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5.5
Hypothesis
Identification
by Minimum
Description
Length

We can formulate scientific theories in two steps. First, we formulate
a set of possible alternative hypotheses, based on scientific observa-
tions or other data. Second, we select one hypothesis as the most likely
one. Statistics is the mathematics of how to do this. A relatively recent
paradigm in statistical inference was developed by J.J. Rissanen and by
C.S. Wallace and his coauthors. The method can be viewed as a com-
putable approximation to the noncomputable approach in Section 5.2
and was inspired by it. In accordance with Occam’s dictum, it tells us
to go for the explanation that compresses the data the most.

Minimum description length (MDL) princi-
ple. Given a sample of data and an effective enu-
meration of the appropriate alternative theories to
explain the data, the best theory is the one that min-
imizes the sum of

e the length, in bits, of the description of the theory;

e the length, in bits, of the data when encoded with
the help of the theory.

The idea of a two-part code for a body of data D is natural from the perspective
of Kolmogorov complexity. If D does not contain any regularities at all, then it
consists of purely random data, and there is no hypothesis to identify. Assume
that the body of data D contains regularities. With help of a description of
those regularities (a model) we can describe the data compactly. Assuming
that the regularities can be represented in an effective manner (that is, by a
‘Turing machine), we encode the data as a program for that machine. Squeezing
all effective regularity out of the data, we end up with a Turing machine
representing the meaningful regular information in the data together with
a program for that Turing machine representing the remaining meaningless
randomness of the data. This is the intuition.

Formally, assume that our candidate theories are effective computation pro-
cedures, that is, Turing machines. While with the Kolmogorov complexity we
represent the amount of information in the individual objects, here we are
interested in the division of this information into a two-part code, as in Sec-
tion 2.1.1. First, the “valuable” information representing regularities that are
presumably usable {the model part of length K(T?}), followed by the “useless”
random part of length C(D|T) = I(p)} as in Equation 2.1 on page 99. However,
it is difficult to find a valid mathematical way to force a sensible division of
the information at hand in a meaningful part and a meaningless part. One
way to proceed is suggested by the analysis below.

MDL is based on striking a balance between regularity and randomness
in the data. All we will ever see arc the data at hand (if we know more,
then in fact we possess more data, which should be used as well). The
best model or explanatory theory is taken to be the one that optimally
uses regularity in the data to compress. “Optimally” is used in the sense
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of maximal compression of the data in a two-part code, that is, a model
and a description from which the data can be reproduced with help of
the model. If the data are truly random, no compression is possible and
the optimum is reached for the “empty” model. The empty model has
description length 0. If the data are regular, then compression is possible,
and using the MDL principle {or the Kolmogorov complexity approach)
identifies the optimal model.

We call such a “model,” or “theory,” a “hypothesis.” With a more com-
plex description of the hypothesis H, it may fit the data better and
therefore dccrease the misclassified data. If H describes all the data,
then it does not allow for measuring errors. A simpler description of H
may be penalized by an increase in misclassified data. If H is a trivial
hypothesis that contains nothing, then all data are described literally
and there is no generalization. The rationale of the method is that a
balance between these extremes secms to be required.

Ideally, the description lengths involved should be the shortest effective
description lengths, the prefix complexities, which however cannot be
cffectively computed. (This obviously impedes actual use. In practice,
one needs to consider computable approximations to shortest descrip-
tions, for example by restricting the allowable approximation time.) The
code of the shortest effective self-delimiting descriptions, the prefix com-
plexity code, gives the least expected code-word length—close to the
entropy (pages 181, 231 or Scction 8.1)—and moreover compresses the
rcgular objects until all regularity is squeezed out. All shortest effective
descriptions are completely random themselves, without any regularity
whatsoever. Kolmogorov complexity can be used to develop a theory of
(idealized) minimum description length reasoning. We rigorously derive
and justify this Kolmogorov complexity based form of minimum descrip-
tion length, “ideal MDL,” via the Bayesian approach using the universal
distribution m(-) of Section 4.3.1 as the particular prior distribution over
the hypotheses. This leads to a mathematical explanation of correspon-
dences and differences between ideal MDL and Bayesian reasoning, and
in particular it gives some cvidence under what conditions the latter is
prone to overfitting while the former is not.

The analysis of both hypothesis identification by ideal MDL in this
section, and of prediction in Section 5.2.2, shows that maximally com-
pressed descriptions give good results on data samples that are random
with respect to probabilistic hypotheses. These data samples form the
overwhelming majority and occur with probability going to one when
the length of the data sample grows unboundedly. That is, both for
hypothesis identification and prediction, data compression is provably
optimal but for a subset of (hypothesis, data sample) pairs of vanishing
probability.
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551
Derivation of
MDL from
Bayes's Rule

Let us see how we can rigorously derive an ideal version of MDL from
first principles, in casu Bayes’s rule as given by Equation 5.1. While
this does not rigorously prove anything about MDL in its applied forms,
the relations with Bayesian inference we establish for ideal MDL are
corroborated by empirical cvidence for applied MDL.

Recall Bayes’s Rule, Sections 1.6, 1.10, 5.2:

Pr{DIH)P(H)
Pr(D)

Pr(H|D) =

Here H is a hypothesis, P’ is the prior probability of the hypotheses and
D) is the set of observed data. In this equation we are only concerned
with finding the H that maximizes Pr{(H|D) with D and P fixed. Taking
the negative logarithm of both sides of the cquation, this is equivalent
to minimizing the expression — log Pr(H|D) over H:

— log Pr(H|D) = — log Pr(D|H) - log P(H) + log Pr(D). (5.15)

Since the probability Pr(D) is constant under varying H, this means we
want to find an hypothesis H that minimizes

— log Pr(D|H) — log P(H). (5.16)

In applied forms of MDL one roughly speaking interprets these negative
logarithms — log P{z} as the corresponding Shannon-Fano {or Huffman)
code-word lengths. But why should one use the Shannon-Fano code {or
Huffman code) and no other code reaching an expected code word length
equal to the entropy? In particular, ignoring feasibility, why not use
the objective shortest effective code, the shortest effective descriptions
with code-word length set equal to the prefix complexities. This also
has an expected code-word length equal to the entropy {pages 181, 231
or Section 8.1), but additionally, the shortest program compresses the
object by effectively squeezing out and accounting for all regularities in
it. The resulting code word is maximally random, that is, it has maximal
prefix complexity.

