which the pattern occurs, and with largest collective duration, where
snapshots containing the pattern occurrences do not have to be con-
secutive. This approach is further extended to mine only top-k most
durable patterns [95].

Diversified subgraph patterns. The last algorithm for temporal
subgraphs we present in this section is one searching for diversified
patterns [112]. Each edge in this temporal network has a time inter-
val instead of a timestamp associated with it. A pattern is diversified
if the vertices of the pattern occurrences do not overlap too much.
For each pattern, the algorithm also measures the longest time inter-
val in which the pattern occurs according to the intervals of the input
graph’s edges. The overlaps and the duration of each pattern are
measured by coverage and the algorithm searches for top-k diversi-
fied patterns with the highest coverage. Furthermore, the algorithm
searches only for dense subgraphs, in which each vertex is adjacent
to at least a given fraction of other vertices. In other words, a pattern
is represented by a set of vertices and a time interval, during which
the vertices closely interact with each other.

2.2.2 Rule Mining in Dynamic Graphs

This part presents several methods for rule mining in dynamic graphs.
Given two graphs B and H, we say that B→ H is a graph rule, in which
B is the body (antecedent, precondition) and H is the head (consequent,
postcondition) of the rule. Graphs B and H can be static graphs ex-
tended by timestamp functions defined earlier. Their embeddings
are typically subgraphs of snapshots Gi and Gj of a dynamic graph
DG = (G1, G2, ..., Gn), where 1 ≤ i, j ≤ n. In general, there can be
arbitrary graphs in the body and the head, and the interpretation
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of the rules may differ. For example, if both the antecedent and the con-
sequent come from the same snapshot then the rule is commonly
denoted as an association one and such rules can be used to examine
subgraphs that appear together. On the other hand, if the antecedent’s
snapshot precedes the consequent’s snapshot then the rule can be
considered a predictive one. Rules of this type may help understand
evolution processes in a dynamic graph.

Similarly to frequent subgraph mining, support can be defined
for rules. Using the above definition of graph rules, one possible
way is to count all distinct pairs of snapshots having the body and
the head as subgraphs. There are several different definitions of sup-
port in literature, mostly adapted to a specific scenario. For example,
rules in [13] express only edge additions and thus the body is a sub-
graph of the head. Support is calculated as the number of occurrences
of the head by their algorithm. In order to be able to compute fre-
quent patterns efficiently, support should be again defined in such
a way as to be anti-monotonic, i.e. the support of a pattern is at least
as large as the support of its arbitrary superpattern. Another useful
measure for rules is confidence, expressed as the ratio of the rule sup-
port to the support of the body. Due to different definitions of support,
it is possible to get different definitions of confidence.

GERM. One of the earliest approach for mining rules in dynamic
graphs was proposed in [13]. Authors defined Graph Evolution Rules
(GER), in which the same subgraph is used for the body and the head
but all edges with maximum timestamps are removed from the body.
Graph Evolution Rule Miner (GERM), a method for rule extraction, is
designed for undirected graphs in which nodes and edges are only
added and never deleted. This approach may be extended to cases
with edge deletions if an edge appear and disappear at most once.
Furthermore, it is assumed that node and edge labels do not change
over time and that timestamps are assigned only to edges. New ver-
tices can come only with new edges. GERM is based on frequent
subgraph mining algorithm proposed in [18], which in turn is based
on the gSpan algorithm [108]. In [17], authors used GERM for link
(edge) prediction on real-world networks.

LFR-Miner. The previous algorithm mines rules expressing which
edges will appear in an undirected graph in a future snapshot. Simi-
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larly, the LFR-Miner algorithm [60] mines rules predicting a new edge
between a pair of vertices in a directed graph. The body of a rule is
again made up of a subgraph, but now there is a designated pair of ver-
tices, called start node and end node. The head of a rule contains only
a directed edge from the start node to the end node. Timestamps of all
edges in the body have to be smaller than the timestamp of the edge
in the head. Furthermore, all other nodes in the body have to be di-
rectly connected to both the start node and the edge node. If the body
contains only the designated pair of vertices then there must exist
an edge between them. The algorithm assumes that edges are only
added and not removed.

Dynamic network motifs. Another method predicting appearance
of an edge is by [55]. Specifically, method called dynamic network motif
analysis is proposed on unlabelled directed dynamic networks. In order
to find dynamic network motifs, the original graph G = (V, E) is divided
according two times t0 < t1 into two subgraphs G0 = (V, E0) and
G1 = (V, E1), where E0 and E1 consist of edges with timestamp before
t0 and t1, respectively. If an edge appears in the dynamic network
multiple times at different times, only the last occurrence is considered.
Dynamic network motif candidates are n-node subgraphs with one
specific edge from E1 and the remainder of the subgraph is a weakly
connected subgraph of G0. The method is designed only for 3-node
motifs but it is possible to extend it to more nodes.

Link formation patterns. Rules capturing addition of an edge are
also mined in [80]. It is assumed that nodes and edges are only added,
and that node and edge labels never change. The rules are called link
formation patterns and each such pattern consists of a connected sub-
graph b, which is called base pattern, and an extra link e that is built after
the subgraph b is observed. In other words, b is a condition to form
a new edge e. Edge e can connect either two nodes of b, or one node
of b and one external node. Link formation patterns are constrained
by two parameters. The first says how big the time span of the base
patterns can be, i.e. the time difference between the first and the last
added edges in a base pattern. The second says how big the time span
between the added edge e and the maximal timestamp in the base
pattern can be. There may also be several patterns having the same
base pattern b differing only in the extra edges. Such patterns are
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further analysed and it is examined how many occurrences of the base
pattern these patterns share. Patterns sharing a significant amount
of occurrences are called correlation patterns. The opposite ones are
called contrast patterns.

Graph evolution DAG. An algorithm for rule mining from undi-
rected labelled dynamic graphs, which is very similar to GERM [13],
is presented in [69]. It is also based on gSpan [108] and can be re-
garded as a modification of GERM. The main difference is that it
considers multigraphs. Multiedges are useful for graphs represent-
ing interactions as there can be several interactions between a pair
of vertices during the time. After finding the rules, the algorithm cre-
ates a graph evolution DAG (directed acyclic graph) from these rules.
Graphs from rule heads and bodies are used as vertices of this DAG,
and a directed edge is created between two vertices if correspond-
ing graphs form a rule. Such graph evolution DAG can be further
examined. The algorithm also creates so called abstract graph evolution
DAG. It is based on abstract patterns where timestamps were deleted
and edges in rules are divided into two groups. The first group con-
sists of edges with maximum timestamp, i.e. extra edges in the rule
head, and the second group consists of other edges. This abstraction
helps to unify a lot of patterns and thus to reduce the output to only
interesting aspects.

Graph rewriting rules. Rule mining from biological networks
in [117] presents graph rewriting rules that describe the evolution of two
consecutive graphs in a graph sequence. First, the algorithm of the au-
thors discovers the maximum common subgraph for such two consec-
utive graphs. Maximum common subgraph problem is NP-complete
for general graphs [42], however, restriction to biological networks
with unique vertex labels allows authors to use an algorithm with
quadratic complexity [33]. After the maximum common subgraph
is found, the remainder of the first graph is treated as removal sub-
graph R and the remainder of the second graph as addition subgraph
A. Graph rewriting rule for graphs i and i + 1 is then GRi,i+1 =
{(Ri, CRi), (Ai+1, CAi+1}, where CRi and CAi+1 are sets of connection
edges linking removal and addition subgraphs to original graphs,
respectively. In other words, if you remove subgraph R from the first
graph and add subgraph A, you get the second graph. Rewriting
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rules are also used for description of repeated removals and addi-
tions in the form of transformation rules. They consist of a subgraph
which is repeatedly removed and added, and parameters +ta and−tr.
+ta represents the time interval from the last removal to the current
addition and −tr represents the time interval from the last addition
to the current removal.

Tracking of node labels. Rules describing change of node labels
are proposed in [25]. Labels are assigned to nodes by a clustering
algorithm which considers local properties of the nodes, such as de-
gree and clustering coefficient. Thus, the dynamics of the node labels
captures the dynamics of the network structure. Clustering is used
independently on each snapshot of the dynamic network. In this way,
nodes from different snapshots but with the same characteristics may
appear in different groups and thus may be assigned different la-
bels. This undesirable feature is fixed by label unification for similar
clusters. After the nodes are labelled, an itemset is created for each
node in the form {ti1 = j1, ..., tin = jn}, where tik = jk means that
the node belonged to cluster jk at time ik. Association rule mining is
then used and rules are filtered in such a way that the consequents
have higher timestamps than antecedents. An example of a rule is
{t4 = 2, t7 = 2} ⇒ {t8 = 4} saying that nodes that were in the second
group at time 4 and 7 are likely to be in the fourth group at time 8.

Gear. A different view on dynamic graphs and an algorithm called
Gear are proposed in [75]. Here, the dynamic graphs are seen as ternary
relations and represented by boolean tensors of order 3. The first two
dimensions are used for tail and head vertices, and the third one
for the time. In other words, it is encoded as a sequence of adjacency
matrices. It is assumed that the set of vertices is fixed. The Gear algo-
rithm mines inter-dimensional rules in form X → Y, where X and Y are
n-ary and m-ary relations, respectively. Both relations are given on sub-
sets of tensor dimensions, but these two subsets must be disjunctive.
Dimensions that are not included in rules are used for computation
of support. An example of a rule is {d3} × {a3, a4} → {t1, t2}, where
d3 is from the dimension of tail vertices, a3 and a4 are from the dimen-
sion of head vertices, and t1 and t2 are from the time dimension. This
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example rule expresses that if there are links from vertex 3 to vertices
3 and 4 then this is likely to happen at time 1 and 2.

Pinard. An extension of the previous approach to arbitrary n-ary
relations, i.e. boolean tensors, is presented as Pinard algorithm [76].
This extension can also be considered as a generalization of association
rule mining. Indeed, in a classical association rule mining setting [5]
only two dimensions, typically marked as Transactions and Products,
are considered, which corresponds to a binary relation. In this simple
setting, rules contain only items from domain Products and domain
Transactions serves for calculation of support. Unlike the Gear algo-
rithm, Pinard is able to mine multi-dimensional association rules, which
can contain the same domains in the head and the body. An example
of such a rule is {d3} × {a3, a4} → {d2}, where the dimension of tail
vertices is used both in the head and the body of the rule. The possi-
bility of using n-ary relations can be beneficial for dynamic graphs. It
is already clear from previous description how three dimensions are
used. Other dimensions can represent node labels and other informa-
tion. Further extension is the Pinard++ algorithm [77] combining both
Gear and Pinard algorithms. It revises the way the rules are computed,
the non-redundancy of rules, and the computation of rule confidence.
Gear, Pinard, and Pinard++ are, however, restricted to conjunctive
rules. Another extension is given in [78], where disjunctive rules are
considered too. More specifically, an algorithm called Cidre is able
to express disjunction in heads of rules. Such rules can express more
information encoded in the analysed tensor. Nevertheless, all these
tensor algorithms extract rules that are generally not predictive.

Temporal association rules. Continuing with association rules,
another algorithm searching for this type of rules is presented in [71].
The antecedent and consequent graphs of the rule have to share a spe-
cial node, called focus node, and also the timestamps of these graphs
have to be bounded by a time interval. In the case of these associa-
tion rules, the rule’s graphs do not have to share the same snapshot
but the focus node. A focus node and a time interval bound are part
of the user’s input as well as a limit on the number of edges in the rule
and minimum support and confidence thresholds. The algorithm then
searches for rules satisfying these constraints.
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2.2.3 Sequence Graph Mining

Next, we consider sequence graph mining, where results are typically
in the form of sequences, which can be seen as several concatenated
rules or, in other words, the sequences of length two as rules. As the ti-
tle suggests, sequence graph mining combines sequence mining [34] and
graph mining [29]. Given a sequence or sequences of graphs on the in-
put, the following methods are designed to output other, mostly
shorter, sequences carrying some pieces of information about the orig-
inal sequence or sequences. These smaller sequences typically consist
of subgraphs or changes occurring in the original larger sequence
of sequences.

We will use the following notion of a subsequence. Formally, we
say that a sequence α = α1α2...αn is a subsequence of another sequence
β = β1β2...βm and β is a super-sequence of α if there exist integers
1 ≤ j1 < j2 < · · · < jn ≤ m such that a1 = bj1 , a2 = bj2 , . . . , an = bjn .
This definition allows gaps, i.e. sequence α does not have to appear
as a contiguous part of sequence β. However, if the gaps are not desired
in a specific situation, we put jk+1 = jk + 1 for all k ∈ [1, n − 1].
In the case of graph mining, elements of sequences are graphs and
subgraph isomorphism relation instead of equality relation is used
between elements of a subsequence and elements of a given super-
sequence, i.e. ak v bjk for all k ∈ [1, n].

A frequent subsequence is a subsequence for which support ≥ mini-
mum support, where minimum support ∈ [0, 1] is given and support is
the fraction of input sequences in which the considered subsequence
occurs. For cases with a single input sequence, support is the ratio
of the number of occurrences of the subsequence to the length of the in-
put sequence.

GTRACE. In particular, an algorithm for mining frequent sequences
of changes in a set of dynamic graphs is GTRACE [50]. Graphs are
assumed undirected, however, the principle is applicable to directed
graphs as well. Idea of the algorithm is that each consecutive pair
of graphs g(j) and g(j+1) in an input sequence of graphs 〈g(1), g(2), ...,
g(n)〉, called an interstate sequence, can be interpolated by a intrastate
sequence s(j) = 〈g(j,1), g(j,2), ..., g(j,mj)〉 and the original sequence can
be represented by interpolations as 〈s(1), s(2), ..., s(n−1)〉. The inter-
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polation helps to divide large changes into smaller changes, called
transformations. Specifically, there are six types of transformation rules
which can be used to describe a change between each consecutive
pair in an intrastate sequence: vertex insertion, vertex deletion, vertex rela-
belling, edge insertion, edge deletion, edge relabelling. Thus, each sequence
of graphs can be represented compactly by a sequence of transforma-
tion rules, called interstate transformation sequence. GTRACE compiles
the set of input graph sequences into a new set, where each element
consists of the interstate transformation sequence and the first graph
of the original sequence. Then it finds all frequent transformation subse-
quences (FTSs) from this new set. It also finds all relevant FTSs. A se-
quence of graphs is said to be relevant if its union graph, which is created
from the union of vertices and the union of edges, is connected.

However, GTRACE is appropriate only for dynamic graphs with
gradual changes, which means that only a small part of the graph is
changed in one step. This is because large changes produce longer
transformation sequences and with low minimum support the number
of frequent subsequences to be mined increases significantly. To over-
come this problem, a new method was designed [52]. This method
mines frequent subgraph subsequences without gaps as we defined them
earlier. Furthermore, each such subgraph is required to be induced
and the sequence of those subgraphs to be relevant according to the def-
inition in [50]. The method first transforms all input dynamic graphs
into union graphs and then employs a frequent subgraph mining algo-
rithm for static graphs on these union graphs. Frequent subgraph sub-
sequences are those whose union graphs correspond to the frequent
subgraphs found in the previous step. In comparison with transfor-
mation sequences, subgraph subsequences have also an advantage
of better interpretability.

On the other hand, transformation rules can be also useful due
to their compactness. Thus, GTRACE was extended to GTRACE2 [51]
with increased performance. The main difference is that GTRACE2
uses union graphs that include vertex labels when computing rele-
vant FTSs. Union graphs without labels in original GTRACE gener-
ated many more pattern combinations. Another enhancement brings
GTRACE-RS [49] which mines directly the relevant FTSs and does not
need to find the regular FTSs first. This is motivated by experiments,
according to which 95% of FTSs mined by GTRACE are irrelevant.

25



2. Graph Mining in Static and Dynamic Graphs

Evolution patterns. Mining of repeating patterns, called evolution
patterns, in a single sequence of graphs is presented in [87]. Graphs
in the input sequence are assumed undirected and the set of nodes
fixed. Edges may be either present or absent in each snapshot and this
fact is captured by an occurrence sequence for each edge. An occur-
rence sequence consists of 1s and 0s where 1 denotes presence and 0
absence of the edge. For some edges, there may be an occurrence rule,
which is a sequence of 1s and 0s that is repeated in the occurrence
sequence of the edge. An example of an occurrence rule is 101 in an oc-
currence sequence 101101101. Finally, an evolution pattern is connected
subgraph in which all edges share the same occurrence rule. It is nec-
essary for the rule to be repeated at least s times, where s is a given
parameter. The algorithm also mines quasi-patterns, in which the occur-
rence rule does not have to start from the beginning of the occurrence
sequence.

CorSSS. Mining sequences of subgraphs from a single sequence
of graphs is also performed by CorSSS algorithm [81]. Each such se-
quence of subgraphs is successive in the original sequence, i.e. each
adjacent pair of subgraphs is also adjacent in the original sequence.
Support of a sequence of subgraphs is the ratio of the number of occur-
rences of that sequence to the length of the original sequence. To ex-
clude insignificant patterns, CorSSS enumerates only those sequences
which are correlated, i.e. sequences that have similar consecutive sub-
sequences.

Evolving induced relational states. A rather different type of se-
quences mined from a single graph sequence is presented in [6]. Here,
the sequences to be mined are called evolving induced relational states
(EIRS) and they are sequences of so called induced relational states
(IRS). An IRS is an induced subgraph whose set of vertices and set
of edges remain the same in at least φ consecutive snapshots, where φ
is a parameter. In other words, this subgraph does not change in those
snapshots. Furthermore, ratio of vertices that each pair of adjacent
IRSs in an EIRS have in common must be at least β, where β is another
parameter. This parameter ensures vertex similarity between adjacent
IRSs. EIRSs are useful for capturing persistent states in a dynamic
network and also for detecting sudden changes, which are expressed
by a transition from one IRS to another.
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Recurrent evolutions. We close this subsection with an algorithm
for recurrent pattern mining in dynamic attributed graphs [24]. The al-
gorithm looks for recurrent evolutions, where an evolution is a sequence
of sets of vertices and this sequence is a subsequence of the input dy-
namic graph. An evolution is recurrent if there are multiple occurrences
of this sequence in the input dynamic graph. Frequency of a pattern,
i.e. of an evolution, is given by the number of its recurrences.

2.2.4 Anomaly patterns

Methods based on graph properties. Anomaly detection methods
for dynamic graphs can be divided into several groups. One large
group is comprised of methods that extract global characteristics, such
as diameter, of the graphs as they evolve. The progress of these charac-
teristics can be analysed as time series and anomalous graph snapshots
or transitions between snapshots can be found. These methods typ-
ically exploit the structure of the graphs, not the labels or different
attributes. Overview of these methods can be found in survey [7].

Tensor decomposition. Another large group of methods is based
on tensor decomposition. In this case, a tensor is a generalization
of an adjacency matrix. Additional dimensions store the information
about time and vertex/edge attributes of the dynamic graph. Exam-
ples of algorithms from this group are STA [97], TensorSplat [57],
ParCube [83], and MalSpot [66], among others. The idea of the decom-
position methods is to compute factors of the given tensor and then
examine the deviations from the common patterns described by main
components. These methods allow us to observe anomalous patterns
from the global viewpoint of various dimensions.

