Mining Time Series

La Torge & Ta Rudolecky

La Torge & Ta Rudolecky Mining Time Series
L. Torgo & T. Rudolecky
L. Torgo & T. Rudolecky

Time Series Introduction
A Definition

Definition

- A time series is a set of observations of a variable thatare Time Series Introduction

Finition

A time series is a set of observations of a variable that are

ordered by time.

E.g.,
 $x_1, x_2, \cdots, x_{t-1}, x_t, x_{t+1}, \cdots, x_n$

where x, is the observation of variable X at time t
-

 $x_1, x_2, \cdots, x_{t-1}, x_t, x_{t+1}, \cdots, x_n$

where x_t is the observation of variable X at time t .

A multivariate time series is a set of observations of a set of efinition
A time series is a set of observations of a variable that are
ordered by time.
E.g.,
 $x_1, x_2, \dots, x_{t-1}, x_t, x_{t+1}, \dots, x_n$
where x_t is the observation of variable X at time t .
A multivariate time series is a set ervations of a variable that are
 $\frac{K_{n}}{n}$

of variable X at time *t*.

a set of observations of a set of

od of time.

Time Series

2/45

Goals

Explanation

Obtaining a Time Series Model help us to have _{Goals}
Deper Understanding of the Mechanism
The Deeper Understanding of the Mechanism
The Mechanism
The Series Data. Coals
Containing a Time Series Model help us to have
a Deeper Understanding of the Mechanism
that Generated the Observed Time Series Data. ries Model help us to have
anding of the Mechanism
bbserved Time Series Data.
Time Series
3/45

Forecasting

Goals

_{Goals}
Time Series Data Mining
Main Time Series Data Mining Tasks

- o_{oals}
Main Time Series Data Mining
Main Time Series Data Mining Tasks
■ *Indexing (Query by Content)*
Given a query time series Q and a similarity measure *D*(Q, *X*) ^{Goals}

Indexing (Query by Content)

Indexing (Query by Content)

Given a query time series Q and a similarity measure *D*(Q, *X*)

find the most similar time series in a database **D**

Clustering ^{Gives}

Given a Given a Mining Tasks
 Indexing (Query by Content)

Given a query time series Q and a similarity measure $D(Q, X)$

find the most similar time series in a database **D**
 Clustering find the most similar time series in a database D some similarly conditions of the Series Data Mining

1 Time Series Data Mining Tasks

Indexing (Query by Content)

Given a query time series Q and a similarity measure $D(Q, X)$

find the most similar time series in a datab Exercise Data Mining

Time Series Data Mining Tasks

Indexing (Query by Content)

Given a query time series Q and a similarity measure $D(Q, X)$

find the most similar time series in a database **D**

Clustering

Find the nat Time Series Data Mining Tasks

Indexing (Query by Content)

Given a query time series Q and a similarity measure $D(Q, X)$

find the most similar time series in a database **D**

Clustering

Find the natural goupings of a set A and a similarity measure $D(Q, X)$

Fires in a database **D**

Fa set of time series in a database **D**

Inter $D(Q, X)$

Tries Q, assign it a label C from a set of
	- Clustering

Find the natural goupings of a set of time series in a database D

Classification

- Standard descriptive statistics (mean, standard deviation, etc.) do
-
- So, for proving summaries of TS data we will be interested in concepts like trend, seasonality and correlation between n marries of Time Series Data
Standard descriptive statistics (mean, standard deviation, etc.) do
not allways work with time series (TS) data.
TS may contain trends, seasonality and some other systematic
components, making cs (mean, standard deviation, etc.) do
eries (TS) data.
sonality and some other systematic
stats misleading.
of TS data we will be interested in
ality and correlation between
ne TS.

Exploratory Analysis Variation
Types of Variation
Secondary Analysis

Exploratory Analysis Variation
Types of Variation
Seasonal Variation
Some time series exhibit a variation that is annual in period
demand for ice cream. Some time series exhibit a variation that is annual in period, e.g. Exploratory Analysis Variation

Types of Variation

Seasonal Variation

Seasonal Variation

Seme time series exhibit a variation that is annual in period, e.g

Other Cyclic Variation

Seme time series beys periodic veriati

Exploratory Analysis Variation

Types of Variation

Seasonal Variation

Seasonal Variation

Some time series exhibit a variation that is annual in period, e

Other Cyclic Variation

Some time series have periodic variation Some time series have periodic variations that are not related to Exploration
Seasonal Variation
Some time series exhibit a variation that is annual in period, e.g.
demand for ice cream.
Other Cyclic Variation
Some time series have periodic variations that are not related to
seasons but Seasonal Variation
Some time series exhibit a variation that is annual in period, e.g.
demand for ice cream.
Other Cyclic Variation
Some time series have periodic variations that are not related to
seasons but to other fac tion that is annual in period, e.g.
variations that are not related to
some economic time series.
the mean level of the time series.
 $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
Time Series