For now let us assume that H and ) are expressed as natural numbers
or finite binary strings. To obtain the ideal MDL principle it suffices to
replace the probabilities involved in Equation 5.16 by the universal prob-
ability m(-) of Theorem 4.3.1 on page 247. The analysis of the conditions
under which this substitution is justified, or conversely, how application
of idecal MDL is equivalent to Bayesian inference using admissible prob-
abilities, is deferred to the next section. Therefore, under conditions to
be established below, we substitute according to

log P(H) = logm(H) + 0O(1), (5.17)
log Pr(D|H) = logm{D|H)} + O(1).
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By Theorem 4.3.3 on page 253, we have

logm(H) = —~K(H) + 0(1),
logm{D|H) = ~K(D|H) + O(1),

where K(-) is the prefix complexity. Therefore, using the substitution of
Equation 5.17 we can replace the sum of Equation 5.16 by the sum of
the minimum lengths of effective self-delimiting programs that compute
descriptions of H and D|H. That is, we look for the H that minimizes

K(D|H) + K (H), (5.18)

which is the codc-independent, recursively invariant, absolute form of
the MDL principle.

The term — log P(D|H) is also known as the self-information in informa-
tion theory and the negative log-likelihood in statistics. [t can be regarded
as the number of bits it takes to redescribe or encode D with an ideal
code relative to H,

If we replace all P-probabilities in Equation 5.15 by the corresponding
m-probabilities, we obtain in the same way by Theorem 4.3.3

K(H|D) = K(H) + K(D|H) — K(D) + O(1).

In Theorem 3.9.1 on page 232 it is shown that symmetry of information
holds for individual objects in the following sense:

K(H,D) = K(H) + K(D|H, K(H)) + O(1)
= K(D) + K(H|D, K(D)) + O(1). (5.19)

Substitution gives K(H|D) = K(H, D)—K(D), up to an O(log K (H, D))
additive term. The term K (D) is fixed and doesn’t change for different
H’s. Minimizing the left-hand term, K (H!D) can then be interpreted as

Alternative formulation MDL principle. Given
a hypothesis space H, we want to select the hypoth-
esis H such that the length of the shortest encoding
of D together with hypothesis H is minimal.

<

The discussion scems to have arrived at its goal, but a danger of trivial-
ity lurks nearby. Yet it is exactly the solution how to prevent trivialities,
which gives us the key to the very meaning of ideal MDL, and by exten-
sion some insight in applied versions.
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The Role of
Universal
Probability

Since it is not more difficult to describe some object if we get more
conditional information, we have K{D|H, K(H)) < K(D|H) + O(1).
Thus, by Equation 5.19 the quantity in Equation 5.18 satisfes

K(H)+ K(D|H) > K(H,D) + 0(1) > K(D) + O(1),

with equalities for the trivial hypothesis Hy = D or Hy = . At first
glance this would mcan that the hypothesis H,,4; that minimizes the
sum of Equation 5.18 could be set to I or @, which is absurd in general.
However, we have only derived the validity of Equation 5.18 under the
condition that Equation 5.17 holds. The crucial part of our justification
of MDL is to establish precisely when Equation 5.17 is valid.

It is well known, see Example 1.11.2, that the so-called Shannon-Fano
code for an ensemble of source words distributed according to probability
2 is a prefix code Eq with {{Eg(z)) = - log Q(z) satisfying

ZQ(:E)J(EQ(:C)) = I%i’n{z Q(x)I(E'(z)) : E' is a prefix code} + 0(1),

that is, it realizes the least expected code-word length among all prefix
codes (the entropy of Q(-) by Shannon’s Noiseless Coding Theorem).
Therefore, the H which minimizes Equation 5.16, that is,

HEpr( 11y (D)) + UEp(H))

minimizes the sum of two prefix codes which both have shortest expected
code word lengths.

But there are many prefix codes which have expected code-word length
equal to the entropy. Among those prefix codes there is one which gives
the shortest effective code word to each individual source word: the prefix
code with code word length K () for object x. In ideal MDL we want
minimize the sum of the cffective description lengths of the individual
elements H, D involved. This means using the shortest effective deserip-
tion lengths, as in Equation 5.18. However, we cannot simply replace
negative logarithms in Equation 5.16 by corresponding K {-) terms. We
can only do so if Equation 5.17 holds.

To satisfy Equation 5.17 we are free to make the new assumption that
the prior probability P() in Bayes’s rule Equation 5.1 is fixed as m().
Whether this can be justified or not is a question which we address in
Section 5.5.7.

However, we cannot assume that the probability Pr(-|H) equals m(:|H).
Namely, as explained at length in Section 5.1.3, probability Pr(-|H} may
be totally determined by the hypothesis H. Depending on H therefore,
{Ep.\my(D)) may be very different from K(D|H). This holds espe-
cially for “simple” data D that have low probability under assumption
of hypothesis H.
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Example 552 Let us look at a simple example evidencing this discrepancy. Suppose

55.3
Fundamental
Inequality

we flip a coin of unknown bias n times. Let hypothesis H and data D
be defined by:
H := Probability of “heads” is 3,
D= hh...h
N

n times “h”(eads)
Then we have Pr(D/H) = 1/2" and
{(Epcimy(D)) = —log Pr(D|H) = n.
In contrast, K({D|H} < logn + 2loglogn + O(1). <&

The theory dealing with randomness of individual objects states that un-
der certain conditions —log Pr(D|H) and K(D|H) are close. The first
condition is that Pr{-]-) be a recursive function. That is, it can be com-
puted to any required precision for each argument D and conditional
H. Then we can appeal to the following known facts: Firstly, by Exam-
ple 4.3.3 on page 249 following Theorem 4.3.1 on page 247,

m(D|H) > 2~ KECIHE) pr(D|H).
Therefore,

m(D| H)

gm 2 —K(Pr(-|H)) z “K(H) + O(l)- (5'20)

The last inequality arises since from H we can compute Pr(-|H) by
assumption on Pr(:|-).