Anomalous communities. There are several methods that focus
on subgraph structures and thus are more related to this thesis. The idea
of these methods is to monitor graph communities or clusters in-
stead of the whole graph. One such method is Com2 [9] that uses
tensor decomposition and minimum description length principle
for community detection in dynamic graphs. In comparison with the al-
ready mentioned decomposition methods, Com2 allows us to work
on the level of communities. Thus, we can, for example, observe
the sudden changes of interactions inside a community.
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Another method for community-based anomaly detection in dy-
namic networks is presented in [22]. Authors define communities
as the maximal cliques in a graph. The algorithm looks at communi-
ties that change over time and searches for anomalous communities.
There are six types of anomalies, based on what change happened
to a community: grown community, shrunken community, merged
community, split community, born community, vanished community.

Anomalous subgraphs. Anomalous subgraphs in temporal graphs
are also mined in [73]. These graphs are directed and represent com-
puter communication. Each edge is associated with a time series,
which expresses connection counts measured every minute. No other
attributes are used. The algorithm is designed to discover communi-
cation patterns that deviate from historical patterns on a particular set
of nodes. Deviating, i.e. anomalous, patterns are in the form of a path
or a star and they help discover network intrusion in communication
networks.

Anomalous network clusters in the form of connected subgraphs
are also mined in [23]. In particular, a nonparametric statistical frame-
work is used to model a social network as a sensor network, in which
anomalousness levels of the neighbourhood-related attributes are mea-
sured for each node. It uses historical baseline distributions of the at-
tributes and compares the current attribute values to those baseline
distributions. This process is used to identify anomalous network
clusters of nodes. The proposed algorithm works with heterogeneous
dynamic networks, in which there are nodes and edges of different
types. For example, there are node types such as user, tweet, and hashtag
for a social network extracted from Twitter2.

A Bayesian approach. A different approach is presented in [46].
Specifically, a Bayesian method is designed for detection of anomalous
vertices. For each pair of vertices, the method models the communi-
cation between the vertices as a counting process. If the relationship
has changed at some point in time and this change is statistically sig-
nificant, the vertex pair is said to be anomalous. The method is able
to model edges with labels too.

2. https://twitter.com.
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Graph streams. Anomaly detection problem in graph streams is
tackled in several works. Streams differ from regular dynamic graphs
mainly in the fact that the history of the graph is typically not available
in the case of streams. This property of streams also leads the methods
to focus on real-time anomaly detection. Thus, the stream algorithms
need to create a model or summaries of data for future use because they
cannot return to the past data. One such algorithm is StreamSpot pro-
posed in [65]. This algorithm compares two graph snapshots by a sim-
ilarity measure that uses local substructrures of the graphs. The simi-
larity measure is used to cluster the network flow and the clustering
is dynamically maintained as the graph evolves. A graph snapshot is
anomalous if it deviates significantly from the clusters.

Detection of deviations in current stream graph snapshot is also
used by PLADS algorithm [38]. PLADS mines subgraph patterns and
compares the patterns found in the current graph with the normative
patterns found earlier. Patterns whose distance from normative pat-
terns is high enough are marked as anomalous. The key idea of the al-
gorithm is to compute new normative patterns only if the graph sig-
nificantly changes.

Another outlier detection method for network streams is presented
in [2]. This method uses a structural connectivity model in order to de-
fine outliers in graph streams. Moreover, it uses a structural reservoir-
sampling approach to create partitions of vertices that maintain struc-
tural summaries of the underlying large networks. The algorithm
focuses on unusual connectivity among different nodes. More specif-
ically, it creates a structural generation model of edges with respect
to node partitioning and then examines the edges in future snapshots
to find anomalies.

Ensemble methods. An ensemble method for anomaly detection
in temporal graphs called SELECT is presented in [89]. This method is
a more general one and works also for general multi-dimensional data,
i.e. no-graph data. In case of graph anomalies it searches for points
in time at which the graph structure notably differs from its past.
SELECT does not propose any particular anomaly detection methods
but only combines existing methods in an ensemble manner.
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2.2.5 Discriminative patterns

Discriminative pattern mining in dynamic graphs is rather a specific
topic and, according to our best knowledge, there have not been pub-
lished many works yet. The methods typically focus on discrimination
of global states or attributes of the network snapshots.

An example of an algorithm for discriminative pattern mining
in dynamic graphs is TGMiner [122], which mines discriminative sub-
graphs in a set of positive temporal graphs. It assumes that vertices
and edges contain only categorical labels. It uses numerical times-
tamps, but the patterns must satisfy the same order of the timestamps
as in the input graphs. Thus, it allows inexact mining to some degree,
but it is restricted by preserving the order of timestamps. Moreover,
the labels of the vertices and edges have to match exactly.

Another example is MINDS algorithm [88] for mining discrimi-
native subgraphs from graph snapshots of a time-evolving network.
Each snapshot of the network is assigned a global state and the pat-
terns have to discriminate these states. From a technical point of view,
the algorithm works with a set of static graphs classified into one
of two classes.

Prediction of global numerical network states is also performed
by SLR algorithm [30]. It mines a succinct set of subnetworks that
are predictive and evolve along with the progression of the states.
This means that the subnetworks do not change abruptly, but rather
develop smoothly in the original network.

Predictive pattern mining [70] is close to discriminative pattern
mining. This approach searches for patterns that are useful for a con-
struction of a good predictive model. The main difference is that it
searches for predictive patterns in an existing set of patterns. The ap-
proach is a more general one and does not deal with the pattern mining
process itself.

2.3 Dynamic Graph Datasets

In this section we present four real-world and two synthetic datasets
of dynamic graphs that were used in the subsequent chapters for ex-
periments.
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2.3.1 Resolution Proofs in Propositional Logic

The first dataset, shortly denoted as RESOLUTION, was obtained
in an introductory course to logic [102]. Via a web-based tool, each
of 351 students had to solve at least three resolution proofs randomly
chosen from 19 assignments. Each such solution thus represents either
a correct or incorrect resolution proof in propositional logic, stored
as a dynamic graph. More specifically, the solutions are in the form
of binary trees. Each vertex has a set of propositional-logic literals
assigned as the label. The edges are directed and have the same label
in these graphs, i.e. an empty string. The dynamic graphs capture
the process of proof construction by students and they are evolving
by vertex and edge addition or deletion, and by change of vertex
labels. Time of these events was transformed into a discrete sequence.
Because there were 19 different assignments in total, only dynamic
graphs of the same assignment share the set of vertex labels.

Among 873 collected solutions, 101 of them were classified as in-
correct and 772 as correct. The most serious error in resolution is
resolving on two literals. Other common errors in resolution proofs
are the following: repetition of the same literal in the clause, incorrect
resolution – the literal is missing in the resolved clause, resolving
on the same literals (not on one positive and one negative), resolv-
ing within one clause, resolved literal is not removed, the clause is
incorrectly copied, switching the order of literals in the clause, proof
is not finished, intentional negation of literals in a clause. Information
about errors that appeared in the proofs is also part of the data. Two
examples of solutions are shown in Fig. 2.4.

2.3.2 ENRON

Another dataset, called ENRON, is based on the email correspondence
in the Enron company [26]. We used a preprocessed version of this
email traffic [86] for our experiments. Specifically, we used the version
of data containing information about time, sender, receiver, and LDC
topic. We created vertices of a dynamic graph from the set of senders
and receivers. These vertices do not change through time. Each email
message sent between a sender and a receiver is represented by an ad-
dition of a directed edge in the dynamic graph. If the graph already
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Figure 2.4: An example of a correct (on the left) and an incorrect (on
the right) resolution proof.

contains the same edge, we just update its time of addition. Times-
tamps of the edges are represented as UNIX time, i.e. number of sec-
onds since epoch. As there were messages with anomalous dates, we
removed all messages sent before year 1998. We used LDC topics [86]
as edge labels. There are 32 regular LDC topics expressing the topics
of the messages plus two special topics used to label outlier messages
and messages with non-matching topic. It is important to mention that
approximately 67% of all edges were labelled as outlier. We used rank
of employees [86] to label vertices. Vertices with unknown rank were
removed from the graph and thus only 130 vertices and 62292 edges
remained. Ranks and corresponding labels are available in Table 2.1.

2.3.3 Synthetic Dynamic Graphs

Besides real-world data, we also tested our methods on synthetic
datasets. One of this dataset, SYNTH, represents a single dynamic
graph and was generated in the following way. First, a graph with 10
vertices and 20 randomly assigned edges was created. Then we it-
eratively built 100 snapshots, each snapshot from the previous one
by randomly chosen changes. The number of changes ranged uni-
formly 0–1 for vertex deletion, 0–1 for edge deletion, 0–1 for vertex
addition, 0–3 for edge addition, 0–2 for vertex label change, and 0–2
for edge label change. All newly selected vertex (edge) labels were
chosen from a uniform distribution over set {A, B} ({y, z}). Each new
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Table 2.1: Ranks of employees in the ENRON dataset and the corre-
sponding vertex labels.

Rank Vertex label
Employee Emp
Vice President VP
Director Dir
President Pres
Manager Man
Trader Trad
CEO CEO
Managing Director Legal Department MDLP
In House Lawyer Law
Managing Director MD

snapshot had to be different from the previous one. In order to keep
approximately the same number of vertices (edges) through time, ad-
ditions or deletions of vertices (edges) were suspended if the number
of vertices (edges) was not in the [k/2, 2k] interval, where k = 10 (and
k = 20 for edges). The second dataset, SYNTH 20, was created from 20
dynamic graphs, each one of them built by the process just described.

2.3.4 DBLP

The experiments were also performed on a undirected dynamic graph
representing collaboration between scientists. This graph was cre-
ated from data acquired from DBLP database3. We restricted the data
to the following machine learning and data mining conferences: kdd,
sigmod, www, vldb, sigir, icde, cikm, icml, nips, cvpr, iccv, pkdd, ecml,
ida, pakdd, sdm. The created graph contains 53654 unlabelled vertices
representing scientists and 455372 edges representing collaboration
between scientists, where labels were given by the conferences and
timestamps by the years.

3. http://dblp.uni-trier.de/
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2.3.5 Phone Call Network

The last dataset, denoted as TELCO, was obtained from a partnership
telecommunication company. A directed dynamic graph was created
from phone calls of two consecutive months. From the whole graph
we extracted a subgraph of 101718 vertices and 1629540 edges and
used this subgraph for the experiments. The vertices represent the cus-
tomers of the company and other people who called with the cus-
tomers. Edges contain one numeric attribute – call duration in seconds
logarithmically transformed and scaled into 0-1 range. Vertices have
no attributes. Timestamps of the edges were represented as UNIX
time, i.e. the resolution is in seconds. Due to privacy reasons, we are
not allowed to give more details regarding this dataset.
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The result of patter mining in dynamic graphs does not have to be
in the form of general graphs. Indeed, some algorithms may output
simpler structures, such as sequences, which can be still useful for var-
ious purposes. This chapter presents two methods that mine special
kind of patterns and application of these methods on resolution proof
graphs. First, we show a method for mining of generalized patterns
that employs domain knowledge about the resolution proofs. Briefly,
the method unifies labels that have the same meaning but are not
necessarily identical. We show that these generalized patterns are use-
ful for classification of resolution proofs and outlier detection. Then
we show how sequence pattern mining can be used for clustering
of resolution proofs.

3.1 Domain-specific Pattern Mining

Labels of vertices and edges are simple and repetitive in common real-
world graphs. This is not the case of resolution proof graphs in propo-
sitional1 logic, in which vertices are labelled by clauses represented
by lists or sets of literals. An example of such a label is “{A,¬B,¬C}”.
Classical pattern mining methods test labels on string equality in or-
der to decide whether to create a common pattern from them. Simple
string comparison on an enumerated list or set of literals may thus
be rather restrictive and the methods may miss some patterns due
to discrepancies introduced by different order of literals, different
variable names, etc.

In this section we present a method for analysis and evaluation
of resolution logic proofs constructed by undergraduate students [102].
The data contains tree structures of the proofs and also temporal infor-
mation about all actions that students performed, e.g. a node insertion
into a proof or its deletion, drawing or deletion of an edge, or a text
manipulation. We present a novel method for multi-level generalisa-
tion of subgraphs that is useful for characterisation of logic proofs. We

1. We restrict ourselves to analysis of proofs in propositional logic, although a simi-
lar approach could be used for predicate logic too.
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use this method for feature construction and perform classification
and class-based outlier detection on logic proofs represented by these
new features. We show that the method helps to find unusual students’
solutions and to improve semi-automatic evaluation of the solutions.

Note that a search method can be used in order to find errors
in the resolution proofs. However, detection of an error does not neces-
sarily mean that the whole solution is completely incorrect from the per-
spective of the teacher. Moreover, by a search we can hardly discover
patterns, or sequence of patterns, that are typical for wrong solutions.

Up to our knowledge, there is no work on analysis of student
solutions of logical proofs by means of graph mining. Definitely,
solving logic proofs, especially by means of resolution principle, is
one of the basic graph-based models of problem solving in logic.
In problem-solving processes, graph mining has been used in [116]
for mining concept maps, i.e. structures that model knowledge and
behaviour patterns of a student, for finding commonly observed sub-
concept structures. Combination of multivariate pattern analysis and
hidden Markov models for discovery of major phases that students go
through in solving complex problems in algebra is introduced in [8].
Markov decision processes for generating hints to students in logic
proof tutoring from historical data has been used in [11, 12, 96].

3.1.1 Data

Data used for the experiments contained 873 resolution proofs as de-
scribed in section 2.3.1. The most common error in these solutions is
simultaneous resolution on two literals and because it is referred later
in text, we denote this error as E3. There were 303 different clauses,
i.e. vertex labels, occurring in 7869 vertices in the data, see frequency
distribution in Fig. 3.1. Approximately half of the clauses had absolute
frequency less than or equal to three.

3.1.2 Generalized Subgraphs

In this subsection we describe a new feature construction method
from graph data. Representing a graph only by values of its vertices
and edges is insufficient as the structure of the graph also plays a sig-
nificant role. Common practice is to use substructures of graphs as new
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Figure 3.1: Distribution of clause labels ordered by frequency.

features [29]. More specifically, a boolean feature is created for each
substructure and the value of the feature depends on whether the cor-
responding substructure occurs in the given graph instance or not.
However, as we stated earlier, the dataset contains 19 different reso-
lution assignments and different assignments can contain different
variable names. Moreover, the sets of literals can be written in arbitrary
order although technically they are equal. Another problem with clas-
sical pattern mining algorithms is that it is often not possible to mine
infrequent patterns, usable for anomalies, efficiently. That is because
a very low minimum support threshold causes generation of excessive
number of frequent patterns.

To overcome the discussed problems, we created a new method
for feature construction from our data. The idea of feature construction
is to unify subgraphs which carry similar information even though
they differ in form. An example of two subgraphs, which differ only
in variable letters and ordering of nodes and literals, is shown on the left
side of Fig. 3.2. The goal is to process such similar graphs to get one
unique graph, as shown in the same figure on the right. In this way,
we can better deal with different sets of clauses with different sets
of variable letters. To deal with the minimum-support problem, min-
ing of general frequent subgraphs was left out completely and all
3-node subgraphs, which are described later, were looked up.

Unification on Subgraphs. To unify different tasks that may ap-
pear in student tests, we defined a unification operator on subgraphs
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Figure 3.2: An example of pattern unification.

that allows us to find so called generalized subgraphs. Briefly saying,
a generalized subgraph describes a set of particular subgraphs, e.g.
a subgraph with parents {A,¬B} and {A, B} and with the child {A}
(the result of a correct use of the resolution rule), where A, B, C are
propositional letters, is an instance of generalized graph {Z,¬Y},
{Z, Y} → {Z}, where Y and Z are variables. An example of in-
correct use of resolution rule {A,¬B}, {A, B} → {A, A} matches
with the generalized graph {Z,¬Y}, {Z, Y} → {Z, Z}. In other words,
each subgraph is an instance of one generalized subgraph. We can
see that the common set unification rules [35] cannot be used here.
In this work we focused on generalized subgraphs that consist of three
nodes, two parents and their child. Then each generalized subgraph
corresponds to one way—correct or incorrect—of resolution rule ap-
plication.

Ordering on Nodes. As a resolution proof is, in principal, an un-
ordered tree, there is no order on parents in those three-node graphs.
To unify two resolution steps that differ only in order of parents we
need to define an ordering on parent nodes2. We take a node and
for each propositional letter we first count the number of negative and
the number of positive occurrences of the letter, e.g. for {¬C,¬B, A, C}
we have these counts: (0, 1) for A, (1, 0) for B, (1, 1) for C. Following
the ordering Ω defined as follows: (X, Y) ≤ (U, V) if and only if (X <
U ∨ (X = U ∧Y ≤ V)), we have a result for the node {C,¬B, A,¬C}:
{A,¬B, C,¬C} with description ∆ = ((0, 1), (1, 0), (1, 1)). We will

2. Ordering on nodes, not on clauses, as a student may write a text that does not
correspond to any clause, e.g. {A, A}.
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compute this transformation for both parent nodes. Then we say
that a node is smaller if the description ∆ is smaller with respect
to the Ω ordering applied lexicographically per components. Contin-
uing with our example above, let the second node be {B, C, A,¬A}
with ∆ = ((0, 1), (0, 1), (1, 1)). Then this second node is smaller than
the first node {A,¬B, C,¬C}, since the first components are equal and
(1, 0) is greater than (0, 1) in case of the second components.

Generalization of Subgraphs. Now we can describe how the gen-
eralized graphs are built. After the reordering introduced in the pre-
vious paragraph, we assign variables Z, Y, X, W, V, U, . . . to proposi-
tional letters. To accomplish this, we initially merge literals from all
nodes into one list and order it using the Ω ordering. After that, we as-
sign variable Z to the letter with the smallest value, variable Y to the let-
ter with the second smallest value, etc. If two values are equal, we com-
pare the corresponding letters only within the first parent, alternatively
within the second parent or child. For example, let a student’s (incor-
rect) resolution step be {C,¬B, A,¬C}, {B, C, A,¬A} → {A, C}. We
order the parents getting the result {B, C, A,¬A}, {C,¬B, A,¬C} →
{A, C}. Next we merge all literals into one list, keeping multiple oc-
currences: {B, C, A,¬A, C,¬B, A,¬C, A, C}. After reordering, we get
{B,¬B, C, C, C,¬C, A, A, A,¬A}with ∆ = ((1,1), (1,3), (1,3)). This leads
to the following renaming of letters: B→ Z, C → Y, and A→ X. Fi-
nal generalized subgraph is {Z, Y, X,¬X}, {Y,¬Z, X,¬Y} → {X, Y}.
In case that one node contains more propositional letters and the nodes
are equal (with respect to the ordering) on the intersection of proposi-
tional letters, the longer node is defined as greater. At the end, the lit-
erals in each node are lexicographically ordered to prevent from du-
plicities such as {Z,¬Y} and {¬Y, Z}.