Trends

Stationarity

Exploratory Analysis

Stationarity

An Informal Definition

A time series is said to be stationary if

there is no systematic change in mean (no trend),

if there is no systematic change in variance and Exploratory Analysis Stationarity

Stationarity

An Informal Definition

A time series is said to be stationary if

there is no systematic change in mean (no trend),

if there is no systematic change in variance and

if st Exploratory Analysis Stationarty
Therman is no systemation
there is no systematic change in mean (no trend),
there is no systematic change in variance and
if strictly periodic variations have been removed. Exploratory Analysis Stationarity

informal Definition

me series is said to be stationary if

there is no systematic change in mean (no trend),

if there is no systematic change in wariance and

if strictly periodic varia Exploratory Analysis Stationarity

Informal Definition

me series is said to be stationary if

there is no systematic change in mean (no trend),

if there is no systematic change in variance and

if strictly periodic varia Stationarity
An Informal Definition
A time series is said to be stationary if
there is no systematic change in mean (no trend),
if there is no systematic change in variance and
if strictly periodic variations have been rem nary if

e in mean (no trend),

ige in variance and

ave been removed.

s like mean, standard deviation,

rmation!

Time Series

8/45

Note that in these cases statistics like mean, standard deviation,

Exploratory Analysis Stationarity

Stationarity

The Contract of the Contract

The Contract of the Contract of the Contract of the Contract of

Stationarity

Exploratory Analysis Time Plots

- **Ploting the time series** values against time is one of the most important tools for Ploting the time series
values against time is
one of the most
important tools for
analysing its behaviour.
Time plots show
important features like
trands assessity. Ploting the time series
values against time is
one of the most
important tools for
analysing its behaviour.
Time plots show
important features like
trends, seasonality,
outliers and
discontinuities.
- Time plots show trends, seasonality, outliers and From the most be most trime series
values against time is
one of the most
important tools for
analysing its behaviour.
Time plots show
important features like
trends, seasonality,
outliers and
discontinuities.

Exploratory Analysis Transformations - I
|
| ILION dest transformations : Exploratory Analysis Transformations - I

Transformations - I

Plotting the data may suggest transformations :

To stabilize the variance

Exploratory Analysis Transformations - I
Plotting the data may suggest transformations :
To stabilize the variance
Symptoms: trend with the variance increasing with the mean. Exploratory Analysis Transformations - I
Transformations - |
Plotting the data may suggest transformations :
To stabilize the variance
Symptoms: trend with the variance increasing with the mean.
Solution: logarithmic trans Exploration Section Transformations - I

Symptoms: To stabilize the variance

Symptoms: trend with the variance increasing with the mean.

Solution: logarithmic transformation.

To make the seasonal effects additive Exploratory Analysis Transformations - I
Transformations - I
Plotting the data may suggest transformations :
To stabilize the variance
Symptoms: trend with the variance increasing with the mean.
Solution: logarithmic trans

Exploration S - |

Fransformations - |

Plotting the data may suggest transformations :

To stabilize the variance

Symptoms: trend with the variance increasing with the mean.

Solution: logarithmic transformation.

To mak Symptoms: there is a trend and the size of the seasonal effect Exploratory Analysis Transformations - I

Plotting the data may suggest transformations :

To stabilize the variance

Symptoms: trend with the variance increasing with the mean.

Solution: logarithmic transformation.

To m Exploratory Analysis Transformations -1

Fransformations - |

Plotting the data may suggest transformations :

To stabilize the variance

Symptoms: trend with the variance increasing with the mean.

Solution: logarithmic t **Transformations - I**

Plotting the data may suggest transformations :

To stabilize the variance

Symptoms: trend with the variance increasing with the mea

Solution: logarithmic transformation.

To make the seasonal eff

Examplems: trend with the variance increasing with the *Ilution:* logarithmic transformation.
 Invertigary in the Seasonal effects additive
 Imptoms: there is a trend and the size of the seasonality.
 Ilution: log Plotting the data may suggest transformations :

To stabilize the variance

Symptoms: trend with the variance increasing with the mean.

Solution: logarithmic transformation.

To make the seasonal effects additive

Sympto Solution 1: first order differentiation ($\mathbb{X}_t = X_t - X_{t-1}$). Solution 2: model the trend and subtractit from the original series $(Y = X_t - r_t)$. ce increasing with the mean.

Station.

additive

the size of the seasonal effect

cative seasonality).

Extends the mean.

Station ($\mathbb{X}_t = X_t - X_{t-1}$).

subtractit from the original series

Time Series 11/45

^{omations} -an example (1)

An example time series with

trend and a multiplicative

seasonality effect. trend and a multiplicative Formations - an example (1)

straight (1)

An example time series with

trend and a multiplicative

seasonality effect. An example time series with
trend and a multiplicative
seasonality effect.