Secondly, if the data sample D is sufficiently random with respect to the
recursive distribution Pr{-|H) (with respect to H therefore) in the sense
of Martin-Lof (and only if it is so), we have

og hEr%Ei < 0, (5.21)

where ko((D|H)| Pr(-|H)) = log(m(D|H)/ Pr(D|H)) is a “universal sum
P-test” as in Theorem 4.3.5, page 258. The overwhelming majority of
D’s is random in this sense because for each H we have

Z Pr(D|H )25 ((DIH)| Pr(-|H)) _ Z m(D|H) < 1,
D D

since m(-|H) is a probability distribution. For D’s that are random in
the appropriate sense, Equations 5.20 and 5.21 mean by Equation 5.17
that

K(D|H) — K(Pt(|H)) < — log Pr(D|H) < K(D|H).
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Validity Range of
FI

Above, by assuming that the a priori probability P(H) of hypothesis
H is in fact the universal probability, we obtained — log P(H) = m(z).
However, we do not need to make this assumption. For recursive P(-}, we
can analyze the situation when H is random in the required sense with
respect to P(-). The first inequality below holds since m(+) majorizes P(:)
this way; the second inequality expresses the assumption of randomness
of I,

m(H) > 27X p(a),
log(m(H)/P(H)) < 0,

where K(P) is the length of the shortest self-delimiting program for
the reference universal prefix machine to simulate the Turing machine
computing the probability density function P : A/ — [0,1]. That is, it is
the shortest cffective self-delimiting description of P. Then,

K(H)~ K(P) < —log P(H) < K(H). (5.22)
Altogether, we find

K(D|H}+ K(H) —(P,H) < —logPr(D|H) — log P(H) (5.23)
< K(D|H) + K(H),

with
a(P,H) = K(Pr(-|H)) + K(P),

and we note that K (Pr(-|H)) < K(H)+0(1). We call Equation 5.23 the
Fundamental Inequality (FI) because it describes the fundamental
relation between Bayes’s Rule and MDL in mathematical terms. It is
left for us to interpret it.

We begin by stressing that Equation 5.23 holds only in case simultane-
ously H is P-random and D is Pr(-|H)-random. What is the meaning
of this?

H is P-random means that the true hypothesis must be “typical” for
the prior distribution P in the sense that it must belong to all effective
majorities (sets on which the majority of P-probability is concentrated).
In Example 4.3.10 on page 261 it is shown that this is the set of H's
such that K(H) ~ —log P(H). In case P(H) = m(H), that is, the prior
distribution equals the universal distribution, then for all H we have
K(H) = —log P(H), that is, all hypotheses are random with respect to
the universal distribution,

Let us look at an example of a distribution where some hypotheses
are random, and some other hypotheses are nonrandom. Let the pos-
sible hypotheses correspond to the binary strings of length n, while P
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If Optimal
Hypothesis
Violates Fl

is the uniform distribution that assigns probability P(H)} = 1/2" to
each hypothesis H € {0,1}*. Then H = 00...0 has low complexity
K(H) < logn + 2loglogn. However, —log P(H) = n. Therefore, by
Equation 5.22, H is not P-random. If we obtain H by n flips of a fair
coin, then with overwhelming probability we will have that K({H) =
n + OQ(logn), and therefore —log P(H) ~ K(H) and H is P-random.

D is Pr(-|H }-random means that the data are random with respect to the
probability distribution Pr(-|H) induced by the hypothesis H. Therefore,
we requirc that the samplc data D are “typical,” that is, “randomly
distributed” with respect to Pr(-|H). If, for example, H = (u, o) induces
the Gaussian distribution Pr(:|(x,0)) = N(u,0) and the data D are
concentrated in a tail of this distribution, like D2 = 00...0, then D is
atypical with respect to Pr(-|H) in the sense of being nonrandom because
it violates the Pr(-|H)-randomness test Equation 5.21.

Note that an hypothesis satisfying FI is a prefix complexity version of the
Kolmogorov minimal sufficient statistic of Section 2.2.2. This shows the
connections between MDL, Bayes’s rule, and the Kolmogorov minimal
sufficient statistic.

The only way to violate the Fundamental Inequality is that either D is
not Pr(-|H)-random and by Equation 5.21, —log Pr(D|H) > K(D|H),
or that H is not P-random and by Equation 5.22, —log P(H) > K(H).
We give an example of the first case:

We sample a polynomial Hy = ax? 4 bz + ¢ at n arguments chosen
uniformly at random from the interval [0, 1]. The sampling process in-
troduces Gaussian errors in the function values obtained. The set of
possible hypotheses is the set of polynomials. Assume that all numbers
involved are of fixed bounded accuracy.

Because of the Gaussian error in the measuring process, with overwhelm-
ing probability the only polynomials H,_; that fit the sample precisely
are of degree n — 1. Denote the data sample by D. Now, this hypothesis
H, 1 is likely to minimize K(2|H) since we just have to describe the
n lengths of the intervals between the sample points along the graph of
H,, ;. However, for this H,,_, data sample D is certainly not Pr(-|H, _;)-
random, since it is extremely unlikely, and hence atypical, that D arises
when sampling H, 1 with Gaussian error. Therefore, Equation 5.21 is
violated, which means that — log Pr(D|H,,.1) > K{D|H,_,), contrary
to what we used in deriving the Fundamental Inequality. With prior
probability P(-) := m(-), which means —log P(-) = K(:} 4+ O{1), this
moreover violates the Fundamental Inequality.