Complexity of Graph Pattern Construction. Complexity of pat-
tern generalization depends on the number of patterns and the number
of literals within each pattern. Let r be the maximum number of liter-
als within a 3-node pattern. In the first step, ordering of parents must
be done, which takes O

(
r
)

for counting the number of negative and
positive literals, O

(
r log r

)
for sorting and O

(
r
)

for comparison of two
sorted lists. Letter substitution in the second step consists of count-
ing literals on merged list in O

(
r
)
, sorting the counts in O

(
r log r

)
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and renaming of letters in O
(
r
)
. Lexicographical reordering is per-

formed in the last step and takes O
(
r log r

)
. As construction of ad-

vanced generalized patterns is less complex than the construction
of patterns mentioned above, we can conclude that the time com-
plexity for whole generalization process on m patterns with duplicity
removal is O

(
m2 + m(4r + 3r log r)

)
.

Higher-level Generalization. To improve performance of used
algorithms, e.g. outlier detection algorithms, we created one more
generalization method. This method can be viewed as a higher-level
generalization as it generalizes the method described in previous
paragraphs. This method uses domain knowledge about general reso-
lution principle. It goes through all literals in a resolvent and deletes
those which also appear in at least one parent. Each such literal is also
deleted from the corresponding parent or parents in case it appears
in both of them. In the next step, remaining literals in parents are
merged into a new list dropped and remaining literals in the resolvent
form another list, added. These two lists form a pattern of the higher-
level generalization and we will write such patterns in the following
format:

[Li1 , Li2 , ..., Lin ]; [Lj1 , Lj2 , ..., Ljm ]
(added) (dropped)

For example, if we take the generalized subgraph from the right
side of Fig. 3.2, there is only one literal in the resolvent, ¬Y. We remove
it from the resolvent and both parents and we get dropped = [Z,¬Z],
added = [].

As a result, there may be patterns which differ only in used let-
ters and order of literals in lists dropped and added. For this reason,
we then apply similar method as in the lower-level generalization.
Specifically, we merge lists dropped and added and compute num-
ber of negative and positive literals for each letter in this new list.
The letters are then ordered primarily according to the number of oc-
currences of negative literals and secondly according to the number
of occurrences of positive literals. In case of tie we check ordering
of affected letters only in added list and if needed, then also in dropped
list. If tie occurs also in these lists, then the order does not matter.

40



3. Frequent Pattern Mining

At the end, the old letters are one by one replaced by the new ones
according to the ordering and the new lists are sorted lexicograph-
ically. For example, let dropped = [X,¬X], added = [Y, Z, Z,¬Z].
Then merged = [X,¬X, Y, Z, Z,¬Z] and the number of occurrences
can be listed as count(X, merged) = (1, 1), count(Y, merged) = (0, 1),
and count(Z, merged) = (1, 2). Ordering on letters can be expressed
as Y ≤ X ≤ Z. Using letters from the end of alphabet we per-
form following substitution according to created ordering: Y → Z,
X → Y, Z → X. Final pattern will have lists dropped = [¬Y, Y],
added = [¬X, X, X, Z], provided that ¬ sign is lexicographically be-
fore alphabetic characters. Examples of patterns with absolute support
≥ 10 are shown in Tab. 3.1.

Table 3.1: Higher-level patterns with support ≥ 10.

Pattern (added; dropped) Support
[]; [¬Z, Z] 3345
[]; [¬Y,¬Z, Y, Z] 59
[¬Z]; [¬Y, Y] 18
[]; [¬Z] 13
[]; [] 10

Generalization Example. In this subsection we illustrate the whole
generalization process on an example. Assume that the following 3-
node subgraph has to be generalized:

P1 = {¬C,¬A,¬C, D,¬D}, P2 = {¬D,¬A, D, C} → {¬A, A,¬C}

First, the parents are checked and possibly reordered. For each let-
ter we compute the number of negative and positive literals in either
parent. Specifically, count(A, P1) = (1, 0), count(C, P1) = (2, 0),
count(D, P1) = (1, 1), count(A, P2) = (1, 0), count(C, P2) = (0, 1),
and count(D, P2) = (1, 1). Obtained counts are lexicographically
sorted for both parents and both chains are lexicographically com-
pared:

((1, 0), (1, 1), (2, 0)) > ((0, 1), (1, 0), (1, 1))
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In this case, the result was already obtained by comparing the first
two pairs, (1, 0) and (0, 1). Thus, the second parent is smaller and
the parents should be switched:

P1′ = {¬D,¬A, D, C}, P2′ = {¬C,¬A,¬C, D,¬D} → {¬A, A,¬C}

Now, all three nodes are merged into one list:

S = {¬D,¬A, D, C,¬C,¬A,¬C, D,¬D,¬A, A,¬C}

Once again, the numbers of negative and positive literals are com-
puted: count(A, S) = (3, 1), count(C, S) = (3, 1), count(D, S) =
(2, 2). Since count(A, S) = count(C, S), we also check the counts
in the first parent, P1′. Because count(C, P1′) = count(C, P2) <
count(A, P2) = count(A, P1′), letter C is inserted before A. Finally,
the letters are renamed according to the created order: D → Z, C →
Y, A→ X. After the renaming and lexicographical reordering of liter-
als, we get the following generalized pattern:

{¬X,¬Z, Y, Z}, {¬X,¬Y,¬Y,¬Z, Z} → {¬X,¬Y, X}

Next, we want to get also the higher-level generalization of that
pattern. The procedure goes through all literals in the resolvent and
deletes those literals that occur in at least one parent. This step results
in a prunned version of the pattern:

{¬Z, Y, Z}, {¬Y,¬Z, Z} → {X}

Parents from the pruned pattern are merged into a new list dropped
and the resolvent is used in a list added. Thus, added = [X] and
dropped = [¬Z, Y, Z,¬Y,¬Z, Z]. Now it is necessary to rename the let-
ters once again. Lists added and dropped are merged together and
the same subroutine is used as before—now the lists can be seen
as two nodes instead of three. In this case, the renaming goes as fol-
lows: X → Z, Y → Y, Z → X. At the end, literals in both lists are
lexicographically sorted and the final higher-level pattern is:

[Z]; [¬X,¬X,¬Y, X, X, Y]
(added) (dropped)
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3.1.3 Use of Generalized Subgraphs

This subsection puts all the information from previous paragraphs
together and describes how generalized patterns are used as new fea-
tures. Input data in form of nodes and edges are transformed into at-
tributes of two types. Generalized patterns of the lower level can be
considered as the first type and the patterns of higher-level general-
ization as the second type. One boolean attribute is created for each
generalized pattern. Value of such an attribute is equal to TRUE, if
the corresponding pattern occurs in the given resolution proof, and
it is equal to FALSE otherwise. This representation allows us to use
a lot of existing machine learning algorithms.

3.1.4 Classification of Resolution Proofs

As we stressed in the introduction, this method has not been developed
for recognition of correct or incorrect solutions. However, to verify
that the feature construction is appropriate, we learned several mod-
els for classification into correct and incorrect classes. We evaluated
the models by 10-fold cross validation and we obtained the best result
for SMO Support Vector Machines from Weka [45], which had 95.2%
accuracy, see Table 3.2. Precision and recall for the class incorrect were
0.94 and 0.61, respectively. Minimum support for pattern selection
was 0% in this case. To improve performance of classification we used
the new level of generalization. Using the same settings, but now
with both levels of generalized patterns, we achieved 96.9% accuracy,
0.95 precision and 0.74 recall for the class incorrect. Similar results
were obtained when only the new level of generalization was used,
again with SMO. When ordered according to precision, value 0.98 was
achieved by J48, but the accuracy and recall were only 96.1 and 0.68,
respectively.

As one of the most common errors in resolution proofs is usage
of resolution rule on two pairs of literals at the same time, we repeated
the experiment, but now discarding all patterns capturing this spe-
cific kind of error. In this scenario the performance slightly dropped
but remained still high—J48 achieved 95.4% accuracy, 0.87 precision
and 0.72 recall, see the last row in Table 3.2. For the sake of complete-
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Table 3.2: Classification results for frequent subgraphs. Precision and
recall are stated for the class incorrect.

Attributes Algorithm Accuracy [%] Precision Recall
low-level gen. SMO 95.2 0.94 0.61
both levels SMO 96.9 0.95 0.74
both levels J48 96.1 0.98 0.68
both levels (E3) J48 95.4 0.87 0.72

ness, F1 score for the class correct varied between 0.97 and 0.99 in all
of the results above.

3.1.5 Detection of Outlying Resolution Proofs

Mining Class Outliers. In this section we present the main result,
obtained from outlier detection. We observed that student creativity
is more advanced than ours and that results of the queries for error
detection must be used carefully. Detection of anomalous solutions—
either abnormal, with picturesque error, or incorrectly classified—
helps to improve the tool for automatic evaluation, as will be shown
later.

Here we focus only on outliers for classes created from error E3,
the resolution on two literals at the same time, as it was the most
common error. This means that the data can be divided into two
groups, depending whether the instances contain error E3 or not.
For other types of errors, the analysis would be similar. We also present
results computed only on higher-level generalized patterns. The reason
is that they generally achieved much higher outlier scores than lower-
level patterns.

The data we processed had been labelled. Unlike in common outlier
detection, where we look for outliers that differ from the rest of normal
data, we needed to exploit information about a class. That is why
we used weka-peka [85], the predecessor of RF-OEX [74], that looks
for class outliers [48, 82] using Random Forests (RF) [15]. The main
idea of weka-peka lies in different computation of proximity matrix
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in RF—it also exploits information about a class label [85]. We used
the following settings:
NumberOfTrees=1000
NumberOfRandomFetaures=7
FeatureRanking=gini
MaxDepthTree=unlimited
Bootstrapping=yes
NumberOfOutliersForEachClass=50

Main results of outlier detection process are summarized in Ta-
ble 3.3. When analysing the strongest outliers that weka-peka found,
we can see that there are three groups according to the outlier score.
The two most outlying examples, instances numbered 270 and 396,
significantly differ from the others. The second cluster consists of four
examples with the outlier score between 50 and 100, and the last group
is comprised of instances with the lowest score of 15.91.

As weka-peka is based on Random Forest, we can interpret an out-
lier by analysing trees that classify given instance to a different class
than it was labelled. Such trees show which attribute or combination
of attributes lead to the resulting class. If we search for repeating
patterns in those trees, we can find the most important attributes
making the given instance an outlier. Using this method to inter-
pret the instance 270, we found out that high outlier score is caused
by not-applying one specific pattern, see Table 3.3. When setting this
attribute equal TRUE, outlier score decreases to -0,40. Values of at-
tributes of instances 396 and 270 are equal, which means that the
interpretation is the same as in the previous case. Similarly, we found
that outlierness of instance 236 is given by occurrence of specific pat-
tern in solution and non-occurrence of another pattern. The value
of the corresponding attribute is the only difference between instance
236 and 187. Occurrence/non-occurrence of this pattern is therefore
the reason why instance numbered 236 achieves higher outlier score
than instance 187. See again Table 3.3 for information about particular
patterns. We further elaborated this approach of outlier explanation
in the following section.

Finding Significant Patterns. As the outlier score is the only out-
put information about the outliers, we created a simple method for find-
ing the attributes with the most unusual values. Let xij denote the value
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of the jth attribute of the ith instance, which is either TRUE or FALSE
for the pattern attributes, and cl(i) denote the class of the ith instance.
Then for instance i we compute the score of attribute j as:

AScore(i, j) =


|{k|k 6=i∧cl(i)=cl(k)∧xkj=FALSE}|

|{k|k 6=i∧cl(i)=cl(k)}| if xij = TRUE

− |{k|k 6=i∧cl(i)=cl(k)∧xkj=TRUE}|
|{k|k 6=i∧cl(i)=cl(k)}| if xij = FALSE

AScore expresses the proportion of other instances from the same
class which have different value of the given attribute. If outlier’s at-
tribute equals FALSE, then the only difference is in the sign of the score.
For example, consider our data set of 873 resolution proofs, out of which
53 proofs contain error E3. Assume that one of the 53 proofs is an out-
lier with an attribute equal to TRUE and from the rest of 52 proofs
only two proofs have the same value of this attribute as the outlier.
Then the outlier’s AScore on this attribute is approximately 50/52 =
0.96 and it indicates that the value of this attribute is quite unusual.

In general, AScore ranges from -1 to 1. If the outlier resolution
graph contains a pattern which is unique for the class of the graph,
then AScore of the corresponding attribute is equal to 1. On the other
hand, if the outlier misses a pattern and all other graphs contain it,
then AScore is equal to -1. AScore equal to 0 means that all other
instances are equal to the outlier on the specified attribute.

Interpretation of the Outliers. By using AScore metrics we found
the patterns which are interesting for outliers in Table 3.3. Patterns,
with AScore > 0.8 are listed in the significant patterns column and
patterns with AScore < -0.8 in the significant missing patterns column.

All outliers from Table 3.3, except for the last one as it is almost
identical to the penultimate one, are also displayed in Fig. 3.3. Analysis
of individual outliers let us draw several conclusions. Let us remind
that higher-level patterns listed in Table 3.3 are derived from lower-
level patterns consisting of three nodes, two parents and one resolvent,
and that the component added simply denotes literals which were
added erroneously to the resolvent and the component dropped de-
notes literals from parents which participated in the resolution process.
Two most outlying instances, numbered 270 and 396, also contain one
specific pattern, looping. This pattern represents the ellipsis in a reso-
lution tree, which is used for tree termination if the tree cannot lead
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Figure 3.3: Drawings of the outlying instances from Table 3.3.

to a refutation. Both instances contain this pattern, but neither of them
contains the pattern of correct usage of the resolution rule, which is
listed in the significant missing patterns column. The important thing is
that these two instances do not contain error E3, but also any other
error. In fact, they are created from an assignment which always leads
to the looping pattern. This shows that it is not sufficient to find all
errors and check the termination of proofs, but we should also check
whether the student performed at least few steps by using the resolu-
tion rule. Otherwise we are not able to evaluate the student’s skills.
Moreover, there may be situations in which a student only copies
the solution.

Instances with the outlier score less than 100 are less different
from other instances. In particular, instances number 236 and 187 are
more similar to correct proofs than the instances discussed above.
Yet, they both contain anomalous patterns such as []; [¬Y,¬Z, Y]. This
particular error pattern does not indicate error E3, as can be seen
in Table 3.3. It is actually not marked as any type of error, which tells us

48



3. Frequent Pattern Mining

that it is necessary to extend our list of potential errors in the automatic
evaluator.

Continuing with outlier instances we get to those which contain
error E3. Two of them exceed the boundary of outlier score 50, which
suggests that they are still relatively anomalous. The first outlier, in-
stance number 438, differs from other instances in an extra literal
which was added into a resolvent. Specifically, the number 1, which
is not even a variable, can be seen at the bottom of the resolution
proof in Fig. 3.3. More interesting is the second instance with number
389. Error E3 was detected already in the first step of the resolution,
specifically when resolved on parents {s, t} and {¬t,¬s}. This would
not be a strange thing, if the resolvent was not s. Such a resolvent
raises a question whether it is an error of type E3 or just a typing error.
The latter is a less serious error.

Last two outliers in the table are almost the same so only the in-
stance number 74 is depicted in Fig. 3.3. These two instances have quite
low outlier score and they do not expose any shortcomings of our eval-
uation tool. Yet, they exhibit some outlying features such as resolving
on three literals at the same time.

3.1.6 Discussion

In this section we presented generalization methods for subgraphs
of resolution proof trees built by students. Generalized subgraphs
created by these special graph mining methods are useful for repre-
sentation of logic proofs in an attribute-value fashion.

This representation was used for learning classification models,
which performed well on the data. In past [100, 101], we experimented
also with simple frequent patterns generated by Sleuth algorithm [120],
which aims at finding frequent patterns in unordered rooted trees.
Unfortunately, there are several drawbacks if the generalization is not
used and only regular frequent patterns are used. First, as there are
different assignments with differently named propositional variables,
the patterns cannot simply cover solutions from different assignments.
Next, usage of such an algorithm is quite limited, because by setting
the minimum support to a very small value, the algorithm may end up
generating excessively many frequent subtrees, which consumes both
time and space. The problem is that we wish to include the infrequent

49



3. Frequent Pattern Mining

substructures as well because they often represent mistakes in students’
solutions and thus may be helpful when searching for anomalies.
On the other hand, when we use only generalized patterns, it is enough
to extract the 3-node patterns that are then generalized.

We further showed how a class-based outlier detection method
can be used on these logic proofs by utilization of the generalized
subgraphs. We also discussed how the outlying proofs may be used
for performance improvement of our automatic proof evaluator. For as
we observed, it is not sufficient to detect only the errors but we need
to analyse the context in which an error appeared. Moreover, there
are solutions that are erroneous because they do not contain a par-
ticular pattern or patterns. Outlier detection helped to find wrong
students’ solutions that could not be detected by the system of queries
even though the set of queries has been carefully built and tested
on a test data. We also found a situation when a query did not de-
tected an error although it appeared in the solution. We are convinced
that with increasing number of solutions we will be able to further
increase performance of wrong solution detection. This method may
also be used for other types of data such as tableaux proofs.

3.2 Sequence Mining on Dynamic Graphs

We showed how resolution proofs can be represented by simple sub-
graphs in the previous section. Now we present a different repre-
sentation of resolution proofs and its usage for a different task [99].
Specifically, we exploit the dynamic nature of the solution creation
process and represent it by sequences of events. As each event, such
as addition of a node or an edge, has an exact timestamp, we can use
timestamps to order the events into sequences. Having the solutions
of resolution proofs in the form of sequences, we employ sequence
mining techniques to find frequent patterns and use these patterns
to cluster different types of solutions. Such clusters allow us to fur-
ther understand the solving processes of students and perform more
detailed analyses of particular solving styles.

There is also research similar to ours in the literature. For example,
authors of [47] analysed students’ ordinary handwritten coursework
with a digital pen by means of sequence mining techniques to identify
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patterns of actions that are more frequently exhibited by either good-
or poor-performing students. They used sequence patterns as features
for a linear regression model and predicted students’ performance
by this model. In [67], sequential pattern mining was used for anal-
ysis of activity around an interactive tabletop and finding frequent
sequences that differentiate high achieving from low achieving groups.
These approaches are different from ours as we use sequence mining
to find various strategies of solving the problems rather than for stu-
dents’ performance prediction.

3.2.1 Resolution Proofs as Sequences

For processing temporal information, we used two sequence represen-
tations of the data. Each resolution proof can be represented as a se-
quence in either representation. The first one is composed of two types
of events: addition of a node, i.e. clause, into a proof and addition
of an edge. An example of such a sequence is CCCCCEEEE, where C
denotes a node addition and E denotes an edge addition. The second
representation uses the same events as the first one, but it also contains
events of text modification3. An example of a sequence in the second
representation is CTCTCTCTCTEEEE, where elements C, T and E
denote a node addition, a text modification and an edge addition,
respectively. From now on, we will use CE and CET abbreviations
for the representations.

As sequences cannot be processed by machine learning algorithms
that are typically used for classification, clustering or outlier detection,
we need to transform the data. Simple and common practice is to use
subsequences as features [34]. This is the same approach as we used
in Section 3.1.3 with subgraphs. We considered only subsequences
consisting of elements that are consecutive in original sequences, i.e.
without gaps, because subsequences with gaps are not descriptive
in case of our sequences. Recall the definition of subsequences without
gaps from Section 2.2.3.