Exploratory Analysis Transformations - an example (2)
a simple example (2) Exploratory Analysis Transformations - an example (2)
Transformations - a simple example (2)
y_{i-x-(7.708+42.521×0)}

Exploratory Analysis Randomness
Tests of Randomness
Erequently we want to test the bypothesis that the obs

Exploratory Analysis
Frequently we want to test the hypothesis that the observed time
series is random. series is random. Exploratory Analysis Randomness

A possible way is to inspect the correlogram.

A possible way is to inspect the correlogram.

A possible way is to inspect the correlogram.

Ernative, which is frequently used, is the runs Exis of Randomness

Frequently we want to test the hypothesis that the observed time

series is random.

A possible way is to inspect the correlogram.

An alternative, which is frequently used, is the runs test.

This test

of x_t is above (below) the median value of the series, or the number of times there is a sucession of monotonically increasing (decreasing) ant to test the hypothesis that the observed time
series is random.
So series is random.
So series the correlogram.
So, which is frequently used, is the runs test.
Abecks for things like the number of times the value
of th S is random.

D inspect the correlogram.

Equently used, is the runs test.

Ings like the number of times the value

In value of the series, or the number of

nonotonically increasing (decreasing)

Series and so on.

Exploratory Analysis Check List
Data
Analysis Check List

Exploratory Analysis Check List
Handling Real World Data
A Check List of Common Sense Things to Do Exploratory Analysis Check List

A Check List of Common Sense Things to Do

(taken from Chatfield, 2004)

■ Do you understand the context? Have the right variables been

- Exploratory Analysis

Handling Real World Data

A Check List of Common Sense Things to Do

(taken from Chatfield, 2004)

Do you understand the context? Have the right variables been

measured? Do you understand the context? Have the right variables been measured? Exploratory Analysis

Exploratory Analysis

Heck List of Common Sense Things to Do

Pho you understand the context? Have the right variables been

measured?

Have all the time series been plotted?

Are there any outliers? Espleratory Analysis Check List
neck List of Common Sense Things to Do
nen from Chatfield, 2004)
Do you understand the context? Have the right variables been
measured?
Have all the time series been plotted?
Are there missi reck List of Common Sense Things to Do

Do you understand the context? Have the right variables been

measured?

Have all the time series been plotted?

Are there missing values? If so, what should be done about them?

Are neck List of Common Sense Things to Do

an from Chatfield, 2004)

Do you understand the context? Have the right variables been

measured?

Have all the time series been plotted?

Are there missing values? If so, what shoul **ISTANG INTERT IS SEASURE IN SEAST AND MONOR INTER IS SEVERTHERT AND NO YOU understand the context? Have the right variables been measured?**
Have all the time series been plotted?
Are there missing values? If so, what shou ext? Have the right variables been

n plotted?

So, what should be done about them?

The series 19 of what do they mean?

So what do they mean?

So what be done about it?

Should be done about it?

Time Series

Time Series
	-
	- Are there missing values? If so, what should be done about them?
	-
	- Are there any discontinuities? If so, what do they mean?
	-
	-
	-

w_{hy?}
Measuring Similarity
Why?

Why?

Most time series data mining tasks require the similarity between ^{why?}
Measuring Similarity
Most time series data mining tasks require the similarity between
series to be asserted (e.g. indexing, clustering, classification, etc.).
Types of matching why?

Measuring Similarity

Why?

Most time series data mining tasks require the similarity b

series to be asserted (e.g. indexing, clustering, classificat

Types of matching

There are essentially two variants of similar why?

Why?

Most time series data mining tasks require the similarity between

series to be asserted (e.g. indexing, clustering, classification, etc.).

Types of matching

There are essentially two variants of similarity m ^{Why?}
Susuring Similarity
Where time series data mining tasks require the similarity be
as to be asserted (e.g. indexing, clustering, classification
whole matching
Whole matching
Where the query time series is matched (as Fraction Similarity

The series data mining tasks require the similarity between

time series data mining tasks require the similarity between

Subsequence are essentially two variants of similarity matching:

Whole matchi $\frac{1}{2}$
 $\frac{1}{2}$
 ²
subsection matching the similarity between
subsection matching
example are essentially two variants of similarity matching:
whole matching
where the query time series is matched (as a whole) against all
time series in

Why?

where the query time series is matched (as a whole) against all ing, clustering, classification, etc.).

Its of similarity matching:

is matched (as a whole) against all

.

data base are searched for a

ne query subsequence.

Time Series

20/45

where all time series in the data base are searched for a

Distance Measures

e Function

" Distance Measures

Defining a Distance Function

Distance (or dissimilarity) functions

Civen any two time series suand se their distance (or dissimilarity) is

Distance Measures
Defining a Distance Function
Distance (or dissimilarity) functions
Given any two time series s_1 and s_2 their distance (or dissimilarity) is
denoted by $D(s_1, s_2)$. Given any two time series s_1 and s_2 their distance (or dissimilarity) is Defining a Distance Function

Distance (or dissimilarity) functions

Given any two time series s_1 and s_2 their distance (or dissimilarity) is

denoted by $D(s_1, s_2)$.

