
1

Tree Learning
A story on uncertainty in machine learning

Based also on the book by Peter Flach, University of Bristol and
Ray Mooney, University of Texas, Lecture

2

Machine learning settings

3

Machine learning settings

•  Logical approach - Decision and regression trees, rules

•  Probabilistic methods – Bayesian methods

•  Linear methods – Linear discriminant, SVM, perceptron,
 logistic regression

•  Distance-based methods – Lazy Learning (kNN), clustering

4

Machine learning settings

•  Logical approach - Decision and regression trees, rules

•  Probabilistic methods – Bayesian methods

•  Linear methods – Linear discriminant, SVM, perceptron,
 logistic regression

•  Distance-based methods – Lazy Learning (kNN), clustering

5

Learning Trees

•  Supervised method – data classified into classes, i.e. data
contains a target attribute

•  Classifier is a tree that represents a hypotheses in a
disjunctive normal form

•  Finite number of classes >= 2 (for a decision tree),
continuous (for regression trees)

•  Finding a minimal decision tree (nodes, leaves, or depth) is
an NP-hard optimization problem. Heuristic algorithm can
be used to build a tree

•  Want to pick a feature that creates subsets of examples that
are relatively “pure” in a single class so they are “closer” to
being leaf nodes.

6

Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples.
 Else pick a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples.
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

7

Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples. Else

 pick a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples.
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

8

Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples. Else

 pick/construct a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples.
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

9

Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples. Else

 pick/construct a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples.
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

10

Tree Induction Pseudocode

DTree(examples, features) returns a tree
 If all examples are in one category, return a leaf node with that category label.
 Else if the set of features is empty, return a leaf node with the category label that
 is the most common in examples. Else

 pick/construct a feature F and create a node R for it
 For each possible value vi of F:
 Let examplesi be the subset of examples that have value vi for F

 Add an out-going edge E to node R labeled with the value vi.
 OR add a label vi. to an existing edge

 If examplesi is empty
 then attach a leaf node to edge E labeled with the category that
 is the most common in examples (mode or mean).
 else call DTree(examplesi , features – {F}) and attach the resulting
 tree as the subtree under edge E.
 Return the subtree rooted at R.

11

Decision Tree Induction

12

Impurity. Picking a Good Split Feature
Impurity for classes D1, …, Dl

13

Entropy
•  Entropy (disorder, impurity) of a set of examples, S, relative to a binary classification is:

 where p1 is the fraction of positive examples in S and p0 is the fraction of negatives.
•  If all examples are in one category, entropy is zero (we define 0⋅log(0)=0)
•  If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1.
•  Entropy can be viewed as the number of bits required on average to encode the class of an

example in S where data compression (e.g. Huffman coding) is used to give shorter codes
to more likely cases.

•  For multi-class problems with c categories, entropy generalizes to:

•  Information Gain

)(log)(log)(020121 ppppSEntropy −−=

∑
=

−=
c

i
ii ppSEntropy

1
2)(log)(

€

Gain(S,F) = Entropy(S) −
Sv
Sv∈Values(F)

∑ Entropy(Sv)

14

Hypothesis Space Search

•  Performs batch learning that processes all training
instances at once rather than incremental learning
that updates a hypothesis after each example.

•  Performs hill-climbing (greedy search) that may
only find a locally-optimal solution. Guaranteed to
find a tree consistent with any conflict-free
training set (i.e. identical feature vectors always
assigned the same class), but not necessarily the
simplest tree.

•  Finds a single discrete hypothesis, so there is no
way to provide confidences or create useful
queries.

15

Continuous features

Use binary split of the current interval using the same impurity measure
 as for discrete attributes

16

Missing feature values

•  Remove the instance
•  Replace with the most common (mode,

mean) value
•  Replace with the most common (mode,

mean) value w.r.t. a class
•  Decision trees: use weighted Impurity

measure (add relative increment to each
atribute value

17

Bias in Decision-Tree Induction

•  Information-gain gives a bias for trees with
minimal depth.

•  Implements a search (preference) bias
instead of a language (restriction) bias.

18

History of Decision-Tree Research

•  Hunt and colleagues use exhaustive search decision-tree
methods (CLS) to model human concept learning in the
1960’s.

•  In the late 70’s, Quinlan developed ID3 with the
information gain heuristic to learn expert systems from
examples.

•  Simulataneously, Breiman and Friedman and colleagues
develop CART (Classification and Regression Trees),
similar to ID3.