In contrast, with overwhelming likelihood H; wili show the data sample
D random to it. That being the case, the Fundamental Inequality holds.
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If Optimal
Hypathesis
Satisfies Fl

Theorem 5.5.1

5.5.7
What MDL Does

Now what happens if H,_, is the true hypothesis and the data sam-
ple D by chance is as above? In that case the Fundamental Inequality
is violated and Bayes's Rule and MDL may each select very different
hypotheses as the most likely ones, respectively.

Given data sample D and prior probability P, we call a hypothesis H ad-
missible if the Fundamental Inequality Equation 5.23 holds. Restriction
to the set of admissible hypotheses excludes setting K (D|H )+ K(H) =~
K (D) for trivial hypothesis (like H = @ or H = D, which are not
admissible).

Let a(P, H) as in Equation 5.23 be small. Then Bayes’s Rule and ideal
MDL are optimized (or almost optimized ) by the same hypothesis among
the admissible H's. That is, there is one admissible H that simultane-
ously (almost) minimizes both — log Pr(D|\H) — log P(H) (selection ac-
cording to Bayes’s Rule) and K(D|H) + K(H) (selection according to
MDL).

Proof. The smallness of a(P, H) means that both the prior distribution
P is simple, and that the probability distribution Pr(-|H ) over the data
samples induced by hypothesis H simple. In contrast, if o P, H) is large,
which means that either of the mentioned distributions is not simple, for
example when K (Pr(:|H)) = K(H) for complex H, then there may be
some discrepancy. Namely, in Bayes’s Rule our purpose is to maximize
Pr(H|D), and the hypothesis H that minimizes K(D|H) + K(H) also
maximizes Pr(H1D) up to a 2-*(%H) myliplicative factor. Conversely,
the H that maximizes Pr(H|D) also minimizes K{D|H) + K(H) up to
an additive term a(P, H). That is, with

Hmdl = minargH{K(DlH) + K(H)}? (524)
Hpayes := maxargy {Pr(H|D)},

we have

_ PI‘(HdeID)
2 a (P ) < e ]_? 0.25
T Pr{Hpayes| D) — ( )

O:(.P, H) 2 K(DIHmdl) + K(Hmdl) - K(DJHba.yes) - K(Hbayes) 2 0.
a
Therefore, if (P, H) is small enough and Bayes’s rule selects an admis-

sible hypothesis, and so does ideal MDL, then both criteria are (almost)
optimized by both selected hypotheses.

We can now assess what prior distributions and assumptions about the
relation between the data sample and selected hypothesis MDL assumes.
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That is, how we can translate MDL in terms of Bayes’s Rule. Identifying
application of MDL with application of Bayes’s rule on some prior dis-
tribution P, we must assume that given I}, the Fundamental Inequality
is satisfled for H,q; as defined in Equation 5.24. This means that Hp,g
is P-random for the prior distribution P used. One choice to guarantee
this is to choose

P(:) := m(-)(=27%0).

This is a valid choice even though m is not recursive, since the latter
requirement arose from the requirement that m(-)/P(-) be enumerable,
which is certainly guaranteed by choice of P(:) := m(-}. This choice of
prior distribution over the hypotheses is an objective and recursively
invariant quantified form of Qccam’s razor: simple hypotheses H (with
K{H) « I{H)) have high probability, and complex or random hypothe-
ses H (with K(H) =~ [(H)) have low probability, namely, 2=*(¥)_ This
choice of prior distribution is most convenient, since the randomness
test logm(H)/P(H) = 0 for each hypothesis H. This means that all
hypotheses H are random with respect to distribution m(-). It is easy
to verify the following.

Let a( P, H) in de FI Equation 5.23 be small (for example a = O(1)).
With prior P(-} set to m(.), the Fundamental I'nequality Equation 5.23
is satisfied iff data sample D is Pr(-|Hpal)-random.

With the chosen prior and data sample D, the required Pr{-|Hma)-
randomness of D constrains the domain of hypotheses from which we
can choose H,q;. Hence we can interprete ideal MDI. as an application
of Baycs’s Rule with as prior distribution the universal distribution m(-)
and selection of a hypothesis H,q; which shows the given data sample
random to it in the precise sense of Pr(:| Hypa1)-randomness of individual
objects as developed in Section 2.4.

Since the notion of individual randomness incorporates all effectively
testable properties of randomness, application of ideal MDL will select
the simplest hypothesis which balances the K{D|H) and K{H) and also
shows the data sample D random (as far as we are able to tell) with
respect to the selected hypothesis Hy,q).

This is the “reason” why the hypothesis selected by ideal MDL is not
simply the one that perfectly fits the data. With some amount of over-
statement on can say that if one obtains perfect data for a true hy-
pothesis, then ideal MDL interprets these data as data obtained from
a simpler hypothesis subject to measuring errors. Consequently, in this
case ideal MDL is going to give you the false simple hypothesis and not
the complex true hypothesis.
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5.5.8
Applying
Minimum
Description
Length

Definition 5.5.1

¢ Ideal MDL only gives us the true hypothesis if the data satisfy
certain conditions relative to the true hypothesis. Stated differently:
there are only data and no truc hypothesis for ideal MDL. The
principle simply obtains the hypothesis that is suggested by the
data and it assumues that the data are random with respect to the
hypothesis.

We have now provided an explanation why and when MDL works within
the theory of algorithmic information that agrees with the analysis per-
formed in the theory of probability, namely, that the MDL estimates
of the data-generating models are consistent, except for data in small
probability. And this is the essence of the requirement of the data being
random, relative to the best model, in condition FI, Equation 5.23.

It is only to within terms of order O(1) that the MDL and the Bayesian tech-
niques are equivalent. In modern forms of MDL one departs from the straight
correspondence with Bayes’s rule and takes — log[m(D}H)/ >oor m(D’II:I)},
instead of — log[m(D| )], where H(D) is the minimizing hypothesis and the
summation runs through all data D’ such that H(D') == I;’(D), {J.J. Rissa-
nen, [EEE Trans. Inform. Theory, [T-42:1(1996), 40-47]. The probability in
the denominator gets absorbed by the term (1), however, but for smaller
amounts of data it does make a difference.