Desirable Properties of a Distance Function

Sy Distance Measures

Distance Function

ance (or dissimilarity) functions

n any two time series s_1 and s_2 their distance (or dissimilated by $D(s_1, s_2)$.

Firable Properties of a Distance Function

Symmetry
 $D(X, Y) = D$ Distance Measures

ining a Distance Function

ance (or dissimilarity) functions

in any two time series s_1 and s_2 their distance (or dissimilarity)

ited by $D(s_1, s_2)$.

irable Properties of a Distance Function

Sy Fining a Distance Tunction

ance (or dissimilarity) functions

in any two time series s_1 and s_2 their distance (or dissimilated by $D(s_1, s_2)$.

irable Properties of a Distance Function

Symmetry
 $D(X, Y) = D(Y, X)$

Con In any two time series s_1 and s_2 their distance (or dissimilarit

of the by $D(s_1, s_2)$.

Firable Properties of a Distance Function

Symmetry
 $D(X, Y) = D(Y, X)$

Constancy of Self-Similarity
 $D(X, X) = 0$

Positivity
 $D(X$ ance (or dissimilarity) functions

in any two time series s_1 and s_2 their distance (or dissimilated by $D(s_1, s_2)$.

irable Properties of a Distance Function

Symmetry
 $D(X, Y) = D(Y, X)$

Constancy of Self-Similarity
 Time Series
21/45
21/45
21/45

■ Symmetry

-
- **Positivity**
- Firable Properties of a Distance Function

Symmetry
 $D(X, Y) = D(Y, X)$

Constancy of Self-Similarity
 $D(X, X) = 0$

Positivity
 $D(X, Y) = 0$ iff $X = Y$

Triangular Inequality
 $D(X, Y) \ge D(X, Z) + D(Y, Z)$

Time Series

Time Series

Distance Measures
Functions
Functions Distance Measures
Types of Distance Functions

Distance Functions

Metric - satisfy all properties

e.g. Euclidean, correlation, etc.

Non-metric - do not satisfy any of the properties

Non-metric - do not satisfy any of the properties Distance Measures

e.g. Of Distance Functions

Metric - satisfy all properties

e.g. Euclidean, correlation, etc.

Non-metric - do not satisfy any of the properties

e.g. time warping, LCSS, etc. Distance Measures

Distance Functions

Metric - satisfy all properties

e.g. Euclidean, correlation, etc.

Non-metric - do not satisfy any of the properties

e.g. time warping, LCSS, etc. Distance Measures

E.g. of Distance Functions

E.g. Euclidean, correlation, etc.

Mon-metric - do not satisfy any of the properties

e.g. time warping, LCSS, etc. s
etc.
C.
Time Series 22/45

Distance Measures Minkowski Metrics

Trics

United States Minkowski Metrics

United States

Distance Measures Minkowski Metrics
The Minkowski Metrics
Allowski Metrics

$$
D(X, Y) = \left(\sum_{i=1}^k (x_i - y_i)^p\right)^{\frac{1}{p}}
$$

City Block $(p = 1)$ Euclidean ($p = 2$)

$$
D(X, Y) = \left(\sum_{i=1}^{k} (x_i - y_i)^p\right)^p
$$

$$
D(X, Y) = \sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}
$$

$$
Time Series
$$

$$
23/45
$$

Distance Measures Correlation

Distance Measures Correlation

Distance Measures Correlation **Distance Measures Correlation**
Correlation between two time series

$$
\rho_{x,y} = \frac{\sum_{t=1}^{N} (x_t - \bar{x})(y_t - \bar{y})}{N \sigma_x \sigma_y}
$$

$$
=\frac{\sum_{t=1}^{N}(x_t - x)(y_t - y)}{N\sigma_x \sigma_y}
$$

where

$$
\rho_{x,y} = \frac{1}{N} \sum_{t=1}^{N} x_t y_t
$$

Distance Measures Dynamic Time Warping

Distance Measures Dynamic Time Warping
Dynamic Time Warping - introduction
Dynamic Time Warping (DTW) is a non-metric distance function.
Main Ideas of DTW Dynamic Time Warping - introduction
Dynamic Time Warping (DTW) is a non-metric distance function.
Main Ideas of DTW
- Allow for local deformations (stretch and shrink) along the time

- Distance Measures Dynamic Time Warping

Dynamic Time Warping introduction

Dynamic Time Warping (DTW) is a non-metric distance function

Main Ideas of DTW

 Allow for local deformations (stretch and shrink) along the t
 Allow for local deformations (stretch and shrink) along the time axis. Distance Measures Dynamic Time Warping

Able Time Warping - introduction

The Warping (DTW) is a non-metric distance function.