In order to find all potentially useful subsequences, we employed
cSpade algorithm [119] for frequent sequence mining. For a given
value min_support ∈ [0, 1], this algorithm finds all subsequences

3. We also tried sequences with node- and edge-deletion events, but these events
did not affect the results due to their sparse occurrences.
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whose support ≥ min_support. Support of a subsequence α is a frac-
tion of input sequences which contain α as a subsequence. Specifi-
cally, we set min_support = 0.1 to get only subsequences that occur
in at least 10% of all input sequences. We obtained 121 frequent subse-
quences from sequences in CE representation, and 242 subsequences
in case of CET representation. Each frequent subsequence is used
as a new feature with value equal to 1 if the subsequence appears
in the given sequence, and 0 otherwise.

3.2.2 Sequence Clustering

Having the resolution proofs represented by features constructed
from the two representations of sequences, we performed clustering
on features of each representation. For the purpose of clustering, we set
the values of features as follows: if a sequence contains a subsequence
corresponding to the considered feature, we set the feature value of the
sequence to the squared length of the subsequence. Otherwise we set
the value to 0. The rationale for this is that long subsequences should
be more explanatory so they carry more weight.

Using this representation of data we performed cluster analysis
using AGNES (AGglomerative NESting) hierarchical clustering and
PAM (Partitioning Around Medoids) algorithms. A description of both
algorithms can be found in [56]. In case of AGNES, we used average
linkage method and for both algorithms we used Manhattan distance
metric.

In order to evaluate different numbers of clusters, i.e. different cuts
in AGNES dendrogram and different number of PAM medoids, we
utilized two metrics, Dunn index [36] and average silhouette width [92].
Higher value of either metric indicates better clustering. For each
algorithm we performed clustering with different numbers of clus-
ters, specifically we used all integers from the interval [2, 12]. To se-
lect the most appropriate number of clusters, we ranked the values
of the two metrics for each algorithm. The higher the value of a metric,
the lower the rank. Then we calculated the total rank by summing
over all four ranks. For CE representation, the value of total rank de-
creased with larger number of clusters, but from 8 clusters onward,
the change was not substantial, so we selected 8 clusters as sufficient.
Specifically, the values of total rank from 2 to 12 clusters were as
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follows: 60, 56, 50, 43, 46, 31, 25, 31, 24, 21, and 21. In case of CET rep-
resentation, the lowest value of total rank was calculated for 8 clusters.
Results for both cases are depicted in Table 3.4, in which clustering
is encoded as [sequence representation]–[# of clusters]. We also included
results for CE-2 and CET-2, cases with the smallest number of clusters,
for comparison. These two clustering divisions are also considered
in statistical tests described later. From Table 3.4 we can see that Dunn
index was generally quite low, especially for PAM algorithm.

Table 3.4: Internal evaluation of CE-2, CE-8, CET-2, and CET-8 cluster-
ings by Dunn index (DI) and average silhouette width (SIL).

AGNES PAM
Clustering DI SIL DI SIL

CE-2 0.14 0.60 0.01 0.60
CE-8 0.35 0.78 0.05 0.76
CET-2 0.09 0.53 0.14 0.57
CET-8 0.16 0.64 0.02 0.61

3.2.3 Analysis of the Clusters

For each cluster we also looked for the most representative sequence.
In case of PAM algorithm, it was enough to take the medoids. However,
hierarchical clustering algorithms do not use medoids, so we designed
and used the following procedure for AGNES algorithm. First, we
computed the average value for each feature on the set of sequences
from a specific cluster. We used the same features as for clustering.
Then we used the same distance metric, Manhattan distance, to find
a sequence most similar to the average.

Resulting representative sequences for the above mentioned clus-
ters are shown in Table 3.5. By comparing both algorithms, we can
see that they share a lot of similar representatives. Simple division
of the proofs can be seen in case of CE-2 clustering for both algorithms,
see the first two rows of the table. The first cluster groups proofs solved
in a step-by-step fashion, where a step means an application of the res-
olution rule and relevant edges are added immediately after clauses
(nodes) in each step. The second cluster groups proofs solved in such
a way that the nodes are added first and all the edges afterwards.
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Table 3.5: Cluster representatives of CE-2, CE-8, CET-2, and CET-8
clusterings.

Clustering AGNES PAM
CE-2 CCCEECCCCEECEECEE CCCEECCEECCCCEEEE

CCCCCCCCCEEEEEEEE CCCCCCCCCEEEEEEEE
CE-8 CCCEECCEECCEECCEE CCCEECCEECCEECCEE

CCCCEECEECCCCEEEE CCCCCEEEECCCCEEEE
CCCCCCCEEEEEE CCCCCCCEEEEEE
CCCEECCEECCEE CCCEECCEECCEE
CCCCCCCCCEEEEEEEE CCCCCCCCCCCEEEEEEEEEE
CCCEECCCECEEE CCCEECCEECCEECCEECCEE
CCCCCEEEE CCCCCEEEE
CCCEECCEE CCCCCCCCCEEEEEEEE

CET-2 CTTCTCTCTCTCTCTCTEEEEEECTEE CTCTCTCTEECEETCTCEECTTCTEE
CCCCCCTTTTTTCTEEEEEE CTCTCTCTCTCTCTCTCTEEEEEEEE

CET-8 CTCTCTCTCTCTCTCTCTEEEEEEEE CTCTCTCTCTCTCTCTCTEEEEEEEE
CCCCCCTTTTTTCCCTTTEEEEEEEE CCCCCTTTTTCCCTTTCTEEEEEEEE
CCCCCCCTTTTTTTEEEEEE CCCCCCCTTTTTTTEEEEEE
CTCTCTCTCTEEEE CTCTCTCTCTEEEE
CTTCTCTEETCTCEETCTCTEECTCTEE CTTCTCTEECTCEETCTECTE
CTCTCTEECTCTEE CTCTTCTCTCTCTCTEEEEEE
CCCCTTEETTTCCCEETTEETCTCTEET CTCTCTCTEECEETCTCEECTTCTEE
CTCTCTEE CCCCCCCCTTTTTTTTTTTCTEEEEEEEE

On the other hand, CET-8 clustering of AGNES, for example, is
slightly more difficult to analyse than CE-2. Nevertheless, several dis-
tinctive characteristics can be seen from the representatives. In the first
half of sequences, all edges are added last, and in the second half, they
are added approximately after each step. Similar phenomenon can be
observed for the T events with respect to the C events – in some cases,
most of the C events are added first, and in some cases, these events
are alternating with the T events.

In addition, the first and the fifth clusters from CET-8 of AGNES
contained most of the instances, precisely 696 out of 873 instances.
This means that for most of the proofs, it should hold that they are
not short, node and text addition is alternating, and there is no pre-
vailing way of edge addition. The last cluster in the table, represented
by the CTCTCTEE sequence, was also interesting, as its 12 out of 16
instances contained E3 error. Let us remind that E3 denotes the error
of simultaneous resolving on two literals and that there were only
53 instances with E3 error in total. It means that almost 1/4 of all
erroneous solutions appeared in that cluster. We can exploit the infor-
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mation from the representative sequence for detecting potential error
and maybe warn a student or offer them a hint even before finishing
their solution.

As we want to find whether some behavioural patterns of students
are connected with errors in solutions, we also analysed our sequential
data with respect to solution errors. From the set of common errors,
we considered the most serious error – the error of resolving on two or
more literals at the same time, i.e. the E3 error. This error is the most
common and also the only one with occurrence rate greater than
5%. We performed Fisher’s exact test [40] to compare the occurrence
of the E3 error and each of the four sequence clusters, taken for both
clustering algorithms. Considering the 5% significance level, we can
conclude that the data provides convincing evidence that the occur-
rence of E3 error is not independent of any of those four clusters of any
of the two algorithms. Moreover, by analysing clusters as in the previ-
ous section, we can discover more useful patterns, such that for CET-8
there was a cluster with majority of wrong solutions. Such information
may help early detect students that are at risk of making a mistake.

3.2.4 Discussion

In this section, we presented a sequence-based representation and
clustering approach for logic proof solutions. We showed that by using
new sequence features we are able to segment solutions according
to the solving strategy and to find clusters of erroneous solutions. We
believe that this method can be used even by non-expert in machine
learning. There are only few parameters to be set – the minimum sup-
port for frequent subsequences and the maximum number of clusters
in sequence clustering. Moreover, this method is general and it can be
used also for other logic proofs, such as tableaux proofs, and for any
other construction tasks that can be represented by sequences of steps.

There is a big potential of the results displayed above in prac-
tical education. By using the detection and the analysis of clusters
with higher frequency of erroneous solutions a teacher can detect
potential reasons of errors and find shortcomings in tutoring. Even
in the process of solving the task, it is possible to detect behavioural
patterns before completing the proof and warn the student.

55





4 DGRMiner for Mining Rule Patterns in Dy-
namic Graphs

Data mining of complex structures in dynamic graphs has been ex-
tensively studied in the literature as we shown in Chapter 2.2. Nev-
ertheless, most of these methods for dynamic graphs impose vari-
ous restrictions, such as the type of the dynamic graphs or the type
of changes captured by the patterns. For example, there are algorithms
expecting that the only changes in a dynamic graph are caused by edge
additions, or by vertex additions if the vertices belong to the edges
being added. These algorithms include GERM [13], LFR-Miner [60],
and the algorithms presented in [55, 69, 80]. These algorithms also
pose various restrictions on the form of the rule graphs. Other exam-
ples are GREW [16] and the algorithm from [106], which assume that
the input dynamic graph has a fixed set of vertices and only edges
are inserted or deleted over time. These requirements make them also
rather restricted.

In this chapter, we present DGRMiner algorithm [103] for mining
frequent patterns that are able to capture various changes in dynamic
graphs. Specifically, the patterns are in the form of predictive rules
expressing how a subgraph can be changed into another subgraph
by adding new vertices and edges, deleting specific vertices and edges,
or relabelling vertices and edges.

The algorithm is able to mine patterns from a single dynamic
graph and also from a set of dynamic graphs. The graphs can be both
directed and undirected. Such graph rules are useful for prediction
in dynamic graphs or they can be used as pattern features representing
dynamic graphs. They can also be simply used for gaining an insight
into internal processes of the graphs.

In the rest of the chapter we provide necessary definitions, the de-
scription of DGRMiner algorithm, and then we present results of ex-
periments performed on two real-world and two synthetic datasets.
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4. DGRMiner for Mining Rule Patterns in Dynamic Graphs

Figure 4.1: An example of a dynamic graph and two predictive graph
rules. Numbers after slash symbols represent timestamps and dotted
edges represent deleted edges.

4.1 Predictive Graph Rules

In this section, we provide definitions used by DGRMiner algorithm.
We use Definition 2 as a definition of a dynamic graph but we add
the following conditions. First, each graph snapshot is represented
by a static labelled multigraph without loops and with a restriction
that no two edges with the same source and target vertices can have
the same label, i.e. ∀e1, e2 ∈ EG( f (e1) = f (e2) ⇒ lE(e1) 6= lE(e2)).
Second, no two adjacent graphs in a dynamic graph are identical
as we want to capture only the changes in the dynamic graph. Third,
for each 1 ≤ i ≤ n, the timestamp functions tGi,V , tGi,E assign to each
vertex and edge the time from which they have their current label,
i.e. tGi,V(v) = min(j|1 ≤ j ≤ i ∧ ∀k, j ≤ k ≤ i, v ∈ VGk ∧ lGk,V(v) =
lGi,V(v)) and similarly for tGi,E(e). And lastly, as we want to capture
patterns with rich information, we will also assume that the dynamic
graph keeps track of the deleted vertices and edges, but only until they
are added back into the graph. For example, consider the dynamic
graph in Fig. 4.1 with five snapshots. Then tG1,V(v1) = 1, tG4,V(v5) = 3,
etc. Also notice the edge between vertices v3 and v1 in snapshot G3. It
is deleted in snapshot G4, but we keep information about this deleted
edge in this snapshot. This information is discarded in snapshot G5
because a new edge with the exact same information is added there.
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4. DGRMiner for Mining Rule Patterns in Dynamic Graphs

The aim of the mining algorithm is to find predictive graph rules,
i.e. rules expressing how a subgraph of a snapshot will most likely
change in future. As we want to incorporate the time information
into the rules and at the same time we are interested in mining general
patterns which are not tied to absolute time, we need to use relative
timestamps for rules. A relative timestamp equal to 0 will denote
a current change and a timestamp equal to −t will denote a change
that happened t snapshots earlier. Now we can define predictive graph
rules as follows, see also an informal description below.

Definition 3 (Predictive Graph Rule). Let GA, GC be two static graphs
with timestamp functions tGA,V , tGA,E, tGC,V , tGC,E with range (−∞, 0] such
that the union graph1 of GA and GC is a connected graph and exactly one
of the following three conditions holds:

i. VGA = ∅ ∧VGC 6= ∅ ∧
∀v ∈ VGC(tGC,V(v) = 0) ∧ ∀e ∈ EGC(tGC,E(e) = 0)

ii. VGA 6= ∅ ∧VGC = ∅

iii. (VGA ∩VGC 6= ∅)∧
(∃v ∈ VGC(tGC,V(v) = 0) ∨ ∃e ∈ EGC(tGC,E(e) = 0))∧
(∀v ∈ VGC r VGA(tGC,V(v) = 0))∧
(∀e ∈ EGC r EGA(tGC,E(e) = 0))∧
(∀v ∈ VGA ∩VGC((tGC,V(v) = tGA,V(v)− 1∧ lGC,V(v) = lGA,V(v))
∨ (0 = tGC,V(v) ≥ tGA,V(v) ∧ lGC,V(v) 6= lGA,V(v)))∧
(∀e ∈ EGA ∩ EGC( fGC(e) = fGA(e) ∧ ((tGC,E(e) = tGA,E(e) − 1 ∧
lGC,E(e) = lGA,E(e)) ∨ (0 = tGC,E(e) ≥ tGA,E(e) ∧ lGC,E(e) 6=
lGA,E(e))))

Then we say that GA ⇒ GC is a predictive graph rule, where GA is
called antecedent and GC consequent.

The first two conditions in the above definition cover situations
in which the rules express either addition of an isolated graph into a dy-
namic graph or a deletion of a subgraph from a dynamic graph.
The third condition covers situations in which one subgraph is trans-
formed into another subgraph. Here, we require VGA ∩ VGC 6= ∅

1. A graph created from union of vertices and edges.
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because we are not interested in rules consisting of unrelated graphs.
In addition, we require the rule to contain at least one change related
to a vertex or an edge. Vertices and edges occurring only in the con-
sequent must have timestamp equal to 0 as they represent an addi-
tion. For vertices and edges common for both graphs we require that
they either were not changed a thus their relative timestamps differ
by one, or they were changed and thus their timestamp cannot be
lower in the consequent. Moreover, we cannot change edges by re-
orienting them, i.e. we would have to delete the original edge and
add a new one with the opposite orientation. Lastly, as we keep track
of the deleted edges and vertices in the dynamic graph, the predictive
rules can also contain these deleted vertices and edges. It does not
pose any restriction to the patterns, contrariwise it can only help us
capture more information in the patterns in case such information is
present in the dynamic graph.

In Fig. 4.1 we can see two examples of graph prediction rules. Both
rules depict changes in connection and also label changes. There is
also a vertex with label A in both rules which is not changed and thus
its timestamp is decreased by one in the consequent.

In order to select only interesting rules, various measures of signif-
icance are typically used. Here, we use support and confidence. As we
use relative timestamps for graphs in rules, we also need to provide
the notion of an occurrence of such a graph in a given dynamic graph.
This notion extends subgraph isomorphism defined in Chapter 2.

Definition 4 (Occurrence of an antecedent and consequent graph).
Let G be a graph used in a rule, either the antecedent or the consequent,
with timestamp functions tG,V , tG,E, and let DG = (G1, ..., Gi, ..., Gn) be
a dynamic graph. We say that G occurs in snapshot Gi under ϕ, written
as G vϕ Gi, if there exists an injective function ϕ : VG → VGi such that:

i. ∀u ∈ VG(ϕ(u) ∈ VGi ∧ lG,V(u) = lGi,V(ϕ(u))∧
tG,V(u) = tGi,V(ϕ(u))− i)

ii. ∀e ∈ EG( fG(e) = (u, v) ⇒ ∃!e′ ∈ EGi( fGi(e
′) = (ϕ(u), ϕ(v)) ∧

lG,E(e) = lGi,E(e
′) ∧ tG,E(e) = tGi,E(e

′)− i)

That means that the mapping of vertices and edges preserves their
labels and the timestamps are relative in the rule graph. This definition
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is now used to define an occurrence of a predictive graph rule, which
in turn is used to define support and confidence of a predictive graph
rule in a dynamic graph and also in a set of dynamic graphs.

Definition 5 (Occurrence of a predictive graph rule). Let GA ⇒ GC
be a graph rule, DG = (G1, ..., Gi, ..., Gn) be a dynamic graph, and ϕ :
VGA∪GC → VGi∪Gi+1 be a function mapping vertices of both antecedent and
consequent to snaphots’ vertices. We say that GA ⇒ GC occurs in snapshots
Gi, Gi+1, written as (GA ⇒ GC) vϕ (Gi, Gi+1) if GA vϕ Gi and GC vϕ

Gi+1.

Definition 6 (Support and Confidence). Let GA ⇒ GC be a predictive
graph rule and DG = (G1, G2, ..., Gn) a dynamic graph. We define support
of GA ⇒ GC, support of GA, and confidence of GA ⇒ GC as follows:

σDG(GA ⇒ GC) =
|{i|∃ϕ : (GA ⇒ GC) vϕ (Gi, Gi+1), 1 ≤ i ≤ n− 1}|

n− 1

σDG(GA) =
|{i|∃ϕ : GA vϕ Gi, 1 ≤ i ≤ n− 1}|

n− 1

con fDG(GA ⇒ GC) =
σDG(GA ⇒ GC)

σDG(GA)

For a set of dynamic graphs DGS = {DG1, DG2, ..., DGm} we extend
these definitions as follows:

σDGS(GA ⇒ GC) =
|{i|σDGi(GA ⇒ GC) > 0, 1 ≤ i ≤ m}|

m

σDGS(GA) =
|{i|σDGi(GA) > 0, 1 ≤ i ≤ m}|

m

con fDGS(GA ⇒ GC) =
σDGS(GA ⇒ GC)

σDGS(GA)

Thus, support of a rule for a single dynamic graph expresses
the fraction of snapshots that were changed by the rule. For a set
of dynamic graphs, we count the fraction of dynamic graphs that
had at least one snapshot changed by the rule. Confidence expresses
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the frequency of such a change if we observe an occurrence of the an-
tecedent. For example, both rules in Fig. 4.1 have support equal to 0.25
and confidence equal to 1.

Given a minimum support value σmin and a minimum confidence
value con fmin, the task is to find all predictive graph rules for which
σ ≥ σmin and con f ≥ con fmin.