Unfortunately, the function K (-) of the hypotheses H is not computable
(Section 3.4). For practical applications one must settle for easily com-
putable approximations. One way to do this is as follows: First encode
both H and D|H by a simply computable bijection as a natural num-
ber in . Assume we have some standard procedure to do this. Then
consider a simple self-delimiting description of z. For example, r is en-
coded by #’ = 1'®)0{(x)x. This makes {z') = logz + 2loglogz + 1,
which is a simple upper approximation of K (z); see Section 3.2. Since
the length of code-word sets of prefix-codes corresponds to a probability
distribution by Kraft’s Inequality (page 74), this encoding corresponds
to assigning probability 274=") to 2. In the MDL approach, this is the
specific usable approximation to the universal prior. In the literature
we find a more precise approximation that, however, has no practical
meaning. For convenience, we smooth our encoding as follows.

Let + € N. The universal MDL prior over the natural numbers is
M(LL‘) = 9—logz--2log log:.-;-

In the Bayesian interpretation the prior distribution expresses one’s prior
knowledge about the “true” value of the parameter. This interpretation may
be questionable, since the used prior is usually not generated by repeated
randoin experiments. In Rissanen’s view, the pararmeter is generated by the
selection of the class of hypotheses and it has no inherent meaning. It is just
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one means to describe the properties of the data. The selection of H that
minimizes K (H) + K{D|H) (or Rissanen’s approximation thereof} allows one
to make statements about the data. Since the complexity of the models plays
an important part, the parameters must be encoded. To do so, we truncate
them to a finite precision and encode them with the prefix-code above. Such a
code happens to be equivalent to a distribution on the parameters. This may
be called the universal] MDL prior, but its genesis shows that it expresses no
prior knowledge about the true valuc of the parameter. See [J.J. Rissanen,
Stochastic Complexity and Statistical Inguiry, World Scientific, 1989]. Above
we have given a validation of MDL from Bayes’s Rule, which holds irrespective
of the assumed prior, provided it is recursive and the hypotheses and data are
random.

In statistical applications, H is some statistical distribution (or model)
H = P(8) with a list of parameters 8 = (1, . ..,0), where the number k
may vary and influence the (descriptional) complexity of . (For example,
H can be a normal distribution N{u, o) deseribed by # = (u,0).) Each
parameter #; is truncated to finite precision and encoded with the prefix-
code above.

The data sample consists of n outcomes y = (y1,...,%n) of n trials
x = (z1,...,Zn) for distribution P(6}. The data sample I’ in the above
formulas is given as IJ = (x,y). By expansion of conditional probabilities
we have therefore

Pr(D|H) = Pr(x,y|H) = Pr(x|H) - Pr(y|H, x).

In the argument above we take the negative logarithm of Pr{(D|H), that
is,

—log Pr{D|H) = — log Pr(x|H) — log Pr(y|H, x).

Taking the negative logarithm in Bayes’s rule and the analysis of the
previous section now yields that MDL selects the hypothesis with highest
inferred probability satisfying x is Pr(-|H)-random and y is Pr{-|H,x)-
random. Thus, Bayesian reasoning selects the same hypotihesis as MDL
does, provided the hypothesis with maximal inferred probability causes
X, ¥ to satisfy these randomness requirements.

Under certain gencral conditions, J.J. Rissanen has shown that with
k parameters and n data (for large n) Equation 5.16 is minimized for
hypotheses H with @ encoded by

k
—log P(H) = 5 logn
bits. This is called the optimum model cost since it represents the cost
of the hypothesis description at the minimum description length of the
total.
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Example 5.5.4

As an example, consider a Bernaulli process (p,1 — p) with p close to
%. For such processes k = 1. Let the outcome be £ = z;22...z,. Set
fz = 3.1, #:. For outcome x with C(z) > n — 6(n), the number of 1’s
will be (by Lemma 2.3 on page 159)

fo=n/2+ \/g(é(n) +)n/ loge.

With 6(n) = logn, the fraction of such z’s in {0,1}" is at least 1 —
1/n and goes to 1 as n rises unboundedly. Hence, for the overwhelming
number of z’s the frequency of 1’s will be within

2—% logn

of the value % That is, to express an estitnate to parameter p with
high probability it suffices to use a precision of % logn bits. It is easy to
generalize this example to arbitrary p. <

In biological modeling, we often wish to fit a polynomial f of unknown
degree to a set of data points

D= (371,?}1):- R (mn)yn)!

such that it can predict future data y given «. Even if the data did come
from a polynomial curve of degree, say, two, because of measurement
crrors and noise, we still cannot find a polynomial of degrec two fitting all
n points exactly. In general, the higher the degree of fitting polynomial,
the greater the precision of the fit. For n» data points, a polynomial of
degree n — 1 can be made to fit exactly, but probably has no predicting
value. Applying ideal MDL we look for Hyai := minargy, { K (x, y|H) +
K(H)}.

Let us apply the ideal MDL principle where we describe all (k- 1)-
degree polynomials by a vector of k entries, each entry with a precision
of d bits. Then the entire polynomial is described by

kd + O(log kd) bits. (5.26)

(We have to describe k, d, and account for self-delimiting encoding of
the separate items.) For example, az? + bz + ¢ is described by (a,b,¢)
and can be encoded by about 3d bits. Each datapoint (x;, y;) that needs
to be encoded separately with precision of d bits per coordinate costs
about 2d bits,

For simplicity assume that probability Pr(x|H) = 1 (because x is pre-
scribed). To apply the ideal MDL prineiple we must trade the cost of
hypothesis I (Equation 5.26) against the cost of describing y with help
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of H and x. As a trivial example, suppose that n - 1 out of n datapoints
fit a polynomial of degree 2 exactly, but only 2 points lie on any poly-
nomial of degree 1 (a straight line). Of course, there is a polynomial of
degree n— 1 that fits the data precisely (up to precision). Then the Ideal
MDL cost is 3d + 2d for the 2nd degree polynomial, 2d + (n — 2)d for
the 1st degree polynomial, and nd for the (n — 1)th degree polynomial.
Given the choice among those three options, we select the 2nd degree
polynomial for all n > 5.