Allow for local deformations (stretch and shrink) along the time

axis.

Able to handle series (stretch and shrink) along the time

serent lengths
 $T_{\text{time Series}}$
 $\begin{bmatrix}\n\frac{2}{3} \\
25/45\n\end{bmatrix}$
	-

Distance Measures Dynamic Time Warping
Thing - how to calculate? Distance Measures Dynamic Time Warping
Dynamic Time Warping - how to calculate?
A Service Structure of the Service Structure of the Service Structure of the Service Structure of the Service

Distance Measures Dynamic Time Warping LCSS - Longest common subsequence

$$
A = ((a_{x_1,1},\ldots,a_{x_p,1}),\ldots,(a_{x_1,n},\ldots,a_{x_p,n})),
$$

$$
B = ((b_{x_1,1},\ldots,b_{x_p,1}),\ldots,(b_{x_1,m},\ldots,b_{x_p,m})).
$$

$$
Head(A) = ((a_{x_1,1},\ldots,a_{x_p,1}),\ldots,(a_{x_1,n-1},\ldots,a_{x_p,n-1})).
$$

$$
B = ((b_{x_1,1},\ldots,b_{x_p,1}),\ldots,(b_{x_1,m},\ldots,b_{x_p,m})).
$$

rajectory *A*, let $Head(A)$ be the sequence:

$$
Head(A) = ((a_{x_1,1},\ldots,a_{x_p,1}),\ldots,(a_{x_1,n-1},\ldots,a_{x_p,n-1})).
$$
an integer δ and a real number $0 < \epsilon < 1$, the similarity function $LCSS_{\delta,\epsilon}(A,B)$ is
using the recurrent algorithm (4) [32]. *N* and *M* are the size of the sequences *A* respectively at the first step of the recurrent algorithm.

respectively at the first step of the recurrent algorithm.

$$
LCSS_{\delta,\epsilon}(A,B) = \begin{cases} 0 & \text{if } A \text{ or } B \text{ is empty,} \\ 0 & \text{if } A(a_{x_k,n},b_{x_k,m}) < \epsilon, \forall 1 \leq k \leq p, \\ 1 + LCSS_{\delta,\epsilon}(Head(A),Head(B)), \\ \text{and } |n-m| \leq \delta \text{ and } |N-n-M+m| \leq \delta, \\ 0 & \text{and } |n-m| \leq \delta \text{ and } |N-n-M+m| \leq \delta, \\ \text{max } (LCSS_{\delta,\epsilon}(Head(A),B), LCSS_{\delta,\epsilon}(A,Head(B))) \end{cases}
$$
and
times $LESS_{\delta,\epsilon}(Head(A),B), LCSS_{\delta,\epsilon}(A,Head(B)))$
times $LESS_{\delta,\epsilon}(A,B)$

Distance Measures Dynamic Time Warping LCSS - Longest common subsequence

and (C) distance based on the longest common subsequence (LCSS). we³

Goals

_{Goals}
Goals of an Evaluation Method
The golden rule:

^{Goals}
als of an Evaluation Method
The golden rule:
The data used for evaluating (or comparing) any models c
be seen during model development. The data used for evaluating (or comparing) any models cannot be seen during model development.

-
- Soals

Soals

Soals

Soals

Soals

The golden rule:

The data used for evaluating (or comparing) any models cannot

be seen during model development.

The goal of any evaluation procedure:

Nigh probability of achieving th ^{Goats}

of an Evaluation Method

golden rule:
 *e data used for evaluating (or comparing) any models cannot

be seen during model development.

Solatin a reliable estimate of some evaluation measure.

High probability of* ^{Goals}

Solden rule:

Solden rule:
 *e data used for evaluating (or comparing) any models cannot

be seen during model development.

And a reliable estimate of some evaluation measure.

High probability of achieving the s* soals

osals

osals

of an Evaluation Method

golden rule:

e *data used for evaluating (or comparing) any models callel*
 be seen during model development.

Obtain a reliable estimate of some evaluation measure.

High p of an Evaluation Method
golden rule:
e *data used for evaluating (or comparing) any models can*
be seen during model development.
goal of any evaluation procedure:
Obtain a reliable estimate of some evaluation measure.
Hi golden rule:

Exploden rule:

A data used for evaluating (or comparing) any models

be seen during model development.

Solatin a reliable estimate of some evaluation measure.

High probability of achieving the same score o golden rule:

e data used for evaluating (or comparing) any models cannot

the seen during model development.

goal of any evaluation procedure:

Contain a reliable estimate of some evaluation measure.

High probability of may any models cannot
ting model development.
procedure:
of some evaluation measure.
ing the same score on other samples of
...
...
...
Time Series
31/45
- **Evaluation Measures**
	-
	-
	-

Reliable Estimates
Estimates
Estimates

- Reliable Estimates

Obtaining Reliable Estimates

The usual techniques for model evaluation revolve around **The usual techniques for model evaluation revolve around** resampling. Reliable Estimates

Ing Reliable Estimates

Usual techniques for model evaluation revolve around

mpling.