4.2 gSpan Revisited

DGRMiner employs the framework of gSpan algorithm [108]. We mod-
ified and further extended this framework for the purpose of mining
graph rules from dynamic graphs. First, we revise the main ideas
of gSpan and then we provide the details of the new algorithm.

gSpan [108] is an algorithm for mining frequent patterns (sub-
graphs) from a set of simple undirected static graphs. Recall that
simple means that it does not contain multiedges. It outputs frequent
connected subgraphs.

gSpan starts from single-edge patterns and extends these patterns
edge by edge to create larger patterns. Each such pattern can be en-
coded by a DFS (Depth-First Search) code. A DFS code of a pattern
represents a specific DFS traversal of the pattern and it is represented
by a list of 5-tuples of the form (i, j, li, l(i,j), lj). Such a 5-tuple represents
an edge between the i-th and j-th discovered vertices by the DFS traver-
sal, li and lj are labels of those vertices, and l(i,j) is the label of the edge.
Thus, the first 5-tuple has always i = 0 and j = 1, and it holds for other
5-tuples that i < j if it is a forward edge in the DFS traversal and i > j if
it is a backward edge. A forward edge connects already discovered ver-
tex i with a newly discovered vertex j. On the other hand, a backward
edge connects only vertices already discovered.

As there are more ways the DFS traversal can be performed on a sin-
gle pattern, there are also more DFS codes for each pattern. A lex-
icographic order is defined on DFS codes and the minimum one
is maintained for each pattern. This lexicographic order is also ap-
plied on codes of different patterns to represent the search space
as a tree, called DFS Code Tree. In this DFS Code Tree, each vertex
represents one DFS code and children of a vertex can be obtained
by all possible single-edge extensions of the DFS code of the corre-
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sponding vertex. Therefore, all codes on the same level of the tree
have the same number of edges. Moreover, children of a vertex are
ordered according to the lexicographic order. gSpan generates pattern
candidates in such a way that it corresponds to a depth-first search
traversal of this DFS Code Tree, i.e. it generates patterns according
to the lexicographic order. gSpan does not have to extend each pattern
in all possible ways, it is enough to grow edges only from vertices
on the rightmost path2. Specifically, it grows either a backward edge
from the rightmost vertex3 to another vertex on the rightmost path
or a forward edge from a vertex on the rightmost path to a newly
introduced vertex. When traversing the search space, gSpan checks
whether the pattern of the considered DFS code is frequent. If not, it
prunes the search space tree on this vertex and backtracks. This is pos-
sible because of the anti-monotonicity of the support measure. It also
checks whether the considered code is the minimum one for the corre-
sponding pattern. If it is not minimum, the search space tree is pruned
on this vertex because all patterns in this pruned subtree were already
found earlier.

The pseudocode of gSpan is given in Algorithm 1. By removing
the infrequent vertices and edges, the input graphs can be signifi-
cantly reduced and the overall efficiency increased. Frequent vertices
are appended to results as the smallest frequent patterns. The main
part of the algorithm starts from single-edge patterns. Specifically,
Subgraph_Mining 2 procedure is recursively called on each such pat-
tern. This procedure first tests whether the code s is minimum. If it is
minimum, it enumerates its children by taking single-edge extensions.
The procedure is then called on the frequent children.

4.3 DGRMiner Preliminaries

In this section we describe the new algorithm called DGRMiner. It is
based on the framework of gSpan, however, the framework is mod-
ified and extended. First, we provide necessary details about main
modifications used in DGRMiner and then we present the pseudocode

2. The rightmost path is given by the DFS code and it is the path from the root
to the lastly discovered vertex by the DFS traversal.
3. The last vertex on the rightmost path from root.
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Algorithm 1 gSpan(D,S)
1: sort the labels in D by their frequency;
2: remove infrequent vertices and edges;
3: relabel the remaining vertices and edges;
4: S1 ← all frequent 1-edge graphs in D;
5: Sort S1 in DFS lexicographic order;
6: S← S1;
7: for each edge e ∈ S1 do
8: initialize s with e, set s.D by graphs containing e;
9: Subgraph_Mining(D,S,s);

10: D← D− e;
11: if |D| < σmin then
12: break;

Algorithm 2 Subgraph_Mining(D,S,s)
1: if s 6= min(s) then
2: return;
3: S← S∪ {s};
4: enumerate s in each graph in D and count its children;
5: for each c, c is s’ child do
6: if σ(c) ≥ σmin then
7: s← c;
8: Subgraph_Mining(Ds,S,s);

of the whole algorithm with a description of the remaining building
blocks.

The first step is a transformation of an input dynamic graph4

into a data structure that can be considered as a set of static graphs.
The idea is that we are able to represent the graph rules by single
graphs and the input dynamic graph as a set of static graphs in such
a way that a modified static subgraph mining algorithm can be em-
ployed.

4. Here, we assume that there is only one dynamic graph on the input. Extension
to a set of dynamic graphs is described in Subsection 4.4.
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First, let us explain the transformation on the rules5. In order to cre-
ate a single graph from a rule, we take the union of the vertices and
edges from its antecedent and consequent. Edges and vertices that do
not represent any change in the rule will keep their labels and times-
tamps from the consequent. Let us remind that rules have relative
timestamps less than or equal to 0 and thus these edges and vertices
will have timestamps less than 0. Edges and vertices representing
addition will keep their consequent timestamp, which is 0, but their
labels will contain a flag representing addition. For example label A
will be changed to +A. However, timestamps of vertices and edges
that were deleted or relabelled will have timestamps that are opposites
of the antecedent timestamps. We know that consequent timestamps
of such changes are always equal to 0 so we can easily get the origi-
nal value of the antecedent back if we need to decompose the graph
into a rule again. We take the opposite values because later it will help
us recognize current changes simply by taking timestamps greater
than or equal to 0. Vertices and edges that were deleted or relabelled
will also have new labels that can be easily decoded, for example
−A for deletion of an object with label A and A => B for relabelling
from A to B. As an example, transformed rules from Fig. 4.1 are shown
in Fig. 4.2.

Transformation of the input dynamic graph is very similar. Sup-
pose that we have n snapshots in the dynamic graph. As the first
snapshot does not represent any changes by itself, we create n− 1 new
graphs in the following way. When creating the k-th graph, consider
union of vertices and edges from snapshots 1 to k as an antecedent,
where vertices and edges have their last assigned labels and times-
tamps of last changes relative to k. We can assume that all vertices and
edges from the first snapshot had timestamps equal to 1. Similarly, use
snapshots 1 to k + 1 to create a consequent. Then we use the method
for rule transformation to create the k-th graph. All n− 1 graphs can
be computed in a single pass as we can update the i-th graph to get
the (i + 1)-th one.

Union of all graphs from the beginning may contain vertices and
edges with very old changes that are not useful for the predictive

5. Even though the algorithm does not explicitly transform the rules, only the input
dynamic graphs, it is easier to demonstrate the idea on rules.
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Figure 4.2: The union graph representation of the dynamic graph and
the rules from Fig. 4.1.

rules. We use a window parameter to remove such vertices and edges
from the union graphs. As edges cannot exist without their adjacent
vertices, we do not remove old vertices adjacent to edges that are
not old. Union graphs of the dynamic graph from Fig. 4.1 are shown
in Fig. 4.2. In this case, window size is not set.

Now that we have the dynamic graph represented by union graphs,
which can be viewed as a set of static graphs, we made a large step
towards mining the graph rules. There are, however, still several issues
to be addressed.

Let us start with a richer representation of edges. In Section 4.2,
we showed that gSpan uses 5-tuples of the form (i, j, li, l(i,j), lj) to rep-
resent edges of patterns. In order to incorporate relative timestamps
of rules and orientation of the edges, we simply extend these 5-tuples
to 9-tuples of the form (i, j, li, ti, d(i,j), l(i,j), t(i,j), lj, tj). It is the same
as the original 5-tuple except for the new elements. Specifically, ti,
tj, and t(i,j) are used for the relative timestamps of vertex i, vertex j,
and the edge between i and j, respectively. Element d(i,j) represents
the orientation of the edge between i and j, and it is one of the fol-
lowing:←,→, −. The last value is used for undirected edges. Each
pattern, i.e. graph rule in the condensed representation, can be rep-
resented as a list of such 9-tuples. Furthermore, it is easy to extend
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the gSpan’s DFS code for these 9-tuples and thus we can create order-
ing between patterns and find a minimum DFS code for each pattern.
For example, suppose that we obtained the following order of vertex
labels: A, +x, C=>D, A=>B, -x. Then the minimum DFS code of the Pre-
dictive Rule 1 from Fig. 4.2 is as follows: (0, 1, A,−1,→,+x, 0, A =>
B, 1), (0, 2, A,−1,→, +x, 0, A => B, 1), (0, 3, A,−1,←,−x, 1, C =>
D, 1).

In order to be able to deal with a broader class of dynamic graphs,
we extended the mining algorithm to include two time abstraction
methods. By time abstraction we mean usage of coarser timestamp val-
ues of union graphs in situations where exact values are not required
or suitable.

The first method helps us ignore timestamps of vertices. Specifi-
cally, we apply the signum function to all relative timestamps of ver-
tices. Thus, negative timestamps become equal to −1 and positive
timestamps become equal to 1. This method is useful for dynamic
graphs in which all or almost all changes are caused by edges and
vertices remain more or less intact.

The second method also uses the signum function but now it con-
verts timestamps of both vertices and edges. It is useful in situations
where patterns in dynamic graphs are very diverse and it is not possi-
ble to find many frequent patterns with exact timestamps.

4.4 DGRMiner Algorithm

This section provides remaining details and a description of the whole
DGRMiner algorithm for predictive graph rule mining. The pseu-
docode of DGRMiner is given in Algorithm 3.

First, DGRMiner converts the input dynamic graph into a set
of union graphs as described in Section 4.3. In the case of a set of dy-
namic graphs, the algorithm simply computes union graphs for each
one of them and then concatenates the results. It only needs to keep
the mapping of those union graphs into the original dynamic graphs
in order to be able to compute their support and confidence correctly.
Optional application of an abstraction method, described in the pre-
vious section, follows next. Then the algorithm removes infrequent
vertices and edges but only those that represent changes as the other
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Algorithm 3 DGRMiner(DG)
1: convert the input dynamic graph(s) DG into the union graph

representation D;
2: optional: apply a time abstraction method on union graphs;
3: remove infrequent vertices and edges;
4: output frequent change vertices with high enough confidence;
5: S1 ← all frequent initial edges in D sorted in DFS lexicographic

order;
6: for i← 1 to |S1| do
7: p← i-th edge from S1

8: p.D ← graphs which contain p;
9: p.A← graphs which contain antecedent of p;

10: Estart ← first i edges from S1

11: DGR_Subgraph_Mining(p,p.D,p.A,Estart);

ones may be used later for confidence computation. When comput-
ing frequencies, it takes labels, timestamps, and edge orientations
into account. Before moving to single-edge patterns, DGRMiner out-
puts frequent single-vertex patterns with high enough confidence.
To compute confidence, it needs to decode antecedents of the patterns
and then compute their support. After that, the algorithm takes fre-
quent initial edges and sort them according to the extended version
of the DFS lexicographic order of gSpan. An initial edge is such an edge
that represents a change or at least one of its vertices does.

Now DGRMiner calls recursively DGR_Subgraph_Mining proce-
dure for each initial edge and this procedure searches for patterns
growing from a given initial edge. DGR_Subgraph_Mining, described
in Algorithm 4, uses several arguments. s denotes the current pattern,
which is represented by its DFS code. In D and A we keep union
graphs in which current pattern and its antecedent can be found.
Finally, when growing patterns from the i-th initial edge, we keep
the first i initial edges in Estart. This last argument is used in function
min, which can be found in the first line of Algorithm 4. The purpose
of this function is to check whether the DFS code of the given pattern
is minimum, i.e. it was not found earlier when traversing the search
space. Because all patterns grow only from the initial edges S1, it is
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Algorithm 4 DGR_Subgraph_Mining(s,D,A,Estart)
1: if s 6= min(s, Estart) then
2: return;
3: enumerate s in each graph in D and count its children;
4: remove children of s which are infrequent;
5: enumerate antecedent of s in graphs given by A;
6: set s.A by graphs which contain antecedent of s;
7: con f ← confidence of s;
8: if con f ≥ con fmin then
9: output s;

10: sort remaining children in DFS lexicographic order;
11: for each child c do
12: DGR_Subgraph_Mining(c,c.D,s.A,Estart);

enough to check whether we cannot represent the current pattern
by a smaller DFS code which starts by one of the edges in Estart. If
we can find such a smaller code, then the pattern must have been
discovered earlier a thus we backtrack.

If the code is minimum, we continue by enumerating the pattern
in relevant graphs given by D and searching for its children candidates.
This step is similar to the one in gSpan. Also, all infrequent children
are removed. Before saving the current pattern, we need to compute
its confidence. As we described in Section 4.3, we are able to extract
the antecedent from the current pattern and then count its occurrences.
Set A represents a set of candidate graphs, in which we should search
for the antecedent occurrences. The actual set of graphs containing
the antecedent is then saved to s.A, where s.A ⊆ A, and it is used
as the A set for the pattern’s children.

Before recursive processing of the children of the current pat-
tern, we need to sort the children according to the extended version
of the DFS lexicographic order. Finally, set c.D was created when
the pattern s was enumerated and its children were counted.
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Table 4.1: Datasets used for experiments.

Dataset Dynamic graphs Snapshots
ENRON 1 895
RESOLUTION 103 2911
SYNTH 1 101
SYNTH 20 20 2020

4.5 Frequent Patterns Extracted from Dynamic Graph
Datasets

Experiments with DGRMiner were conducted on four graph datasets,
which we described in Section 2.3: ENRON, RESOLUTION, SYNTH,
and SYNTH20. All the experiments were performed by a C++ imple-
mentation of DGRMiner on a PC equipped with CPU Intel i5-4570,
3.2GHz, 16GB of main memory, and running 64-bit version of Win-
dows 8.1. For all experiments, we set con fmin = 0 and window size
for union graphs equal to 10.

4.5.1 ENRON

The first dataset used in experiments is the email correspondence net-
work ENRON. We discretized the timestamps to get a dynamic graph
with snapshots that corresponds to days. With one extra day for vertex
initialization we got 895 snapshots, as can be seen in Table 4.1.

Results on ENRON with σmin = 0.1 can be found in the first row
in Table 4.2. We decided to apply the time abstraction method for ver-
tices because they were only added in the first snapshot and never
changed. We found 187 frequent rules, none of which was a single-
vertex rule.

We also modified the dataset by deleting edges which were not
updated immediately the next day. This modified dataset is named
ENRON DEL in Table 4.2. The change allows us to capture patterns
which could not be captured only by edge additions. Examples of two
rules from this dataset are shown in Fig. 4.3.
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4. DGRMiner for Mining Rule Patterns in Dynamic Graphs

Figure 4.3: Examples of two rules from ENRON DEL. Vertex labels
VP and Emp stand for Vice President and Employee, respectively.

4.5.2 Resolution Proofs in Propositional Logic

We used the set of graphs representing resolutions in propositional
logic, RESOLUTION, as the second dataset. Recall that there were 19
different assignments in total and graphs from different assignments
generally contain labels from different sets. In order to find frequent
patterns, we restricted the dataset to only one assignment. Specifically,
we took the assignment with the largest number of solutions. This set
of graphs contained 103 dynamic graphs with 2911 snapshots in total,
see RESOLUTION dataset in Table 4.1. The initial snapshot of each
dynamic graph in an empty graph.

We conducted two experiments on this dataset, both with σmin =
0.05 as there were not many frequent patterns. One with no time
abstraction, and one with time abstraction of both vertices and edges.
From Table 4.2 we can see that the time abstraction helped us to find
ten times more frequent rules for the same value of the minimum
support. Furthermore, most of the rules were 1-vertex rules when
the abstraction was not applied. Such rules capture vertex additions,
deletions and relabellings without any context and may not be very
informative.
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4.5.3 Synthetic Datasets

We also tested our method on synthetic datasets SYNTH and SYNTH 20.
Each dynamic graph contained one initial snapshot and 100 snapshots
with the changes, see Table 4.1.

For SYNTH and σmin = 0.1, the time abstraction of both vertices
and edges was applied because there were almost no frequent patterns
without the abstraction. On the other hand, experiments on SYNTH 20
with 20 dynamic graphs did not require any time abstraction and
approximately 1600 frequent rules were found for the same value
of the minimum support, see Table 4.2. This suggests that the support
definition for a single dynamic graph is stricter than the one for a set
of graphs.

4.6 Discussion

We presented DGRMiner algorithm for frequent predictive graph
rule mining from both single dynamic graphs and sets of dynamic
graphs. When compared to other existing algorithms, DGRMiner is
able to capture various changes in dynamic graphs. Both directed and
undirected multiedges are allowed in dynamic graphs. DGRMiner
uses support and confidence as significance measures of the rules.
Such graph rules are useful for prediction in dynamic graphs, they
can be used as pattern features representing dynamic graphs or sim-
ply for gaining an insight into internal processes of the graphs. We
evaluated the algorithm on two real-world and two synthetic datasets.

DGRMiner was also recently extended with a new support and
confidence measures in [64]. These new types of measures allows
DGRMiner to count multiple non-overlapping occurrences of patterns
in a single snapshot and thus to find new patterns that would not have
high enough support according to the original measures.
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5 DGRMiner for Anomaly Detection and Ex-
planation

The previous two chapters were devoted to frequent patterns in dy-
namic graphs. Dynamic graphs can also exhibit anomalous behaviour
on various levels: from single vertices and edges through subgraphs
to whole graphs. Examples include malicious network attacks, frauds
in trading networks, opinion spam, and many others [7]. Anomalies,
however, do not have to be necessarily negative. For example, novel
patterns of behaviour in communication and interaction networks can
be considered as an improvement over past patterns.

Most of the existing approaches for anomaly detection in dynamic
graphs search for anomalous vertices, edges, or graph snapshots [7].
When searching for anomalies on a local level of the graph, single ver-
tices or edges without the structural context may not provide a satisfac-
tory explanation. Methods based on tensor decomposition [57, 83, 97]
are able to find groups of anomalous vertices and edges, but it is hard
to capture the evolution on a local level in detail. There are only few
methods for subgraph patterns and they typically impose various
restrictions on the form of the patterns. For example, the method pre-
sented in [46] assumes that the vertices are immutable. Other meth-
ods [9, 22] focus on communities, i.e. dense subgraphs, and track
changes in these communities.

In this chapter, we present a different method for anomaly detec-
tion in labelled dynamic graphs that is able to capture the evolution
on the subgraph level [104]. This method was built on DGRMiner
algorithm, which we described in Chapter 4. Specifically, the new al-
gorithm searches for patterns that are deviating from the frequent ones
and then uses the frequent patterns as an explanation for the anoma-
lous ones. Recall that the DGRMiner patterns are in the form of pre-
dictive rules expressing how a subgraph can be changed into another
subgraph by adding new vertices and edges, deleting specific vertices
and edges, or relabelling vertices and edges. Moreover, DGRMiner is
able to mine patterns from a single dynamic graph and also from a set
of dynamic graphs.
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P1 P1 

P2 P2 

P3 P3 
A1 A1 A2 A2 

t=1 t=2 t=3 t=4 t=5 t=6 

Frequent pattern: Anomaly pattern: 

Dynamic graph: 

Figure 5.1: An illustration of a dynamic graph with six snapshots,
a frequent pattern with occurrences P1, P2, P3, and an anomaly pattern
with occurrences A1, A2.