A more sophisticated approach, accounting for the average encoding cost
of exceptions, assumes that the data are Gaussian distributed. Consider
polynomials f of degree at most n — 1 that minimize the error

error(f) = Z(f(xi) — )2 (5.27)

i=1

This way we find an optimal set of polynomials for each £ = 1,2,...,n.
To apply the MDL principle we must trade the cost of hypothesis H
(Equation 5.26) against the cost of describing D|H.

To describe measuring errors {(noise) in data it is common practice ta
use the normal distribution. In our case this means that each y; is the
outcome of an independent random variable distributed according to
the normal distribution with mean f(z) and variance, say, constant. For
each of them we have that the probability of obtaining a measurement y;,
given that f(z) is the true value, is of the order of exp(—(f(z) — u;)?).
Considering this as a value of the universal MDL probability, this is
encoded in s(f{z)—y;)? bits, where s is a (computable) scaling constant.
For all experiments together we find that the total encoding of D|f,x
takes s - error(f) bits. The MDL principle thus tells us to choose a k-
degree function fr, k € {0,...,n — 1}, that minimizes (ignoring the
vanishing O(log kd) term) kd + s - error(fx) . O

In this example we apply the MDL principle to infer decision trees. We
are given a set of data, possibly with noise, representing a collection of
examples. Each example is represented by a data item in the data set,
which consists of a tuple of aettributes followed by a binary Class value
indicating whether the example with these attributes is a positive or
negative example.

Figure 5.3 gives a small sample set. The columns in the table describe
attributes that are weather conditions. The rows are examples that rep-
resent weather conditions in relation to some “unspecified occurrences.”
The last column classifies the examples as positive or negative, where
“P” means that it happened and “N” means that it did not happen.
We would like to obtain good predictions for such occurrences by com-
pressing the data. Our task can now be explained as a communication
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No. ATTRIBUTES CLaAss
Outlook | Temperature | Humidity | Windy
1 overcast | hot high not N
2 overcast | hot high very N
3 overcast | hat high medium N
4 sunmny hot high not P
5 sunny hot high medium P
6 rain mild high not N
7 rain mild high medium N
8 rain hot normal not P
9 rain cool normal medium N
10 rain hot normal very N
11 sunnoy cool normal very P
12 sunny cool normal mediurm P
13 overcast | mild high not N
14 overcast | mild high medium N
15 overcast | cool normal not P
16 overcast | cool normal medium P
17 rain mild normal not N
18 rain mild normal medium N
19 overcast | mild normal medium P
20 overcast | mild normal very P
i | sunny mild high very P
22 sunny mild high medium P
23 sunny hot normal not P
24 rain mild high very N

FIGURE 5.3. Sample data set

problem between Alice, who obscrved the data in Figure 5.3, and Bob.
Alice and Bob both know the four parameters (outlook, temperature,
humidity, windy)} and their attributes. Alice wishes to send Bob the in-
formation in the table, using as few bits as possible. Alice and Bob have
to agree in advance on an encoding technique to be used.

Alice and Bob do not know in advance which table they have to trans-
mit. The simplest strategy for Alice is to transmit the complete table
in Figure 5.3 to Bob literally. There are 24 rows. Each row has four
attributes and one Class value. Three attributes have three altcrnative
values each; the other attribute and Class have two alternative values
each. Then this requires 24(3log, 3 + 2) = 24(3 x 1.585 + 2) =~ 162.12
bits. Or Alice can agree with Bob beforehand about a fixed order of
cnumerating all 3 x 3 x 2 x 3 = 54 combinations of attributes, and then
just send the last column of 54 bits, supplying arbitrary Class values for
the 30 rows missing from the table in Figure 5.3. These methods use no
data compression.
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If Alice is clever enough to find some regularity in the data, like “the
Class value is ‘N’ iff it rains,” then Alice needs only a few bits to transmit
this sentence to Bob, and Bob can use this rule to reconstruct the com-
plete table with all the combinations of attributes with 3 x3x2x 3 = 54
TOWS.

Let us say that Alice and Bab have agreed to use a decision tree. A deci-
sion tree that is consistent with the data can be viewed as a classification
procedure. The internal nodes in the tree are decision nodes. Each such
node specifies a test of a particular attribute; the possible answers are
labeled on the arcs leaving the decision node. A leaf of the tree specifies
a class to which the object that passed the attribute tests and arrived
at this lcaf belongs. Given data as in Figure 5.3, we can construct many
different decision trees of various sizes that agree with the data. Two
such trees are given in Figures 5.4 and 5.5. The tree in Figure 5.4 is
imperfect since it makes an error on row 8; the tree in Figure 5.5 classi-
fies all of the sample set correctly. The tree in Figure 5.5 is the smallest
perfect decision tree for the data in Figure 5.3.

Some data, for example noise, may not obey the predicting rule defined
by the decision tree. One usually has a choice between using a small
imperfect tree that classifies some data falsely or a big perfect tree that
correctly classifies all given data. Alice can use a smaller imperfect tree
or the bigger perfect tree. The tree in Figure 5.5 grows much bigger just
because of a single (perhaps noisy) example (row 8), and Alice may find
that it is more economical to code it separately, as an ezcepfion.

The goal is often to construct a decision tree that has the smallest error
rate for classifying unknown future data. Is the smallest perfect decision
tree really a good predictor? It turns out that in practice this is not the
case. Due to the presence of noise or inadequacy of the given attributes,
selecting a perfect decision trec “overfits” the data and gives generally
poor predictions. Many ad hoc rules have been suggested and used for
overcoming this problem:.