•  In the 1980’s a variety of improvements are introduced to
handle noise, continuous features, missing features, and
improved splitting criteria. Various expert-system
development tools results.

•  Quinlan’s updated decision-tree package (C4.5) released in
1993.

•  Weka includes Java version of C4.5 called J48.

19

Computational Complexity

•  Worst case builds a complete tree where every path test
every feature. Assume n examples and m features.

•  At each level, i, in the tree, must examine the remaining m-
i features for each instance at the level to calculate info
gains.

•  However, learned tree is rarely complete (number of leaves
is ≤ n). In practice, complexity is linear in both number of
features (m) and number of training examples (n).

F1

Fm

⋅ ⋅ ⋅ ⋅ ⋅ Maximum of n examples spread across
all nodes at each of the m levels

)(
1

2∑
=

=⋅
m

i
nmOni

20

Overfitting Noise in Decision Trees

•  Category or feature noise can easily cause overfitting.
–  Add noisy instance <medium, blue, circle>: pos (but really neg)

shape
circle square triangle

color
red blue green

pos neg pos

neg neg

21

Overfitting Noise in Decision Trees

•  Category or feature noise can easily cause overfitting.
–  Add noisy instance <medium, blue, circle>: pos (but really neg)

shape
circle square triangle

color
red blue green

pos neg pos

neg
<big, blue, circle>: -
<medium, blue, circle>: +

small med big

pos neg neg

•  Noise can also cause different instances of the same feature
vector to have different classes. Impossible to fit this data
and must label leaf with the majority class.
–  <big, red, circle>: neg (but really pos)

•  Conflicting examples can also arise if the features are
incomplete and inadequate to determine the class or if the
target concept is non-deterministic.

22

Overfitting Prevention (Pruning) Methods

•  Two basic approaches for decision trees
–  Prepruning: Stop growing tree as some point during top-down

construction when there is no longer sufficient data to make
reliable decisions.

–  Postpruning: Grow the full tree, then remove subtrees that do not
have sufficient evidence.

•  Label leaf resulting from pruning with the majority class of
the remaining data, or a class probability distribution.

•  Method for determining which subtrees to prune:
–  Cross-validation: Reserve some training data as a hold-out set

(validation set, tuning set) to evaluate utility of subtrees.
–  Statistical test: Use a statistical test on the training data to

determine if any observed regularity can be dismisses as likely due
to random chance.

–  Minimum description length (MDL): Determine if the additional
complexity of the hypothesis is less complex than just explicitly
remembering any exceptions resulting from pruning.

23

Reduced Error Pruning

•  A post-pruning, cross-validation approach.
Partition training data in “grow” and “validation” sets.
Build a complete tree from the “grow” data.
Until accuracy on validation set decreases do:
 For each non-leaf node, n, in the tree do:
 Temporarily prune the subtree below n and replace it with a
 leaf labeled with the current majority class at that node.
 Measure and record the accuracy of the pruned tree on the validation set.
 Permanently prune the node that results in the greatest increase in accuracy on
 the validation set.

24

Issues with Reduced Error Pruning

•  The problem with this approach is that it
potentially “wastes” training data on the validation
set.

•  Severity of this problem depends where we are on
the learning curve:

te
st

 a
cc

ur
ac

y

number of training examples

25

Cross-Validating without
Losing Training Data

•  If the algorithm is modified to grow trees breadth-
first rather than depth-first, we can stop growing
after reaching any specified tree complexity.

•  First, run several trials of reduced error-pruning
using different random splits of grow and
validation sets.

•  Record the complexity of the pruned tree learned
in each trial. Let C be the average pruned-tree
complexity.

•  Grow a final tree breadth-first from all the training
data but stop when the complexity reaches C.

•  Similar cross-validation approach can be used to
set arbitrary algorithm parameters in general.

26

Additional Decision Tree Issues

•  Features with costs

•  Misclassification costs

•  Incremental learning

•  Mining large databases that do not fit in main memory

27

C4.5

•  Based on ID3 algorithm, author Ross Quinlan
•  In all (or most of) non-commercial and commercial data mining tools
•  Weka: C4.5 ver.8 -> j48

Scheme of C4.5 algorithm:
 Run several time and choose the best tree
 Inner:Take L% of learning data randomly
 Call ID3 (pre-pruning, see –m parameter)
 Prune the tree (post-pruning, -cf)
 Take T% of unseen learning data for validation
 If validation criterion holds, exit
 Otherwise add L.increment to L and go to Inner