Fig. 5.1 illustrates the idea of anomaly detection by exploiting
the frequent predictive rules. Assume that we have found a frequent
pattern depicting a transformation of the green subgraph into the blue
one. This pattern has three occurrences in the input dynamic graph:
P1, P2 and P3. However, not all occurrences of the green subgraph,
i.e. the antecedent, are transformed into the blue subgraph. There are
situations in which it is transformed into the orange subgraph: A1 and
A2. We mark such a transformation as an anomaly pattern and use
the original frequent one as an explanation of it.

The remainder of this chapter is organised as follows. First, we
state the problem of anomaly detection. Then we describe the method
for single-vertex and multi-vertex anomalies. At the end, we present
examples of anomalies found in real-world dynamic graphs.

5.1 Anomaly Pattern Mining

This section describes the extension of DGRMiner for anomaly detec-
tion and explanation. It is assumed that the reader is already familiar
with the DGRMiner basics described in Chapter 4. A pseudocode
of modified DGRMiner is given in Algorithm 5. Lines with . anomaly
comment mark the extension for anomaly detection and they are de-
scribed in this section.

Having found the frequent patterns, we are interested in infrequent
patterns deviating from the frequent ones, i.e. patterns with the same
antecedent but a different consequent. The frequent patterns are then
used as an explanation of the anomaly patterns. For each frequent pat-
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5. DGRMiner for Anomaly Detection and Explanation

Algorithm 5 DGRMiner(DG)
1: convert the input dynamic graph(s) DG into the union-graph

representation D;
2: optional: apply a time abstraction method on union graphs;
3: output frequent change vertices with high enough confidence;
4: find simple anomaly patterns . anomaly
5: S1 ← all frequent initial edges in D sorted in DFS lexicographic

order;
6: for i← 1 to |S1| do
7: p← i-th edge from S1

8: p.D ← graphs which contain p;
9: p.A← graphs which contain antecedent of p;

10: Estart ← first i edges from S1

11: DGR_Subgraph_Mining(p,p.D,p.A,Estart);

Algorithm 6 DGR_Subgraph_Mining(s,D,A,Estart)
1: if s 6= min(s, Estart) then
2: return;
3: enumerate s in each graph in D and count its children;
4: remove children of s which are infrequent;
5: enumerate antecedent of s in graphs given by A, and enumerate

anomaly patterns from antecedent occurrences; . anomaly
6: set s.A by graphs which contain antecedent of s;
7: con f ← confidence of s;
8: if con f ≥ con fmin then
9: output s;

10: for each anomaly pattern a do . anomaly
11: if score(a)≥min_score then . anomaly
12: output a . anomaly
13: sort remaining children in DFS lexicographic order;
14: for each child c do
15: DGR_Subgraph_Mining(c,c.D,s.A,Estart);

tern being processed, we store its occurrences in the dynamic graph.
Specifically, we store sets of occupied vertex and edge IDs for each

77
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snapshot. When searching for anomaly patterns, we do not use ver-
tices and edges of these occurrences. This means that occurrences
of anomaly patterns and the explanatory frequent patterns are com-
pletely disjoint. This ensures that the anomaly patterns are indepen-
dent of the frequent ones.

In order to decide which deviating patterns are truly anomalies,
we use outlierness score defined as the opposite value of the confi-
dence, i.e. out = 1− con f . The idea is that the lower the confidence
is, the more deviating the pattern is. Given a minimum outlierness
score outmin, we output patterns for which out ≥ outmin. It is necessary
to check the outlierness of all potential anomaly patterns because not
all complementary patterns of the frequent ones have low enough con-
fidence. For example, the frequent pattern in Fig. 5.1 has con f = 3/4,
but the anomaly pattern has con f = 2/4. Such an anomaly pattern
would not be output in the case of outmin = 3/4.

The confidence of the pattern is computed from its support. We
describe how to discover the single-vertex anomalies and how to com-
pute their support in the following subsection. After this simple sce-
nario, we focus on more complex anomaly patterns, whose discovery
is a more involved process.

5.1.1 Single-vertex Anomalies

DGRMiner first looks for single-vertex anomaly patterns that are com-
plementary to the frequent ones. This is computed at line 4 of Algo-
rithm 5. Single-vertex frequent patterns take one of the following
forms: −A, A ⇒ B, +B. The antecedent of −A is A, which is also
the antecedent of patterns A (no change) and A ⇒ C for some C.
Thus, anomaly patterns, complementary to this frequent pattern, are
of the form A or A⇒ C. As for the frequent pattern A⇒ B, the possi-
ble anomaly patterns can be A (no change), −A, and A⇒ C for some
C 6= B. It is trivial to enumerate such patterns in the input dynamic
graph and compute their support because our union-graph represen-
tation allows us to obtain the antecedent labels of the vertices.

A different approach is required for frequent patterns of the +B
form. The antecedent of these patterns is an empty graph, whose
support is the number of snapshots. There is only one anomaly pattern
complementary to +B and we mark it by !B. The meaning of !B is that
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a vertex with label B should have been added. We use it because we
need to explicitly express that such an addition did not happen. Thus,
support of !B is computed from graph transitions where +B did not
occur.

5.1.2 Enumeration of Anomaly Patterns in General

Enumeration of anomaly patterns with regard to larger frequent pat-
terns follows the enumeration of antecedents, as is indicated at line 5
of Algorithm 6. Each such frequent pattern can contain multiple
changes. First, suppose there are some vertices and/or edges that do
not represent addition changes. Such elements are included in the an-
tecedent and their occurrences can be located in the input dynamic
graph. As in the case of single-vertex patterns, we can then simply
extract unambiguously the consequent part for each such occurrence.

The situation gets more complicated when there are also elements
representing addition changes in the frequent pattern. Again, each
such element is either found in the dynamic graph or we explicitly
say that it is missing. In order to capture the parts that are different
from the frequent pattern, we search for all maximal common sub-
graphs of the frequent pattern and the dynamic graph, given the fact
that the antecedent part is already mapped to the dynamic graph. Let
us illustrate this process on an example depicted in Fig. 5.2. Suppose
that we are searching for anomalies with regard to the frequent pat-
tern shown in the figure and we have already found the antecedent
in a union graph, also shown in the figure. The antecedent consists
of two vertices with label A. It is clear that the frequent pattern does
not occur in this union graph. By taking the maximal common sub-
graphs of those two graphs, we get three anomaly patterns that differ
in edge that is missing. The missing edges are depicted by dashed
lines with label !E.

If we find an occurrence of an anomaly pattern, we use that union
graph for support computation. As the frequent patterns and anomaly
patterns have to be completely disjoint, there is only one scenario that
has to be treated in a different way. If we are searching for anomalies
with regard to a frequent pattern whose all elements denote addition
changes, i.e. the antecedent is an empty graph, care must be taken
when the support is computed. Specifically, if a union graph con-
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Figure 5.2: An example of anomaly pattern enumeration.

Figure 5.3: An example of anomaly pattern enumeration with regard
to a frequent pattern with an empty antecedent.

tains the whole addition frequent pattern but not its part, then this
union graph cannot contain the anomaly pattern with only explicit
non-additions. An example with such a scenario is depicted in Fig. 5.3.
The first input union graph is an empty graph and the only anomaly
pattern with regard to the frequent pattern is the one with only explicit
non-additions. The second input union graph contains an occurrence
of the frequent pattern and it does not contain any part of the pat-
tern besides. In this case, the only possible anomaly pattern could be
with only explicit non-additions, but this is the special case described
earlier and we do not allow such a pattern in such situations. The third
input union graph contains a single vertex which is not a part of a fre-
quent pattern occurrence and it can be used as a part of two different
anomaly patterns.
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5.2 Anomaly Detection Experiments

In this section we present results of experiments on two real-world
datasets. Unfortunately, there are not many attributed dynamic graph
datasets available that could be used for the experiments. The experi-
ments were conducted by a C++ implementation on a PC equipped
with CPU Intel i5-4570, 3.2GHz, 16GB of main memory, and running
64-bit version of Windows 10. For all experiments, we set con fmin = 0.6
and outmint = 0.8.

5.2.1 ENRON

ENRON email correspondence was again used as one of the datasets
for our experiments. As in the previous chapter, the dynamic graph
had 895 snapshots. However, due to more interesting results in the pre-
vious chapter, we implicitly marked all disappeared edges as deleted
for these experiments, i.e. as in ENRON DEL dataset in the previous
chapter. We also prepared a different dataset, ENRON UNI, where
employee IDs were used as the vertex labels. This ensures that all
patterns apply to specific employees and not to arbitrary employees
of the given ranks.

As for the ENRON dataset, we set minimum support to 0.1 and
performed the time abstraction method on vertices. The time abstrac-
tion of vertices allows us to ignore time connected to vertices. We have
found 44 anomaly patterns, see Table 5.1. Two anomaly patterns are
depicted in Fig. 5.4a. In the first example, we can see the following
scenario. If an ordinary employee (Emp) sends an outlier email to a vice
president (VP) and this vice president sends an outlier email to another
VP, then the employee typically sends such an email to the first VP
again the next day. This is captured by the explanation frequent pattern.
However, it may occasionally happen that the VP sends the email in-
stead of the employee as is depicted by the anomaly pattern. In the sec-
ond example, we can see that if a VP sends such three emails, they do
not send the emails again the next day. If they do, it is a rare case.

In the case of the second dataset, ENRON UNI, we set minimum
support to only 0.02 because patterns connected to specific groups
of people are less frequent. 346 anomaly patterns were found and two
examples are shown in Fig. 5.4b. The difference from the previous
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Table 5.1: Results of experiments. Running time is averaged over five
runs, con fmin = 0.6 and outmin = 0.8.

Dataset σmin
Time abstraction Anomaly Running

Vertices All patterns time (sec)
ENRON 0.10 X × 44 290.9
ENRON UNI 0.02 X × 346 248.9
RESOLUTION 0.05 × × 76 0.4
RESOLUTION 0.05 X X 198 4.0

cases is that the patterns are related to specific people. For example,
the first anomaly pattern applies exactly to people with IDs 58, 63,
and 146. Such patterns can be used to discover anomalous commu-
nication patterns which may represent changes in the current state.
Similarly, anomalous communication patterns in computer networks
may represent a security threat.

5.2.2 Resolution Proofs in Propositional Logic

We also used RESOLUTION dataset, i.e. a set of graphs represent-
ing resolution proofs in propositional logic. The dataset was again
restricted to the assignment with the largest number of solutions so
there were 103 dynamic graphs with 2911 snapshots in total.

For our experiments on this dataset, we set minimum support
to 0.05. First, we did not use time abstraction at all and left the times-
tamps of vertices and edges as they were. This setting yielded 76
anomaly patterns, out of which 75 were single-vertex patterns. The re-
maining one described a situation in which an edge should had been
added but it was not. Therefore, we repeated the experiment with time
abstraction performed both on vertices and edges and got 198 anomaly
patterns. Two examples are shown in Fig. 5.4c. The first one captures
the case where students did not continue with an addition of an edge
between {¬b} and {d} but replaced label {a, b, d}with {b, a, d}, which
is completely unnecessary. The second example shows an odd situa-
tion in which students did not add the final edge pointing to the empty
clause (depicted by a square) and they deleted the existing edge in-
stead. Although the frequent pattern in this second example has
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(a) Examples of two anomaly patterns in ENRON dataset.

(b) Examples of two anomaly patterns in ENRON UNI dataset.

(c) Examples of two anomaly patterns in RESOLUTION dataset.

Figure 5.4: Examples of anomaly patterns from experiments.
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con f = 1.0, we discovered this anomaly pattern because both of them
can be found in certain solutions.

5.3 Discussion

In this chapter, we presented an extension of DGRMiner algorithm
for anomaly detection and explanation in dynamic graphs. The method
is able to capture anomaly patterns on the subgraph level in the form
of predictive rules. These rules are able to capture various changes,
such as addition and deletion of vertices and edges, and relabelling
of vertices and edges.

For each anomaly pattern, one or more frequent patterns are out-
put as an explanation. This is because the computation of DGRMiner
is driven by frequent pattern mining and anomaly patterns are mined
with regard to these frequent patterns. Since multiple frequent pat-
terns can share the same antecedent, it is possible to discover one
anomaly pattern several times. Such an anomaly pattern thus can be
explained by multiple frequent patterns.

Even though the enumeration of a pattern takes exponential run-
ning time in the worst case, DGRMiner can be efficient on real-world
dynamic graphs as is shown in Table 5.1. This is mainly caused by di-
verse vertex and edge labels that significantly reduce the search space
when subgraphs are being enumerated. On the contrary, small dense
subgraphs with homogeneous labels would require the exponential
running time for subgraph enumeration.
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6 WalDis for Discriminative Pattern Mining

We have seen in previous chapters that dynamic graphs change in var-
ious ways and these changes may be of high importance in many
scenarios. There can be additions and deletions of vertices and edges.
Moreover, labels or attributes of vertices and edges can change. We
have already presented several algorithms for frequent pattern mining.
These patterns were made of frequently occurring subgraphs. Now
we take a step aside and assess the context of patterns, i.e. what are
the scenarios in which particular events happen. More specifically,
given two different sets of graph events, we are interested in finding
discriminative patterns that appear frequently in the local neighbour-
hood of events of one set but not the other.

For example, let us consider a phone call network between cus-
tomers of a telecommunication company. A change of a vertex attribute
may represent a change of a rate plan, or worse, a change of the op-
erator. Naturally, such a company is interested in predicting these
kinds of events, and possibly in being able to explain them. An ex-
ample of such a graph is shown in Fig. 6.1. In this example, the edge
attributes are denoted by l and they represent normalized durations
of the phone calls. Edge timestamps are denoted by t. Furthermore, let
us assume that there is a set of positive events representing changes
from rate plan B to a more expensive plan A and a set of negative
events representing changes to a cheaper plan C. In our example, pos-
itive events occur at vertices v1 and v2, and negative events at v3 and
v4. The goal is to find graph patterns occurring in the neighbourhood
of the positive events and not in the neighbourhood of the negative
events. An example of such a pattern is depicted in the same picture
on the right. In order to distinguish the pattern from the input graph,
we used pv and pe for IDs of vertices and edges, respectively. This
pattern occurs in the neighbourhood of the vertices v1 and v2 and
matches with edges e1, e2, e3 in case of v1, and e4 and e5 in case of v2.
This is illustrated by dashed edges. As an inexact graph matching
is used, the pattern is actually represented by a union graph taken
over several similar graphs. This is illustrated by lists of attributes
and timestamps at each pattern edge. Furthermore, the timestamps
of the pattern edges are depicted as values relative to the timestamps
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Figure 6.1: An example of a dynamic graph and a discriminative pat-
tern with respect to positive and negative events. Parameter l denotes
labels or attributes, and parameter t timestamps.

of the corresponding events in order to highlight their mutual similar-
ity. More specifically, the event at vertex pv1 has a relative timestamp
t = 0 and all other timestamps in the pattern are relative to this event.
Inexact matching also means that not all edges have to be present
in the neighbourhood of the events. This is the case of vertex v2 and
its neighbourhood in our example.

Chapter 2 presented several algorithms for discriminative pattern
mining in both static and dynamic graphs. Existing approaches [41, 54,
109, 122] typically focus on patterns that distinguish whole graphs and
not local events, i.e. the types of events we described above. Moreover,
pattern mining methods usually assume discretized timestamps and
the patterns have to match exactly in the input graphs [55, 69, 106].

We present WalDis algorithm [105] for mining discriminative pat-
terns on a local level of dynamic attributed graphs in this chapter.
It uses a random walk-based approach to mine patterns matching
inexactly from the perspective of attributes and also timestamps. This
also means that it does not require any discretization of timestamps
to be able to find patterns. Moreover, by utilizing sampling techniques,
the algorithm does not have to traverse the whole search space.

6.1 Preliminaries

Before describing WalDis algorithm for mining discriminative pat-
terns, we state necessary definitions. WalDis uses a simpler representa-
tion of a dynamic graph than DGRMiner does. We already mentioned
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such a representation, consisting only of a single static graph extended
by the timestamp functions, in Section 2.2. In order to distinguish this
representation from the dynamic graph defined earlier, we will call
such a graph a temporal multigraph in this chapter.

A temporal multigraph is a 6-tuple G = (VG, EG, fG, lG,V , lG,E, tG),
where VG is a set of vertices, EG is a set of edges, fG : EG → VG ×VG is
a map assigning a pair of vertices (u, v), u 6= v, to every edge, lG,V and
lG,E are two maps assigning attribute vectors to vertices and edges,
respectively, and tG : EG → R is a function assigning timestamps rep-
resented as real numbers to edges. Unless stated otherwise, the term
graph will denote a temporal multigraph in the following text. Re-
call the definitions of subgraph isomorphism and label-preserving
isomorphism from Section 2.1. In this chapter, the label-preserving
isomorphism preserves timestamps as well, i.e. tG(e) = tG′(ψ(e))
for all e ∈ EG, and we use sets of attributes instead of simple labels.
Furthermore, in order to distinguish different functions, we will use
subscripts. For example, ϕG,H will denote function ϕ : G → H.

A vertex event in a graph G is a pair (v, t), where v ∈ VG and t ∈ R.
An edge event in a graph G is a pair (e, t), where e ∈ EG and t ∈ R.
For the sake of brevity, the following definitions assume vertex events
but they can be analogically stated for edge events. Let P and N be
two disjoint sets of vertex events. P denotes a set of positive events
and N a set of negative events. For example, P = {(v1, 20), (v2, 40)}
and N = {(v3, 30), (v4, 20)} in Fig. 6.1. As the local neighbourhoods
of the events may be seen as independent graphs, we call these neigh-
bourhoods instances1.

Let G = {G1, G2, ..., Gn} be a set of graphs. A union graph of G is
a graph G∪ whose vertices and edges correspond to a union of vertices
and edges of G, respectively.

A positive pattern with respect to a non-empty vertex event set
P = {(v1, t1), (v2, t2), ..., (vn, tn)} and a graph G is a non-empty set
of graphs GP = {G1, G2, ..., Gn} such that its union graph GP∪ is con-
nected, and for all 1 ≤ i, j ≤ n the following conditions hold: vi ∈ VGi
and Gi v∗ G and ϕGi,GP∪(vi) = ϕGj,GP∪(vj) and ∀e ∈ EGi : tGi(e) ≤
ti. In other words, there is a graph for each vertex event that con-
tains the vertex and all event vertices are mapped to the same vertex

1. Technically speaking, each instance is a copy of the input graph.
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in the union graph. Timestamps of pattern graph edges are also less
than or equal to the timestamp of the corresponding event. For exam-
ple, the discriminative pattern in Fig. 6.1 is presented by a union graph
with edges pe1, pe2, and pe3. The mappings are ϕ(v1) = ϕ(v2) = pv1,
ψ(e1) = ψ(e4) = pe1, etc.

Note that the pattern graphs do not have to be disjunctive, i.e. they
may overlap in the original input graph. To deal with this in an im-
plementation, we also use the IDs of the pattern graphs, i.e. instances,
in order to fully distinguish the edges.