Simulating the reality.

Dobtain an evaluation estimate for unseen data.

mples of Resampling-based Methods

Holdou Reliable Estimates

Reliable Estimates

Reliable Estimates

Il techniques for model evaluation revolve around

Il techniques

Dotain an evaluation estimate for unseen data.

Sof Resampling-based Methods

S-validation. Reliable Estimates

The usual techniques for model evaluation revolve around

resampling.
 Examples of Researce Methods
 Examples of Resampling-based Methods

Holdout.

Resampling-based Methods

Resampling-based Method <table>\n<tbody>\n<tr>\n<th>Obtaining Reliable Estimates</th>\n</tr>\n<tr>\n<td>■ The usual techniques for model evaluation revolve around
resampling.</td>\n</tr>\n<tr>\n<td>__ Simulating the reality.</td>\n</tr>\n<tr>\n<td>__ Obtain an evaluation estimate for unseen data.</td>\n</tr>\n<tr>\n<td>__ Examples of Resampling-based Methods</td>\n</tr>\n<tr>\n<td>__ Holdout.</td>\n</tr>\n<tr>\n<td>__ Cross-validation.</td>\n</tr>\n<tr>\n<td>__ Bootstra.</td>\n</tr>\n</tbody>\n</table>\n<p>Time Series Data Are Special!</p>\n<p>Any form of resampling changes the natural order of the data!</p>\n<p>__3</p> The usual techniques for model evaluation revolve around

resampling.

Simulating the reality.
 Any form of resampling-based Methods

Methods
 Any form of resampling changes the natural order of the data!

Any form of
	- -
	- - **Holdout.**
		- Cross-validation.
		- Bootstrap.

stimate for unseen data.

ased Methods

I

the natural order of the data!

Time Series

32/45

32/45

Evaluation Methodology Correct Evalution of Time Series Models Evaluation Methodology

Figure 1997 - The Series Models

General Guidelines

Do not "forget" the time tags of the observations.

Do not evaluate a model on past data. Evaluation Methodology
Discrimed Services Models
Do not "forget" the time tags of the observations.
Do not evaluate a model on past data. Evaluation Methodology

Do not "forget" the time tags of the observations.

Do not "forget" the time tags of the observations.

Do not evaluate a model on past data.

Sisible method Evaluation Methodology

For Evaluation of Time Series Models

General Guidelines

Do not "forget" the time tags of the observations.

Do not evaluate a model on past data.

A possible method

Divide the existing data in tw Evalution Mehodology

Evalution of Time Series Models

Po not "forget" the time tags of the observations.

Do not evaluate a model on past data.

Sible method

Divide the existing data in two time windows
 Container a Pa Evalution of Time Series Models

aral Guidelines

Do not "forget" the time tags of the observations.

Do not evaluate a model on past data.

Sible method

Divide the existing data in two time windows
 Exacted alternatives Suidelines

Suidelines

Suidelines

ot "forget" the time tags of the observations.

ot evaluate a model on past data.

e method

e the existing data in two time windows

Past data (observations till a time t).

"Future" da

-
- Guidelines
ot "forget" the time tags of the observations.
ot evaluate a model on past data.
e method
past data (observations till a time *t*).
Past data (observations after *t*).
Then of these three learn-test alternatives Suidelines

ot "forget" the time tags of the observations.

ot evaluate a model on past data.

e method

e the existing data in two time windows

Past data (observations till a time *t*).

"Future" data (observations after
	-

- - **Past data (observations till a time t).**
	- **F** "Future" data (observations after t).
- on past data.

where windows

still a time t).

still a time t).

arn-test alternatives
 $\begin{bmatrix}\n\cdot & \cdot & \cdot & \cdot \\
\cdot & \$
	-
	-
	-

A single model is obtained with the available "training" data, and Evaluation Methodology

Learn-Test Strategies

A single model is obtained with the available "training" data, and

applied to all test period.

Growing Window

Even: w test cases a new model is obtained wing all data avail

Every w_v test cases a new model is obtained using all data available Fixed Window

A single model is obtained with the available "training" data, and

applied to all test period.

Growing Window

Every w_v test cases a new model is obtained using all data available

iil then.

Sliding Win Eixed Window

A single model is obtained with the available "training" data, and

applied to all test period.

Growing Window

Every w_y test cases a new model is obtained using all data available

fill then.