The MDL principle appears to provide a solution and generally works
well in practice. Essentially, given the data sample without the class val-

QOutlook

sunny rain

overcast

FIGURE 5.4. Imperfect decision tree
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ues, we lock for a reasonably small tree such that most data are cotrectly
classified by the tree. We encode the inconsistent data as exceptions. We
minimize the sum of

¢ the number of bits to encode a (not necessarily perfect) decision
tree 7, that is, the model that gives the — log P(H) term; and

¢ the number of bits to encode (describe) the examples (4, 4:) in the
sample (x,y) that are inconsistent with T, given the entire data
sample X without the class values y. This gives the — log P(y|H,x)
teri.

Woe have to provide a coding method. This is important in applications,
since it determines where the optimum is. If the encoding of trees is not
efficient, then we may end up with a very small tree (with relatively large
depth}, and too many examples become exceptions. An inefficient en-
coding of the exceptions would result in overly large trees. In both cases,
the prediction of unseen data is affected. The reader should realize that
the choice of cost measure and encoding technique cannot be objective.
One can encode a tree by making a depth-first traversal. At cach inter-
nal node, write down the attribute name in some self-delimiting form
followed by its edge label. At a leaf write down the class value. If the
tree is not perfect, then the data that do not fit in the tree are encoded
separately as exceptions (in some economical way using the provided
total data sample without the class values).

Coding the Tree It is desirable that the smaller trees be represented
by shorter encodings. Alice can make a depth-first traversal of the tree
in Figure 5.4, and accordingly she writes down

1 Outlook 0 P 1 Humidity O N 0 P 0 N.

Qutlook

sunny rain

overcast

Humidity

FIGURE 5.5. Perfect, decision tree
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For the tree in Figure 5.5, she writes down

1 Outlook 0 P 1 Humidity ON 0P 1 Windy ON O N
1 Temperature O NON 1 P.

Alice uscs a “1” to indicate that the next node in the depth-first search
is an internal node and then writes the corresponding attribute; Alice
writes a 0 followed by “N” (“P”} if she meets a leaf with value “N” {“P”).
Representing “N” or “P” requires only onc bit. Representing attribute
“Outlook” at the root level requires 2 bits since there are 4 possibilities.
Encoding the next-level attributes requires log 3 bits since there are only
3 choices left (“Outlook” is already used). She can use just one bit for
“Windy” and one bit for “Temperature” (in fact, this one bit is not
needed). Thus, the smaller (but imperfect) tree requires 13.585 bits; the
bigger (but perfect) trec requires 25.585 bits.

Coding the Exceptions Since the decision tree in Figure 5.4 is not
perfect, we need to indicate where the exceptions are. In this case there
is a single exception. The most straightforward way is to indicate its
position among all 54 possible combinations of attributes. This costs
log 54 = 5.75 extra bits.

Thus, the encoding using the decision tree in Figure 5.4 uses 19.335 bits;
the encoding using the decision tree in Figure 5.5 uses 25.585 bits. The
MDL principle tells us to use the former method, which is also much
shorter than the 54-bit plain encoding.

Procedures for computing decision trees have been implemented by J.R. Quin-
lan and R. Rivest [Inform. Computation, 80(1989), 227-248]. Computing the
absolute minimum decision tree is NP-complete, as shown by T. Hancock, T.
Jiang, M. Li, and J. Tromp, Inform. Comput., 126:2(1996), 114-122_ They have
shown that approximating minimum decision trees is also NP-hard, even ap-
proximation to within some polynomial factor. Consequently, approximation
heuristics have to be used. See also K. Yamanishi, A Randomized Approxi-
mation of the MDL for Stochastic Models with Hidden Variables, Proc. 9th
ACM Comput. Learning Conference, ACM Press, 1996; and V. Vovk, Learn-
ing about the parameter of the Bernoulli Model, J. Comput. System Sci., to
appear.

&

(Alternative MDL-Like Principle) In the above interpretation of
MDL we essentially look for a hypothesis H minimizing K (D|H)+K (H).
This always satisfies

K(D|H) + K(H) = K(D).
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An incorrect interpretation of the way we used MDL in Example 5.5.5
on page 364 is sometimes confused with MDL. In the new approach the
idea is that we define E := D — Dy, where Dy is the data set classified
according to . We want to minimize

K(H,E) =~ K(H) + K(E|H)

over H. That is, F' dcnotes the subset of the data sample D that are
exceptions to H in the sense of being “not covered” by H. We want to
find H such that the description of H and the exception data E not
covered by H are together minimized. Note that in this case always

m}}n{K(H) + K(E|H)} < K(Q)+ K(D) = K(D),

in contrast to the standard interpretation of MDL above. This incarna-
tion of MDL is not straightforwardly derived by our approach above.
We may interpret it that we look for the shortest description of an ac-
cepting program for the data consisting of a classification rule H and
an exception list #. While this principle sometimes gives good results,
application may lead to absurdity as the following shows:

In many problems our data sample D consists of only positive examples,
as when we want to learn (a gramar for) the English language given a
corpus of data D like the Ozford Dictionary. Then according to our new
MDL rule the best hypothesis is the trivial grammar H generating all
sentences over the alphabet. Namely, this grammar gives K(H) = O(1)
independent of D and also F := @. Consequently,

min{K (H) + K(E|H)} = K(H) = O(1),

which is absurd. The principle is vindicated and reduces to the stan-
dard onc in the context of interpreting I = (x,y) as in Example 5.5.3
on page 362, with x fixed as in “supervised learning.” This is a cor-
rect application as in Example 5.5.5 on page 364. We want to find H
minimizing

K(H) + K(y|H,x) + K(x|H),
which is the same as minimizing
K(H)+ K(y|H,x),

provided we take K(x|H) constant. Now, K(y|H,x) corresponds to
K(E|H) if we ignore the constant x in the conditional. <

(Maximum Likelihood) The mazimum likelihood (ML) principle says
that for given data D, one should select the hypothesis A that maximizes
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P(D|H} or equivalently, minimizes — log P(D|H). In case of finitely
many hypotheses, this is a special case of the MDL principle with the
hypotheses distributed uniformly (all have equal probability). The prin-
ciple has many admirers, is supposcdly objective, and is due to R.A.
Fisher. <

(Maximum Entropy) In statistics there are a number of important
applications where the ML principle fails, but where the maximum en-
tropy principle has been successful, and conversely.