In order to define discriminative patterns, it is necessary to de-
fine a relationship between the pattern and the negative event set
N. For a graph G, a non-empty negative event set N = {(vn+1, tn+1),
(vn+2, tn+2), ..., (vn+m, tn+m)}, and a pattern GP, we define negative pat-
tern as GN = {Gn+1, Gn+2, ..., Gn+m}, where vi ∈ VGi and Gi v∗ G and
Gi ⊆ GP∪ and ϕG1,GP∪(v1) = ϕGi,GP∪(vi) and ∀e ∈ EGi : tGi(e) ≤ ti
for all n + 1 ≤ i ≤ n + m. Thus, a negative pattern is always linked
to a positive pattern and all its graphs must be subgraph isomorphic
to the union graph of the positive pattern. Moreover, the event vertices
must be mapped to the same union graph vertex.

The quality of a pattern is assessed by a fitness function F. Before
defining F, we need to define several other functions. First, we employ
Kronecker delta function in the calculations. To simplify notation, we
put δei,ej = 1 if ψGi,GP∪(ei) = ψGj,GP∪(ej) and 0 otherwise. Thus, this
function checks whether two edges are mapped to the same edge
in the union graph of the pattern. In Fig. 6.1, δe1,e4 = 1, δe1,e5 = 0.

Next, we need to define function r(e, tk) that influences the likeli-
hood of selecting edge e in a random-walk starting from the vertex
of event (vk, tk). It is computed as r(e, tk) = e−x/σ1 for x ≥ 0 and 0
otherwise, where σ1 is a time unit parameter and x = tk − tG(e). Thus,
r(e, tk) = 1 for edges having the same timestamp as the related event.
For the older edges, the similarity drops exponentially. For the newer
edges, the probability is zero.

Another function that is needed for the fitness is the similarity
function of two edges from instances i and j and we define it as follows:

s(ei, ej) =
2 ∗ att_sim(ei, ej) ∗ time_sim(ei, ej)

att_sim(ei, ej) + time_sim(ei, ej)
(6.1)
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Function s(ej, ei) expresses the similarity of selecting edges ej and
ei together, i.e. mapping them to the same pattern edge. It is defined
as the harmonic average of attribute similarity and timestamp similarity
of those edges. Harmonic mean is used because its value is high only
if both components are high enough. Attribute similarity att_sim is
computed from the mixed Euclidean distance measure on attribute
vectors, in which the difference between categorical values is 0 or 1
depending on whether they are equal or not. Attribute similarity is
also bounded from below by value 0.1 so that different edges may
be selected together by inexact matching. Time similarity is defined
as time_sim(ei, ej) = e−y/σ2 , where σ2 is another time unit parame-
ter and y = |(ti − tG(ei))− (tj − tG(ej))|. Thus, time_sim(ei, ej) = 1
for edges having the same time distance from the corresponding events
and this similarity exponentially drops for edges having different
time distance from the events. It is assumed that attribute values
are normalized so that att_sim and time_sim are on the same scale.
From the definitions, we can see that s(ej, ei) = s(ei, ej). Continuing
our example from Fig. 6.1, let us set σ1 = 5 and σ2 = 2. Then r(e1, t1) =

e−(20−16)/5 ≈ 0.45, r(e4, t2) = e−(40−37)/5 ≈ 0.55, att_sim(e1, e4) = 0.9,
time_sim(e1, e4) = e−|4−3|/2 ≈ 0.61, s(e1, e4) = s(e4, e1) ≈ 0.73.

Finally, let us define fitness F by using two functions F+ and F−:

F+(GP) =
1

1
2 n(n− 1)|EGP∪ |

∑
1≤i<j≤n

∑
ei∈Ei,ej∈Ej

δei,ej s(ei, ej) (6.2)

F−(GP,GN) =
1

nm|EGP∪ |
∑

1≤i≤n<j≤n+m
∑

ei∈Ei,ej∈Ej

δei,ej s(ei, ej) (6.3)

F(GP) = F+(GP)−max
GN

F−(GP,GN) (6.4)

Function F+ sums the similarities of all pairs of edges from pos-
itive patterns that are mapped to the same edge in the union graph.
Function F− is different in the fact that one edge of the pair must be
from a positive pattern and the second one from a negative pattern.
The higher the value of F+, the more similar the graphs of GP are.
The higher the value of F−, the more similar the negative pattern
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graphs to positive pattern graphs are. Both of these functions are nor-
malized by the number of possible edge pairs. The overall fitness F
of pattern GP is given by F+ and penalized by F−. For a given pat-
tern GP, F selects GN that maximizes the negative fitness F−. Thus,
a high value of F ensures that the pattern does not occur in the neigh-
bourhood of the negative events. We say that a positive pattern GP is
a discriminative pattern if F(GP) > 0.

6.2 WalDis Algorithm

This section describes WalDis algorithm used for mining discrim-
inative patterns. The algorithm assumes a set of positive and a set
of negative events on the input. It consists of two main phases as stated
in Algorithm 7. In the first step, the algorithm explores the local neigh-
bourhoods of the events by using a random walk technique and com-
putes similarities of edges from these neighbourhoods. These random
walks serve as a sampling method so that the algorithm does not
have to compute similarities for all edge pairs. In the second step, it
utilizes the computed similarities to extract a discriminative pattern
by a greedy method. By running the algorithm repeatedly on different
samples of positive and negative events, it is possible to find multiple
patterns.

The first phase utilizes random walks in order to compute the edge
similarities. The walks run from all events in a parallel fashion, al-
though not entirely independently. Briefly, each step of a random walk
is performed in one instance first and then in all other instances ac-
cording to that first step. These dependent steps go through edges that
are similar to the edge walked first. Thus, the algorithm aims to walk
similar edges simultaneously. Moreover, each edge can be traversed
by one walk at most once in a given instance. A pseudocode of this
process is given in Algorithm 8.

The second phase of the algorithm uses similarities computed
in the previous phase in order to extract a pattern from the temporal
graph. The idea is to create a pattern from edges that appear in positive
instances and not in the negative instances. The edges are selected
by a greedy method stated as Algorithm 9.

The following two subsections describe both phases in detail.
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Algorithm 7 WalDis(G, P, N, size_of_pattern_graph)
1: similarities← compute_similarities(G, P, N)
2: positive_instances← prepare_positive_instances(G, P)
3: negative_instances← prepare_negative_instances(G, N)
4: pattern← construct_pattern_greedy(G, similarities,

positive_instances,
negative_instances,
size_of_pattern_graph)

5: return pattern

6.2.1 Computing Statistics by Random Walks

The first step of WalDis computes similarities according to Algorithm 8.
For a given number of random walks, see line 1, it performs the fol-
lowing steps to obtain the similarities.

At the beginning, see line 2 and 3, it initializes live_instances set
with indices of used instances and randomly2 selects event vertices that
are used as starting points for random walks. This is necessary for edge
events as there are two vertices that can be used as starting points.
The algorithm proceeds with the while loop on line 4, in which one
step of a walk is performed in each instance. To assign a higher score
to edges closer to events, the algorithm uses random-walk restarts
with default probability 0.1, i.e. there is a 10% chance at each step that
the algorithm will start a new random walk from the events. This is
controlled by should_continue function, which also checks that there
are at least two positive instances in live_instances.

Each step across all instances is driven by an edge e1, called pri-
mary edge, which is selected from a randomly chosen positive instance
on lines 5 and 6. This choice is limited to positive instances because
we want edges that are in the positive instances and possibly not
in the negative ones. More precisely, a live positive instance is ran-
domly selected first and then the algorithm selects an edge adjacent
to the instance’s current vertex by using function r(e, t), i.e. the prob-
abilities of edge selection are proportional to values of exponential
function r(e, t). Time unit parameter σ1 in r(e, t) helps the algorithm

2. If not specified, uniform distribution is used for random selection.
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Algorithm 8 compute_similarities(G, P, N)
1: for i← 1 to number_of_random_walks do
2: live_instances← {1, 2, ..., n + m} ;
3: current_vertices← randomly select starting vertices from P

and N;
4: while should_continue(live_instances, restart_prob=0.1) do
5: i1← randomly select one element from live_instances,

but only from values 1..n;
6: e1← select_prim_edge(G, current_vertices[i1])
7: if e1 is NULL then
8: break;
9: for i2 in live_instances \{i1} do

10: e2 ← select_sec_edge(G, e1, current_vertices[i2])
11: if e2 is NULL then
12: live_instances← live_instances \{i2};
13: else
14: se1,e2 ← se1,e2 + s(e1, e2);

update the current_vertices in live_instances;
15: return all sei,ej values

handle edges appearing in minutes, days, etc. The exponential func-
tion was chosen as it decreases rapidly for older edges but does not
equal to zero.

Furthermore, the algorithm can choose to abort the selection pro-
cess with a small probability. This allows the algorithm to avoid the se-
lection if there are only edges having small probabilities to be chosen.

The algorithm continues by selecting a secondary edge e2 in each
of the remaining instances, see lines 9 and 10. The probability of se-
lecting edge candidate ek as the secondary edge is proportional to sim-
ilarity s(e1, ek) according to Eq. 6.1. Time unit parameter σ2 in s(e1, ek)
also serves as a multiplication factor that helps us deal with different
time units on edges. The algorithm again adds a small probability
to abort the selection so it can avoid edges dissimilar from the primary
one.

If a secondary edge was selected successfully, we add the similarity
of the couple, represented by {(i1, e1), (i2, e2)}, to the aggregated statis-
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tics on line 14. We sum the similarities so that edges closer to events
have higher chance of being selected into the pattern. Instance IDs are
necessary as one edge can appear in several overlapping instances. It
is enough to store only se1,e2 as se2,e1 is identical.

Random walks technique described above allows us to explore
only a smaller set of edge combinations, i.e. combinations of edges
that are rather similar to each other. If we were to consider all combi-
nations of edges by using an exhaustive search, we would have to deal
with an exponential number of combinations.

6.2.2 Pattern Construction by a Greedy Approach

The second phase of the algorithm uses the aggregated similarities
computed in the first phase in order to extract a pattern from the tem-
poral graph. The idea is to create a pattern from edges that appear
in positive instances and not in the negative instances. Each pattern
edge is represented by a set of original edges, but there is at most one
edge from each positive instance for such a pattern edge. Edges that
are similar to each other and were walked simultaneously in the first
phase are put together into a set by the algorithm. This process, stated
as Algorithm 9, is performed in a greedy fashion as follows.

Until the desired number of pattern edges is extracted, see line 3,
repeat the following procedure for finding one pattern edge. First,
extract a pair of edges from positive instances with the highest score,
i.e. aggregated similarity, such that none of these two edges has already
been chosen and assign this score to both edges. This happens on line 4
of the algorithm. Now, by running lines 5 and 6, select the next edge
in such a way that it has the highest score with one of the already
selected edges from pattern_edge set and add this score to this newly
added edge. The restriction is that this edge has not been selected
in the whole pattern construction process yet and also this instance
has not been used for this pattern edge. This continues until we occupy
all instances or run out of usable edges.

The second part of the for loop, starting on line 7, searches for edges
in negative instances. As the main goal of WalDis is to find the patterns
occurring in the positive instances and not in the negative ones, we
have to ensure that there are no edges in the negative instances similar
to the ones taken from the positive instances. Therefore, the idea is
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Algorithm 9 construct_pattern_greedy(G, similarities, posi-
tive_instances, negative_instances, size_of_pattern_graph)

1: pattern_edges← ∅
2: neg_pattern_edges← ∅
3: for i← 1 to size_of_pattern_graph do
4: pattern_edge← select_nth_best_pair_of_edges(G,

similarities, positive_instances,
pattern_edge);

5: while |pattern_edge| < |positive_instances| do
6: pattern_edge← pattern_edge ∪

select_best_edge(G, similarities,
positive_instances, pattern_edge);

7: neg_pattern_edge← ∅
8: while |neg_pattern_edge| < |negative_instances| do
9: neg_pattern_edge← neg_pattern_edge ∪

select_best_edge(G, similarities,
negative_instances,
pattern_edge);

10: pattern_edges← pattern_edges ∪ pattern_edge
11: neg_pattern_edges← neg_pattern_edges ∪

neg_pattern_edge
12: pattern_edges← assess_pattern_edges(pattern_edges,

neg_pattern_edges)
13: pattern_edges← reduce_pattern_edges(pattern_edges)
14: return pattern_edges

to find the most similar edges from negative instances, and if their sim-
ilarities are low, we have an evidence that the selected edges from pos-
itive instances are appropriate. Practically, the pattern edge is assessed
by the sum of the scores from positive instances from which the sum
of the scores from negative instances is subtracted. The algorithm
again selects at most one edge from each negative instance by running
lines 8 and 9, and it selects the highest-scoring edges, again, with re-
spect to the already selected positive edges. That means that it does
not consider already selected negative edges.
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At the end of the for loop, the pattern edge is tied with a set
of edges from positive instances and a set of edges from negative
instances. This process repeats until the desired number of pattern
edges is created or until the algorithm runs out of usable edges. Then,
assess_pattern_edges function is used on line 12 to assess each pattern
edge. For each pattern edge, it subtracts the average negative score
from each positive score. If we compare the above description to defi-
nitions of F+ and F− used for definition of F, see Eq. 6.2, 6.3, and 6.4,
we can see that our computation is simpler. The algorithm greedily
selects only a subset of similarities into the final score in order not
to perform quadratic number of summations.

In the above description of the algorithm, we stated that the algo-
rithm may not find an edge in each positive instance for each pattern
edge. If we represent the selected edges as a matrix with one row
for each pattern edge and one column for each instance, there may be
some empty cells in such a matrix. In order to get a compact pattern, i.e
all pattern edges cover the same set of instances, we remove some rows
or columns so that there are no empty cells any more. For this prob-
lem, we use a greedy algorithm for weighted set cover problem [118]
to remove rows and columns in such a way that the final pattern score
is as high as possible. After this reduction on line 13, all instances that
remain embedded in the pattern contain the same edges, deviating only
in the attribute values and timestamps. The reduced pattern is then
returned as a result.

6.3 Patterns Extracted by WalDis

WalDis was experimentally evaluated by a Python implementation
on three real-world graph datasets from Chapter 2.3: DBLP, TELCO,
and ENRON. For each dataset, we experimented with a set of 5 dif-
ferent parameter settings. The parameter settings and the results can
be found in Table 6.1. Set size denotes the number of positive and
negative events. Probability of edge non-selection was set to 0.05 in all
experiments. For each setting, we executed 10 runs on randomly se-
lected sets of events and the table shows average results over those 10
runs. Each experiment run was performed in the following way. A set
of N positive and a set of N negative events were chosen as a train-
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ing dataset, from which we extracted a discriminative pattern. Then
different N positive and N negative events were chosen as a test set
on which we assessed the extracted pattern.

The assessment on a test dataset proceeds as follows for a given
pattern and a given test event. Select one instance that is embedded
in the pattern. Perform several random walks (10 in our experiments)
without restarts on this pattern instance while walking simultaneously
in the tested instance. We allow to continue from any vertex that was
already visited and thus the result is technically not a walk, but a sub-
graph. When compared to the first phase of WalDis, the pattern graph
now acts as the primary instance and the tested instance as the sec-
ondary one. The score of this pattern instance is given by the sum
of similarities of the simultaneously-walked edges divided by the num-
ber of all random-walk steps. If the random walk cannot continue
in the tested instance, it continues only in the pattern instance and
keeps counting the walks without similarities. This enables the algo-
rithm to lower the score for cases when there are no edges in the tested
instance that could be matched with the pattern edges. Pattern instance
gets then the highest score across all random walks. Such a score
is computed for each pattern instance and the average is returned
as the final matching score. By averaging the pattern scores on the set
of positive events, we get a final positive score. In the same way, we
compute a negative score by assessing the patterns on the set of negative
events. Table 6.1 shows averages over 10 positive (resp. negative) score
values obtained from 10 independent runs. The higher the positive
score with regard to the negative score is, the more discriminative
the pattern is.

Individual datasets and corresponding results are described in the
following paragraphs. Notice that we used rather small sets of input
events. One reason is that in some cases there are at most hundreds
of events in total. Another reason is that graph patterns in cases like
this are not very frequent, i.e. their support is rather low.

6.3.1 DBLP

The first graph used for experiments was graph created from DBLP
dataset. In the experiment, we randomly selected 30 edges represent-
ing collaboration on an icml paper as positive events and 30 edges
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representing kdd collaboration as negative events. Time unit param-
eter for primary edge selection, i.e. σ1, was either one or two years
and for secondary edge selection, i.e. σ2, half a year or one year. One
of the extracted patterns is depicted in Fig. 6.2. Specifically, Fig. 6.2a
visualizes the pattern graph with the event edge, which has label
icml in the dataset. The numbers on edges and vertices represent IDs.
The characteristics of the pattern edges are shown in Fig. 6.2b. The first
graph shows the distributions of labels across all pattern edges. For ex-
ample, pattern edge with ID 1 has an icml label in 13 positive instances,
nips as well as pakdd in 2 instances and pkdd in 1 instance. Similarly
for the other two pattern edges. The pattern edges mostly represent
collaboration on icml or nips papers. Obviously, the pattern does not
cover the remaining 12 instances from the positive set. The second
graph shows the distributions of the relative timestamps with respect
to the the timestamps of the events. We can see that most of the 18
instance edges of all three pattern edges have a timestamp older by one
year in comparison to the timestamps of the event edges. Thus, the icml
and nips collaborations typically happen one year before the event, but
sometimes also two or more years. Table 6.1 shows that patterns found
in this dataset have typically positive score twice as high as the nega-
tive score and are clearly discriminative.

6.3.2 Phone Call Network

The second experiment was performed on phone call network dataset
TELCO. Recall that the graph was created from phone calls of two con-
secutive months. In this experiment, we randomly picked 10 vertices
representing customers who churned, i.e. left the operator, in the lat-
ter month and the same number of customers who did not churn.
The vertices representing the non-churning customers were used
as positive events with randomly assigned timestamps from the sec-
ond month. The negative events were created from customers who
churned with timestamps of the churn dates. Time unit for primary
edge selection was 10 or 20 days and for the secondary edge selection 1
or 2 days. One of the patterns is depicted in Fig. 6.3. The interpretation
of the graphs is the same as in the case of DBLP dataset, with the excep-
tion of the duration attribute distributions that are visualized by a dot
plot as it is a numeric attribute. An evaluation on a test set of the same

98



6. WalDis for Discriminative Pattern Mining

(a) Pattern graph.
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(b) Pattern characteristics.

Figure 6.2: A pattern found by WalDis in DBLP network dataset.

size shows that the pattern match slightly better in positive instances
than in negative instances. Further investigation revealed that due
to high density of edges it is probably not easy to find patterns that
are in the neighbourhood of the positive but not negative events.

6.3.3 ENRON

Email correspondence of ENRON dataset was used as the last graph
for experiments. 20 edges labelled as “California bankruptcy” were
chosen as positive edge events and 20 edges labelled as “California
business” as negative events. Time unit for primary edge selection
was 2 or 4 days and for secondary edge selection 12 or 48 hours. Again,
one of the pattern is shown in Fig. 6.4. The first pattern edge typi-
cally covers emails about California legislature (Calif_legis label) and
the second one emails about daily business issues such as meetings
(Daily_business label). Unfortunately, a lot of edges covered by the pat-
tern are labelled as Outlier and this is probably inevitable as there are
approximately 67% of all edges labelled as Outlier. Table 6.1 shows that
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(a) Pattern graph.