Sliding Win Time Series 34 / 45
Time Series 34 / 45
Time Series 34 / 45
Time Series 34 / 45

Evaluation Measures
Evaluating Predictive Performance Evaluation Measures
Some Metrics for Evaluating Predictive Performance
Absolute Measures
Relative Measures

$$
MSE = \frac{1}{n}\sum_{i=1}^n (\hat{x}_i - x_i)^2
$$

Mean Absolute Deviation (MAD)

$$
MAD = \frac{1}{n}\sum_{i=1}^{n} |\hat{x}_i - x_i|
$$

Theil Coefficient
\n
$$
U = \frac{\sqrt{\sum_{i=1}^{n} (\hat{x}_i - x_i)^2}}{\sqrt{\sum_{i=1}^{n} (x_i - x_{i-1})^2}}
$$
\nMean Absolute Percentage
\nError (MAPE)
\n
$$
MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{(\hat{x}_i - x_i)}{x_i} \right|
$$
\nTime Series

$$
MAPE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{(\hat{x}_i - x_i)}{x_i} \right|
$$

Assumptions

Assumptions of "Classical" Linear Approaches

Linearity

Stationarity

Assumptions

Umptions of "Classical" Linear Approaches

Unearity

The model of the time series behaviour is linear on its inputs.

Stationarity

The underlying equations governing the behaviour of the system

do not change The underlying equations governing the behaviour of the system Assumptions

Assumptions

Linear Approaches

Linearity

The model of the time series behaviour is linear on its inputs.

Stationarity

The underlying equations governing the behaviour of the system

do not change with time

Most "classical" approaches assume stationary time series, thus one usually needs to transform non-stationary time series into stationary equations governing the behaviour of the system
with time.
or descriptions are trained with time.
or description and the series, thus one
ansform non-stationary time series into stationary
ones before using these tools. Substitution is interaction is in puts.

Soverning the behaviour of the system

sume stationary time series, thus one

-stationary time series into stationary

using these tools.

Moving Averages Moving Averages
Moving Average Models
Definition
A moving average of order α , MA(α) is a time series given by

Definition

Moving Average Models

Definition

A moving average of order q, MA(q),is a time series given by
 $Y_t = \sum_{j=1}^{q} \beta_j X_{t-j}$

$$
Y_t = \sum_{i=0}^q \beta_i X_{t-i}
$$

Exponential MAs
| Average Models
| Exponential Moving Average Models

Definition

An exponential moving average is a series given by

Definition

Exponential Mas

\nExponential May

\nDefinition

\nAn exponential moving average is a series given by

\n
$$
Y_t = a \cdot X_t + (1 - a) \cdot \text{EMA}_\alpha(X_{t-1})
$$
\n
$$
Y_1 = X_1
$$
\nwhere $a \in [0..1]$ is a smoothing parameter.

\n
$$
X_t = \frac{a}{1 - \frac{1}{2} \cdot 1} \cdot \frac{1}{2} \cdot \frac{1}{
$$

Autoregressive AR

Autoregressive AR
Autoregressive (AR) Models
Definition
An autoregressive model of order n is a series given by

Definition

Autoregressive (AR) Models

Definition

An autoregressive model of order p is a series given by
 $Y_t = \sum_{i=1}^{p} \alpha_i Y_{t-i}$

$$
Y_t = \sum_{i=0}^p \alpha_i Y_{t-i}
$$

Autoregressive ARMA
The and Moving Average Models Autoregressive ARMA
Mixed Autoregressive and Moving Average Models
Definition
A mixed ARMA model of order a later series given by Andregressive ARMA

Andregressive and Moving Average Models

Definition

A mixed ARMA model of order p, q is a series given by
 $Y_t = \sum_{i=1}^{p} \alpha_i Y_{t-i} + \sum_{i=1}^{q} \beta_i X_{t-i}$

Definition

$$
Y_t = \sum_{i=0}^p \alpha_i Y_{t-i} + \sum_{i=0}^q \beta_i X_{t-i}
$$

Autoregressive ARIMA
- ARIMA) Models
-Autoregressive ARIMA
Integrated ARMA (or ARIMA) Models
Definition
An integrated ARMA (or ARIMA) model of order p. d. q is a series

Definition

Antorgressive ARMA

An integrated ARMA (or ARIMA) Models

An integrated ARMA (or ARIMA) model of order p, d, q is a series

given by
 $y_t' = c + \phi_1 y_{t-1}' + \cdots + \phi_p y_{t-p}' + \theta_1 e_{t-1} + \cdots + \theta_q e_{t-q} + e_t$ Autoregressive ARIMA

Integrated ARMA (or ARIMA) Models

Definition

An integrated ARMA (or ARIMA) model of order p, d, if

given by
 $y'_t = c + \phi_1 y'_{t-1} + \cdots + \phi_p y'_{t-p} + \theta_1 e_{t-1} + \cdots + \theta_q e_{t-q} + e_t$

 $\begin{align*} \mathcal{P}_{t-1} + \cdots + \theta_q e_{t-q} + e_t \end{align*}$
ay have been differenced more than and side include both lagged values of y_t
 $\begin{align*} \mathbf{A}(p,d,q) \text{ model, where} \end{align*}$
Fine Series $\begin{align*} \mathbf{I}(\mathbf{f}(t)) = \mathbf{I}(\mathbf{f}(t)) \mathbf{I}(\mathbf{f}(t)) \end{align*}$

