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Neural Machine Translation





http://www.youtube.com/watch?v=K-HfpsHPmvw

History

Ruled based systems

1950-1990

*for more info Stanford CS224N course

Statistical Machine
Translation
1990-2010

Neural Machine
Translation
2010 -


https://www.youtube.com/watch?v=XXtpJxZBa2c&list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z&index=8

Used tools / libraries

Tokenization: https://github.com/google/sentencepiece

Training and additional scripts: https://github.com/pytorch/fairseq

Evaluation: https://github.com/alvations/sacremoses

Logging: https://wandb.ai/site



https://github.com/google/sentencepiece
https://github.com/pytorch/fairseq
https://github.com/alvations/sacremoses
https://wandb.ai/site

Used data

Data:
e TRAINING:

o czeng_train
e VALIDATION:

o newstest 2018

o tedtalk ( first 10k sentences)
e TEST

o newstest 2019

o czeng test

o tedtalk



Used hyper params

Architecture:
e Using Wasmani 2017 transformer
e 6 layersencoder, 6 layers decoder
e 16 heads per layer

Tokenization:
e BPE algorithm implemented in sentencepiece



Approach with 16-bit training

Original paper: https://arxiv.org/abs/1806.00187

model #gpu bsz  cumul | BLEU updates tkn/sec time speedup
Vaswani et al. (2017) 8xP100 25k 1 264 300k ~25k  ~5,000 -
Our reimplementation 8xVioo 25k | 264 192k 54k 1,429  reference
+16-bit 8 25k 1 26.7 193k 143k 495 2.9x
+ cumul 8 402k 16 26.7 13.7k 195k 447 3.2x
+2x 1r 8 402k 16 26.5 9.6k 196k 311 4.6x
+ 5k tkn/gpu 8 365k 10 26.5 10.3k 202k 294 4.9x
16 nodes (from +2x 1r) 128 402k 1 26.5 95k 1.53M 37 38.6x
+ overlap comm+bwd 128 402k 1 26.5 9.7k 1.82M 32 44.7x



https://arxiv.org/abs/1806.00187

Comparison with other

e Compare locally with sacremose but also submitted to Euro Matrix

e Cs->En
o Newstests 2019: http:/matrix.statmt.org/matrix/systems list/1866

e En->Cs
o Newstest 2017: http://matrix.statmt.org/matrix/systems list/1867
o Newstest 2019: http://matrix.statmt.org/matrix/systems list/1896



http://matrix.statmt.org/matrix/systems_list/1866
http://matrix.statmt.org/matrix/systems_list/1867
http://matrix.statmt.org/matrix/systems_list/1896

Future 'base’ experiments

English—Czech BLEU BLEU chrF2
system cased uncased  cased
Nematus (Sennrich et al., 2016b)  22.80 23.29 0.5059
T2T (Popel and Bojar, 2018) 23.84 2440 0.5164
our mixed backtranslation 24 .85 (+1.01) 25.33 0.5267
our concat backtranslation 25.77 (+0.92) 26.29 0.5352
+ higher quality backtranslation 26.60 (+0.83) 27.10 0.5410
+ CZ/nonCZ tuning 26.81 (+0.21) 27.30 0.5431

Table 2: Automatic evaluation on (English—Czech) newstest2017. The three scores in parenthesis show
BLEU difference relative to the previous line.

https://www.aclweb.org/anthology/W18-6424.pdf



https://www.aclweb.org/anthology/W18-6424.pdf

Compression techniques



Quantization



Quantization as post processing

e 2011 -Usedand tested already in pre transformer era

e achieves agood compression rate with the additional benefit of accelerating
inference on supporting hardware.

e Butthe errors made by these approximations accumulate in the computations
operated during the forward pass, inducing a significant drop in performance

*Improving the speed of nheural networks on CPUs



https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37631.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37631.pdf

Quantization as post processing

e 2011 -Usedand tested already in pre transformer era
e achieves agood compression rate with the additional benefit of accelerating
inference on supporting hardware.
e Butthe errors made by these approximations accumulate in the computations
operated during the forward pass, inducing a significant drop in performance
e Solution:
o Quantized Aware Training


https://storage.googleapis.com/pub-tools-public-publication-data/pdf/37631.pdf

Q8BERT - Quantization Schema

Quantize(z|S*, M) := Clamp (|x x S*]|,—M, M),
Clamp (z, a,b) = min (max (x,a),b)
M=201-1

M =
s v M
EMA (max (|z])) il = max (|W])

https://arxiv.org/pdf/1910.06188.pdf



https://arxiv.org/pdf/1910.06188.pdf

Q8BERT: Results

atas . BERT baseline QAT BERT  DQ BERT
e i accuracy (STD)  8bit (STD)  8bit (STD)
CoLA Matthew’s corr. 58.48 (1.54) 58.48 (1.32) 56.74 (0.61)
MRPC Fl 90 (0.23) 89.56 (0.18) 87.88 (2.03)
MRPC-Large Fl1 90.86 (0.55) 90.9 (0.29) 88.18(2.19)
QNLI Accuracy 90.3 (0.44) 90.62 (0.29) 89.34 (0.61)
QNLI-Large  Accuracy 91.66 (0.15) 91.74 (0.36) 88.38 (2.22)
QQP F1 87.84 (0.19) 87.96 (0.35) 84.98 (0.97)
RTE Accuracy 69.7 (1.5) 68.78 (3.52) 63.32(4.58)
SST-2 Accuracy 92.36 (0.59) 92.24 (0.27) 91.04 (0.43)
STS-B Pearson corr. 89.62 (0.31) 89.04 (0.17) 87.66(0.41)
STS-B-Large Pearson corr. 90.34 (0.21) 90.12 (0.13) 83.04 (5.71)
SQuADvI.1 Fl 88.46 (0.15) 87.74 (0.15) 80.02 (2.38)