In order to apply Bayes’s Rule, we need to decide what the prior proba-
bilities p; = P(H;) are, subject to the constraint >, p; = 1 and certain
other constraints provided by empirical data or considerations of sym-
metry, probabilistic laws, and so on. Usually these constraints are not
sufficient to determine the p;’s uniquely. E.T. Jaynes proposed to select
the prior by the mazimum entropy (ME) principle.

The ME principle selects the estimated values p; that maximize the
entropy function

k
H(p,...,p) =— 3 _pilnp;, (5.28)
i=1
subiect to
k

> pi=1 (5.29)

and some other constraints. For example, consider a loaded die, k& = 6. If
we do not have any information about the die, then using the principle
of indifference, we may assume that p; = % for7=1,...,6. This actually
coincides with the ME principle, since H{(p;,.-.,ps) = — Zle p; Inp;,
coustrained by Equation 5.29, achieves its maximum In6 = 1.7917595
for p; = é for all 7.

Now suppose it has been experimentally observed that the die is biased
and the average throw gives 4.5, that is,

6
> ipi=45. (5.30)
i=1

Maximizing the expression in Equation 5.28, subject tc the constraints
in Equations 5.29 and 5.30, gives the estimates

Pi = e_’\i(z e MYl i=1,...,8,
J
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where A = —0.37105. Hence,
(B1s. .., Ps) = (0.0543,0.0788,0, 1142, 0.1654, 0.2398, 0.3475).

The maximized entropy H{f,...,fs) equals 1.61358. How dependable
is the ME principle? Jaynes has proven an “entropy concentration the-
orem” that, for example, implies the following: In an experiment of
n = 1000 trials, 99.99% of all 6'%% possible outcomes satisfying the
constraints of Equations 5.30 and 5.29 have entropy

31‘"’) < 1.614,
T n

1602 < H (
where n; is the number of times the value i occurs in the experiment.
We show that the Maximum Entropy principle can be considered as a
special case of the MDL principle, as follows:

Consider the same type of problem. Let § = (p;,...,px) be the prior
probability distribution of a random variable. We perform a sequence of
n independent trials. Shannon has observed that the real substance of
Formula 5.28 is that we need approximately nH(#) bits to record the
sequence of n outcomes. Namely, it suffices to state that each outcome

appeared np,...,ng times, respectively, and afterwards give the index
of which one of the
n !
=" (5.31)
LATEERRR LY 'nl'nk'

possible sequences D of n outcomes actually took place. For this no more
than

klogn + log ( ) + O(loglogn) (5.32)

N1,y N

bits are needed. The first term corresponds to —log P(8), the second
term corresponds to —log P(D|#), and the third term represents the
cost of encoding separators between the individual items. Using Stirling’s
approximation of n! ~ +/2rn(n/e)” for the quantity of Equation 5.31,
we find that for large n, Equation 5.32 is approximately

k
T4 ;|\ Ty 2"
n(*zzlogz) —nH(;—,...,g).

i=1

Since & and n are fixed, the least upper bound on the minimum descrip-
tion length, for an arbitrary sequence of n outcomes under certain given
constraints 5.29 and 5.30, is found by maximizing the term in Equa-
tion 5.31 subject to said constraints. This is equivalent to maximizing
the entropy function 5.28 under the constraints.
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Viewed differently, let S be the set of outcomes with values (ny, ..., ny),
with n; = np;, corresponding to a distribution & = (p;,...,px). Then
due to the small number of values (k) in € relative to the size of the sets,
we have

log Y d(Se) ~ max{log d(Sp)}. (5.33)
[

The left-hand side of Equation 5.33 is is the minimum description; the
right-hand side of Equation 5.33 is the maximum entropy. <

The material on Epicurus can be found in E. Asmis [Epicurus Scien-
tific Method, Cornell University Press, 1984]. The elegant paper “The
use of simplicity in induction,” by J.G. Kemeny [Phil. Rev., 62(1953),
391-408] contains predecessors to the ideas formulated in this chap-
ter. Bayes’s formula originates from Thomas Bayes’s “An essay towards
solving a problem in the doctrine of chances” [Phil. Trans. Roy. Soc. 25
(1763) 376-398. (Ibid. , 54(1764) 298-310, R. Price (Ed.))] posthumously
published by his friend Richard Price. Properly speaking, Bayes's Rule
as given in the text is not due to Bayes. P.S. Laplace stated Bayes’s
Rule in its proper form and attached Bayes’s name to it in A philo-
sophical essay on probabilities (1819). In his original memoir, Bayes
assumes the uniform distribution for the prior probability and derives
P(H;|D) = P(D|H;)/%_; P(D|H;). This formula can be derived from
Bayes’s Rule in its present form by setting all P(H;) equal. Bayes did
not state the result in its general form, nor did he derive it through a for-
mula similar to Bayes’s Rule. The books by B. dc Finctti [Probability,
Induction, and Statistics, John Wiley & Sons, 1972}, I.J. Good {Good
Thinking, University of Minnesota Press, 1983], P.S. Laplace [Ibid.}, R.
von Mises [Probability, Statistics and Truth, Macmillan, 1939], and T.L.
Fine [Theories of Probability, Academic Press, 1973] contain excellent
discussions on the Bayesian and non-Bayesian views of inductive rea-
soning.

The idea of using Kolmogorov complexity in inductive inference, in the
form of using a universal prior probability, is due to R.J. Solomonoff
[Inform. Contr., 7(1964), 1-22, 224-254]. Solomonoff’s original defini-
tion of prior probability is problematic through the usc of the C-version
of the Kolmogorov complexity instead of the prefix complexity (as used
here). Inductive inference, using M as universal prior, is due to R.J.
Solomonoff [IEEE Trans. Inform. Theory, 1T-24(1978), 422-432]; see
also [T.M. Cover, ‘Universal gambling schemes and the complexity mea-
sures of Kolmogorov and Chaitin,” Tech. Rept. 12, 1974, Statistics Dept,