Case Dependecies

Clustering

[1]

Clustering

Case Dependecies Whole time-series clustering is considered as clustering of a set of Case Dependecies

Clustering

Whole time-series clustering is considered as clustering of a set of

individual time-series with respect to their similarity. Here, clustering

means applying conventional (usually) clusterin Case Dependecies

Clustering
 Whole time-series clustering is considered as clustering of a set of

individual time-series with respect to their similarity. Here, clustering

means applying conventional (usually) cluster Case Dependecies

Clustering

Whole time-series clustering is considered as clustering of

individual time-series with respect to their similarity. Here,

means applying conventional (usually) clustering on discret

object Curring

Subsequence considered as clustering of a set of

individual time-series with respect to their similarity. Here, clustering

means applying conventional (usually) clustering on discrete objects, where

objects are Case Dependedes

Clustering

Whole time-series clustering is considered as clustering of a set of

individual time-series with respect to their similarity. Here, clustering

means applying conventional (usually) clustering Case Dependecies

Clustering

Whole time-series clustering is considered as clustering of a set of

individual time-series with respect to their similarity. Here, clusterin

means applying conventional (usually) clustering

stering on a set of subsequences of a
a sliding window, that is, clustering of
series.
ategory of clustering which is seen in
e points based on a combination of their
and the similarity of the
ch is ismilar to time-series Caustering

Caustering

Whole time-series clustering is considered as clustering of a set of

Individual time-series with respect to their similarity. Here, clustering

means applying conventional (usually) clustering on d **Solution Exercise Solution**
 Solution Constrainers
 Solution Constrainers
 Solution Constrainers
 Subsequence clustering means clustering on a set of subsequences of a
 Subsequence clustering means clustering on **VIOSTETTITY**
 Whole time-series clustering is considered as clustering of a set of

individual time-series with respect to their similarity. Here, clustering

means applying conventional (usually) clustering on discrete Whole time-series clustering is considered as clustering of a set of
individual time-series with respect to their similarity. Here, clustering
means applying conventional (usually) clustering on discrete objects, where
obj Whole time-series customing is considered as clustering of a set of microscores with respect to their similarity. Here, clustering means applying conventional (usually) clustering on discrete objects, where objects are tim manyioual time-series with respect to their similarity. Here, custering
means applying conventional (usually) clustering on discrete objects, where
objects are time-series.
Subsequence clustering means clustering on a se

[5]

Case Dependecies
Series subsequences

Clustering of time series subsequences
Clustering of time series subsequences
Subsequence Clustering: Given a single time series, sometimes in the
Sorm of streaming time series, individual time series (subsequences) are Subsequence Clustering: Given a single time series, sometimes in the form of streaming time series, individual time series (subsequences) are extracted with a sliding window. Clustering is then performed on the extracted time series subsequences.

Abstract
 Abstract
 Abstract

In the agorithms, clustering of time series

this are reduced much attention. In this work we make a

puences is meaningless] More concretely, clusters extracted

puences is meaningless

[6]

Discretisation: SAX, PAA, TVA

Case Dependecies

Resources

Case Dependecies

[1] Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani. *Iterative*
 Deepening Dynamic Time Warping for Time Series

[2] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard

Thonhauser.

Case Dependecies

21 Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani. *Iterative

Deepening Dynamic Time Warping for Time Series*

21 Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard

Thonhauser. Mult Case Dependecies

[1] Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani. *Iterative*

Depending Dynamic Time Warping for Time Series

[2] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard

Thonhauser. Mu Thonhauser. Multivariate Time Series Classification by Combining Trend-Based and Value-Based Approximations

Time Series

doolf K. Frunwirth and Gernard
s Classification by Combining Trend-
ions
Multiresolution Motif Discovery in
probay and Vincent Rialle. Mining
eries for Learning Meaningful Patterns:
e
irkhorshidi and Teh Ying Wah. Time-
Cl case Dependecies
 Resources
 [1] Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani. *Iterative***

Deepening Dynamic Time Warping for Time Series

[2] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard** Case Dependecies

[1] Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani. *Iterative*
 Deepening Dynamic Time Warping for Time Series

[2] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard

Thonhauser. Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare **[4] Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani.** *Iterative***
Deepening Dynamic Time Warping for Time Series
[2] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard**
[2] Bilal Esmael, Arghad Arnaou [1] Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani. *Itera:*
Deepening Dynamic Time Warping for Time Series
[2] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard
Thonhauser. Multivariate Time Series C [1] Selina Chu, Eamonn Keogh, David Hart and Michael Pazzani. *Iterative*

Deepening Dynamic Time Warping for Time Series

[2] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth and Gerhard

Thonhauser. Multivariate Time Se

is Meaningless: Implications for Previous and Future Researc