●

●

●●

●●●

●●●

●
●

●●●

●

●●

●

●

●

●

●●

●●
●●

●●

●

●

●●
●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

0.2

0.4

0.6

0.8

1 2 3 4 5

Pattern edge ID

V
al

ue
 d

is
tr

ib
ut

io
n

Distribution of attributes

●●●●●●●●●
●

●●●●●

●●●

●

●

●●●●●●●●●●

●

●●●●●

●●
●
●

●●●●●
●●
●

●

●

0.0

2.5

5.0

7.5

10.0

12.5

1 2 3 4 5

Pattern edge ID

D
ay

s 
ag

o

Distribution of timestamps

(b) Pattern characteristics.

Figure 6.3: A pattern found by WalDis in TELCO network dataset.

(a) Pattern graph.
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Figure 6.4: A pattern found by WalDis in ENRON network dataset.
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the positive scores are significantly higher than the negative scores,
although not as much as for DBLP dataset.

6.4 WalDis Based on a Genetic Algorithm

We showed a discriminative pattern mining algorithm using a greedy
approach in previous paragraphs. However, the greedy approach
chooses edges from positive instances without considering the neg-
ative instances. We thus created another version of WalDis that is
based on a genetic algorithm, which controls the selection process
with respect to negative instances. This new version, called EWalDis,
has not been published elsewhere yet and it is described in the rest
of this section. Results of experiments are provided in the following
section.

EWalDis has the same general structure as WalDis, see Algorithm 7,
and the first phase is very similar to the one described in Algorithm 8.
However, there some differences because of the genetic algorithm
used in the second phase. First, the random selection of the primary
edge is based on a uniform distribution and it is not driven by function
r(e, t). We use this simpler selection process because the full responsi-
bility for pattern construction is left to the pattern construction phase.
Second, instead of adding similarity s(e1, e2) to se1,e2 , see line 14 in Al-
gorithm 8, we assign the value of 1

2(r(e1, ti1)s(e1, e2)+ r(e2, ti2)s(e2, e1))
into se1,e2 . Thus, the final similarity se1,e2 is computed by weighting
the original similarity s(e1, e2) by r(e1, ti1) and r(e2, ti2). This ensures
that value se1,e2 is high if edges e1 and e2 are similar to each other and
their timestamps are close to the timestamps of corresponding events.
Values sei,ej are used to compute fitness in the genetic algorithm, which
we describe next.

The second step of EWalDis, stated as Algorithm 10, completely
replaces the second step used by WalDis. It extracts a pattern by using
a genetic algorithm and the similarities sei,ej computed in the first step.
Throughout this section we use examples from Fig. 6.5 to explain par-
ticular concepts. In this figure, there are two positive and two negative
instances, and also two edges were already selected for the pattern:
e11 and e21.
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Algorithm 10 construct_pattern_genetic(G, similarities, posi-
tive_instances, negative_instances, size_of_pattern_graph)

1: pattern_edges← ∅
2: for i← 1 to size_of_pattern_graph do
3: pos_p← init_edges(G, positive_instances, pattern_edges);
4: for j← 1 to number_of_epochs do
5: pos_p← pos_p ∪ crossover(pos_p);
6: pos_p← pos_p ∪mutation(pos_p);
7: neg_p← init_neg_edges(G, negative_instances, pos_p);
8: for k← 1 to number_of_subepochs do
9: neg_p← neg_p ∪ crossover(neg_p);

10: neg_p← neg_p ∪mutation(neg_p);
11: neg_p← evaluate_and_select_negative(pos_p,

neg_p, similarities);
12: pos_p← evaluate_and_select_positive(pos_p,

neg_p, similarities);
13: pattern_edges← pattern_edges ∪ best_individual(pos_p)
14: return pattern_edges

We defined the positive pattern as a set of graphs in Section 6.1.
However, the pattern can be seen as lists of edges, where each list
contains edges from positive instances that are mapped to the same
edge of the pattern’s union graph. In each list there is at most one edge
from each positive instance, which allows us to perform inexact match-
ing if there are no appropriate edges in some instances. Algorithm 10
creates one such edge list (pattern edge) in each cycle of the for loop
beginning at line 2. Such an edge list is called a positive individual and
these individuals are grouped into positive populations. The selection
of the most suitable positive individual to the pattern starts at line 3
of the algorithm, where positive populations pos_p are initialized
randomly. In Fig. 6.5 there is an example of two positive populations
and the first one consists of three individuals (e12, e21), (e13, e21), and
(e14, e23). The individuals are divided into several populations so that
we do not mix edges that would break isomorphism with regard
to already selected edges. For example, edges e16 and e23 cannot form
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Figure 6.5: An illustrative example of notions used in the genetic
algorithm. Highlighted edges e11 and e21 are assumed to be already
selected.

an individual within a population with regard to already selected
edges e11 and e21.

The algorithm continues on lines 5 and 6, where new positive indi-
viduals are generated in each positive population by using crossover
and mutation operators. For crossover, the implementation allows
the user to choose either uniform or single-point crossover method.
Mutation operator simply changes one edge randomly in each individ-
ual. Example usages of these operators are illustrated in Fig. 6.5. Both
operators are executed separately within each positive population so
that isomorphically inconsistent edges are not put together.

For all positive individuals in positive populations we need to pick
the edges from negative instances that are most similar to these in-
dividuals in order to compute their fitness. This is performed inside
another genetic algorithm, which is nested in the original one, on lines
7 to 11 of the algorithm. For each positive individual, one negative pop-
ulation is created on line 7. Such a negative population consists of neg-
ative individuals formed by edges from negative instances that appear
in similarities statistics together with the edges from the considered
positive individual. For the given number of subepochs, it creates new
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negative individuals by the same crossover and mutation operators
and then selects the best negative individuals in compliance3 with fit-
ness F− defined in Eq. 6.3. It uses Stochastic universal sampling [10]
technique for selection. After running the nested genetic algorithm,
the algorithm continues on line 12 and computes the fitness F of posi-
tive individuals in compliance4 with Eq. 6.2 and Eq. 6.4 by using F−

of the best negative individuals selected earlier. The same selection
technique is used as before. The algorithm then continues on line 4 and
repeats the for loop for the given number of epochs in order to refine
the positive populations.

Finally, the algorithm selects a single individual with the high-
est fitness F across all positive populations and adds it to the se-
lected pattern edges. After the desired number of individuals, given
by size_o f _pattern_graph parameter, is selected, the algorithm out-
puts all selected edges as a final pattern. The algorithm can finish
earlier, if the best selected individual has fitness < 0.1.

6.5 Patterns Extracted by the Genetic Version
of WalDis

A C++ implementation of EWalDis was experimentally evaluated
on DBLP and ENRON network datasets. We did not use TELCO
dataset because of the reasons mentioned in Section 6.3.

To assess EWalDis, we extended the method used for WalDis and
trained and evaluated a classification model on a data created from dis-
criminative patterns. We used k-NN classifier with k = 3 as our model.

Given a train and a test set of events, both of size N, we first discov-
ered patterns by the following procedure. We repeatedly selected n
events from the train set at random and ran EWalDis on these events
to get several patterns. Then we assessed the existence of such patterns
on both the training and the test set by the same method as in Sec-
tion 6.3. By using this procedure, we computed the matching score

3. Random walks, as a sampling method, do not compute similarities for all pairs
of edges and thus F− is normalized here by the number of obtained pairs, not by nm
constant.
4. Once again, only the number of obtained pairs is used for normalization of F+.
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Table 6.2: Experiment results of EWalDis with accuracy computed
for both training and test datasets.

Settings Resulting accuracy

Dataset Positive Negative Baseline EWalDis
event event Train Test Train Test

DBLP KDD ICML 73.5 67.5 80.5 74.5
DBLP NIPS KDD 68.0 54.5 78.5 82.0
DBLP NIPS ICML 69.5 52.5 79.0 70.0
ENRON C. bankruptcy C. business 87.5 67.5 90.0 90.0

for both positive and negative events from both training and test set5.
Then we used these matching scores from training data as new features
and learned k-NN model on these data. The model was then evaluated
on a test set created from matching scores obtained on the original
test set.

We also created a simple baseline method for comparison with
EWalDis. The same classification algorithm was used, but the dataset
features were prepared differently. Specifically, we created features
from the edges adjacent to events. Each feature denotes an edge en-
coded by a pair (label, relative_timestamp). For each event, the features
had value either 0 or 1 depending on whether there was such an edge
adjacent to the event.

Summary results are shown in Table 6.2, where accuracy for each
model is given, assessed both on training and test set. Results for each
dataset are further described in the following paragraphs. In all exper-
iments, we used uniform crossover technique in the genetic algorithm.
We also tried single-point variant and the final accuracy was typically
lower by 1%. We set the number of epochs and subepochs to 25 and
the maximum number of edges per pattern to 5. For the same param-
eters, we also tried to increase the number of epochs and subepochs,
but the increase of final accuracy was insignificant so 25 epochs and
subepochs was enough for our datasets.

5. We called it either positive score or negative score in Section 6.3, depending on which
instance was used.
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(a) Pattern graph.
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(b) Pattern characteristics.

Figure 6.6: A pattern found by EWalDis in DBLP network dataset
with kdd publication as a positive event and icml as a negative event.

6.5.1 DBLP

In the experiment with DBLP dataset, we tried various types of posi-
tive and negative events. First, we randomly selected 100 edges repre-
senting collaboration on kdd paper as positive events and 100 edges
representing icml collaboration as negative events, thus N = 200. We
mined 20 patterns from samples of size n = 60. Furthermore, number
of random walks was 1000. Time unit for primary edge selection was
one year and for secondary edge selection half a year. We also tried nips
vs. kdd and nips vs. icml. For all scenarios, the results of the classifier
are shown in Table 6.2. As we can see, features created from patterns
found by EWalDis are more useful for prediction than simple features
created by the baseline method.

One of the patterns extracted during the first scenario, i.e. kdd
as positive events and icml as negative ones, is depicted in Fig. 6.6.
As with WalDis, Fig. 6.6a visualizes the pattern graph with the event
edge and the characteristics of the pattern edges are shown in Fig. 6.6b.
For example, pattern edge with ID 1 has an sdm label in 4 positive
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(a) Pattern graph.
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(b) Pattern characteristics.

Figure 6.7: A pattern found by EWalDis in DBLP network dataset
with nips publication as a positive event and kdd as a negative event.

instances, pkdd in 1, pakdd in 2, kdd in 4, and cikm in 3 instances. Similarly
for the other four pattern edges. The pattern edges mostly represent
historical collaboration on kdd, cikm or sdm papers. The second graph
again shows the distributions of the relative timestamps with respect
to the timestamps of the events. Thus, the collaborations typically
happened one or two years before the event.

Examples of patterns from other two experiments on DBLP dataset
can be found in Fig. 6.7 and 6.8. From Fig. 6.7 we can see that for nips
as positive events and kdd as negative events, there are mostly edges
representing collaboration on papers from conferences oriented more
on machine learning, such as nips, icml, iccv, or cvpr. When icml is used
for negative events, see Fig. 6.8, then there are mostly collaborations
on nips or icml papers. In this case, we can see that these conferences
are not very dissimilar.
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(a) Pattern graph.
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Figure 6.8: A pattern found by EWalDis in DBLP network dataset
with nips publication as a positive event and icml as a negative event.

6.5.2 ENRON

As for ENRON dataset, we chose N = 40 as the size of training and
test datasets, n = 20 as the size of 10 samples used for extraction
of 10 discriminative patterns. Positive events were again represented
by edges labelled as “California bankruptcy” and negative events
by edges labelled as “California business”. Time unit for primary edge
selection was 20 days and for secondary edge selection 4 days, number
of random walks was 3000.

An example of a pattern is shown in Fig. 6.9. The extracted edges
covered similar topics as in case of WalDis, i.e. a lot of edges were
labelled as Outlier and there were also topics about California analysis
(Calif_analysis label) and daily business issues (Daily_business label).

For this experiment, we also show the feature statistics of the train-
ing and test datasets created from the EWalDis patterns in Fig. 6.10.
There is a distribution of values for each pattern for both positive and
negative class. As we can see, the values are much higher for positive
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(a) Pattern graph.
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Figure 6.9: A pattern found by EWalDis in ENRON network dataset
with California bankruptcy email topic as a positive event and California
business as a negative event.
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class, which confirms that the patterns are really discriminative and
have higher matching score in positive instances.

6.6 Time Complexity

The time complexity of the algorithm is given by the parameters.
The average-case time complexity of the first phase can be roughly
estimated as follows. For the sake of simplicity, let us assume that
the probability of edge non-selection is 0. Let p be the probability
of random walk restart, d the average vertex degree, m number of ran-
dom walks, n number of positive and negative events, and a the num-
ber of attributes used for edge similarity calculation. The expected
number of steps in one walk is 1/p according to the geometric dis-
tribution. Then the average-case time complexity of the first phase is
O(m ∗ 1/p ∗ d ∗ n ∗ d ∗ a).

Regarding the second phase for pattern extraction, let k be the max-
imum number of pattern edges to be extracted. For the sake of brevity,
let us omit minor operations such as checking that the newly extracted
edges do not break injective mappings between pattern vertices across
instances. Maximum possible number of edge pairs in similarity statis-
tics can be generated if each pair of edges is walked simultaneously
at most once. Then the expected value of this maximum number is
m ∗ 1/p. For each of the k pattern edges, the greedy-version of algo-
rithm will inspect all the recorded edge pairs in the worst case. Thus,
the average-case time complexity can be bound by O(k ∗ m ∗ 1/p)
in case of the greedy-approach.

The genetic-algorithm approach is a bit more complex to analyse,
mostly because of the procedure for population preparation, which
have to take into consideration already selected edges and it cannot put
together edges that would break isomorphism if they were selected
together for a pattern edge. However, the main parameters influencing
the complexity are the maximum number of pattern edges to be ex-
tracted k, the number of epochs and the number of subepochs, as can
be seen from Algorithm 10. For each epoch, the algorithm has to per-
form crossover, mutation, selection, and the inner part the genetic
algorithm, which in turn also performs crossover, mutation, and selec-
tion. Crossover operator have to create two new individuals and thus
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its complexity is given by the number of graph instances, i.e. length
of the individuals, times the number of individuals to be created.
Mutation operator also creates new individuals so its complexity is
given by the same factors. More complex are the functions computing
the fitness of individuals because they use Eq. 6.2 and 6.3 and the com-
plexity isO(n2) for one individual. Simplifying this complexity is one
of the possible future directions.

6.7 Discussion

In this chapter, we presented WalDis, an algorithm for discriminative
pattern mining in temporal graphs, and its modification EWalDis. Both
algorithms work on a local level of graphs and they are able to distin-
guish vertex or edge events. Furthermore, they work with attributed
graphs and do not need discretization of timestamps.

We presented research related to discriminative pattern mining
in graphs in Chapter 2. From the point of events on the level of vertices
and edges, there are also methods close to this topic, even though
they do not mine discriminative patterns. For example, a large group
of methods is designed for link prediction in graphs [72, 107, 121].
There are also methods for vertex [111] or edge [4] classification. Simi-
lar area, prediction of vertex labels in graphs, is presented in [115].

There are also works dealing with event detection in graphs, such
as [63, 93]. The first work focuses on spatial events and uses social
media in order to discover them. Such a method can be useful for de-
tection of disease outbreaks or civil unrests. The second work defines
an event as a subset of nodes that are close to each other and have high
activity levels, i.e. high values of a numeric attribute. It can be em-
ployed for discovering activity regions in sensor networks, for example.
However, as we can see, these methods solve completely different tasks
than WalDis or EWalDis.
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7 Conclusion and Future Work

This thesis focuses on pattern mining in dynamic graphs. We pre-
sented several algorithms for mining various types of patterns in such
graphs.

First, we showed in Chapter 3 how simple graph patterns, which
can be extracted efficiently, may be used as features to represent resolu-
tion proofs created by students. However, to deal with more complex
vertex labels, a generalization method based on domain knowledge
was introduced. The usefulness of pattern-based representation was
verified in a classification task. Moreover, by employing an outlier
detection method on this representation, we were able to detect suspi-
cious students’ solutions that were not detected by a contemporary
evaluator. This chapter also covers sequence mining approach for pat-
tern mining in dynamic graphs. Specifically, we presented a different
representation of resolution proof solutions. Each solution was repre-
sented by a sequence of actions a student performed when building
the solution. Although the graph structure is not taken into account,
the dynamics of temporal graphs is still captured by elements of such
sequences. We showed that such a representation of dynamic graphs
may be useful for analysis too. Subsequences found frequently in the in-
put sequences were used as features and consequently for clustering
of resolution proofs.

Mining of general graph rule patterns in dynamic graphs by DGR-
Miner was presented in Chapter 4. The advantage of this algorithm is
that it is able to process graphs with various types of changes. Discov-
ered rules can be used as pattern features for graph representation or
as predictive patterns because they express how specific subgraphs
change into different subgraphs. DGRMiner is useful both for directed
and undirected graphs. An extension of DGRMiner for anomaly de-
tection and explanation was provided in Chapter 5. Anomaly patterns
mined by DGRMiner are in the form of rules too and use frequent
patterns as explanatory normative patterns, from which they deviate.
Such patterns can be employed for detection of suspicious behaviour
or novel, not necessarily negative, patterns of behaviour.

Last but not least, Chapter 6 discussed algorithm WalDis and its
modification EWalDis for discriminative pattern mining in dynamic
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graphs. Both WalDis and EWalDis allow us to discover subgraph
patterns that appear in the local neighbourhood of positive and not
negative events. Thus, the patterns enable us to understand the con-
text of positive events and how it differs from the context of negative
events. Events may be given by a set of vertices or edges. The algo-
rithms differ in approach they use. Specifically, WalDis uses a greedy
approach and EWalDis uses a genetic algorithm to extract patterns.
Both of them utilize a random-walk method to perform sampling
and inexact matching to deal with the variability of attributes and
timestamps in dynamic graphs.

As future work, it would be interesting to further investigate time
abstraction methods of DGRMiner because time discretization de-
termines the results quite significantly. We have seen that inexact
matching used in WalDis and EWalDis allows us to mine patterns
that are not completely identical. Time abstraction methods can help
DGRMiner deal with such patterns, even though the algorithm uses
exact matching approach. Another extension of DGRMiner could be
the ability to mine frequent closed patterns, which should help reduce
the number of generated patterns.

WalDis and EWalDis can be easily extended in order to be able
to handle vertex additions and deletions, attribute changes, or larger
events consisting of several vertices and edges. As far as these larger
events contain the same number of vertices so that a bijective mapping
can be established between vertices of any pair of events, the algo-
rithms do not need substantial upgrades. Another possible direction
of extending WalDis and EWalDis is usage of existing techniques in or-
der to identify the initial events automatically. For example, mining
of anomalous patterns by DGRMiner could be used for this task. First,
the method would find several small patterns and then WalDis or
EWalDis could use these small patterns as initial events, whose expla-
nation is to be found. As we already discussed in the previous chapter,
it would be also useful to improve the time complexity of the genetic
algorithm used in EWalDis.
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