QUANTIZATION NOISE FOR EXTREME
MODEL COMPRESSION

e Traditional vector quantization = split the matrix W into its p columns
and learn a codebook on the resulting p vectors.

e Product Quantization splits each column into m subvectors and learns
the same codebook for each of the resulting m x p subvectors.

e [terative PQ = quantize layers sequentially from the lowest to the
highest, and finetune the upper layers as the lower layers are quantized

e Then combining fixed-point with product quantization

https://arxiv.org/pdf/2004.07320.pdf



https://arxiv.org/pdf/2004.07320.pdf

QUANTIZATION NOISE - Training

e Select just subset of block and apply quantization

e Whenselecting all blocks = QAT
e Advantage of selecting only subset = unbiased gradients continue to flow

via blocks unaffected by the noise

https://arxiv.org/pdf/2004.07320.pdf



https://arxiv.org/pdf/2004.07320.pdf

QUANTIZATION NOISE - Results

Quantization Scheme Language Modeling Image Classification
16-layer Transformer EfficientNet-B3
Wikitext-103 ImageNet-1k

Size  Compression PPL Size Compression  Top-1
Uncompressed model 942 x 1 18.3 46.7 Xi 1 81.5
int4 quantization 118 x 8 39.4 5.8 X 8 45.3
- trained with QAT 118 x 8 34.1 5.8 x 8 59.4
- trained with Quant-Noise 118 X 8 21.8 5.8 X 8 67.8
int 8 quantization 236 x 4 19.6 11.7 X 4 80.7
- trained with QAT 236 x 4 21.0 11.7 x 4 80.8
- trained with Quant-Noise 236 X 4 18.7 11.7 X 4 80.9
iPQ 38 X 25 25.2 3.3 x 14 79.0
- trained with QAT 38 X 25 41.2 3.3 x 14 55.7
- trained with Quant-Noise 38 X 25 20.7 3.3 x 14 80.0

iPQ & int 8 + Quant-Noise 38 X

[\
o

21.1 3.1 X

[a—y
ot

79.8




Distillation



Knowledge distillation

e acompression technique in which the student model is trained to reproduce the
behaviour of the teacher model

e Trainingloss
o Distillation loss Lee = > _;ti * log(si)
o Cosine Embedding loss
o  Original training loss (f.e. e masked language modeling loss)

https://arxiv.org/pdf/1910.01108.pdf



https://arxiv.org/pdf/1910.01108.pdf

Distill BERT - student

e Architecture
o token-type embeddings and the pooler are removed while the number of layers
is reduced by a factor of 2.

e Initialization
o initialize the student from the teacher by taking one layer out of two



Distill BERT - results

e has 40% fewer parameters than BERT and is 60% faster than BERT

Table 1: DistilBERT retains 97% of BERT performance. Comparison on the dev sets of the
GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the
medians of 5 runs with different seeds.

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELMo 68.7 44.1 68.6 76.6 71.1 862 534 915 70.4 56.3
BERT-base  79.5 56.3 86.7 88.6 918 89.6 693 927 89.0 335
DistilBERT  77.0 313 82.2 87.5 892 885 3599 913 86.9 56.3




Distill BERT - Ablation study

Table 4: Ablation study. Variations are relative to the model trained with triple loss and teacher

weights initialization.

Ablation

Variation on GLUE macro-score

@ R Lcos 5 L'ml-m.

Lce = @ = L-m.lm

Lce i Lcos - 0

Triple loss + random weights initialization

-2.96
-1.46
-0.31
-3.69




Mobile BERT



Architecture
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Figure 1: Illustration of three models: (a) BERT; (b) Inverted-Bottleneck BERT (IB-BERT); and (c) MobileBERT.
In (b) and (c), red lines denote inter-block flows while blue lines intra-block flows. MobileBERT is trained by
layer-to-layer imitating IB-BERT.

https://arxiv.org/abs/2004.02984



Architecture

BERTL,\RGE BERTBASE IB-BERTLARGE MobileBERT MObilCBERTTlNY
hembedding 1024 768 128
embedding no-op no-op 3-convolution
hinter 1024 768 512
Linear | Dewe [ [ 512\ ] 512 512 1
hourput 1024 128 128
Binpu 1024 768 512 5 1 2 128
MHA | #Head 16 12 4 4
body houtput 1024 %24 768 %12 1024 24 128 %24 128 %24
hinput 1024 768 1024 128 128
FFN hern 4096 3072 4096 512 512 |x2
T 1024 768 1024 128 128
output
e hinput 1024 128 128
T | | 512 512 512
output L - J
#Params 334M 109M 293M 5.3M 15.1IM

Table 1: The detailed model settings of a few models. hiper, hppN, hembedding, #Head and #Params denote the
inter-block hidden size (feature map size), FFN intermediate size, embedding table size, the number of heads in
multi-head attention, and the number of parameters, respectively.



Training

knowledge
distillation

transfer

L) {

(i) (i)

knowledge transfer joint knowledge further
as auxiliary task transfer of student  distillation
(a) (b) ()

3-layer teacher 3-layer teacher 3-layer teacher  3-stage knowledge transfer of student  further distillation

Figure 2: Diagrams of (a) auxiliary knowledge transfer (AKT), (b) joint knowledge transfer (JKT), and (c) pro-
gressive knowledge transfer (PKT). Lighter colored blocks represent that they are frozen in that stage.



Results

CoLA SST-2 MRPC STS-B QQP MNLI-m/mm QNLI RTE

#Params #FLOPS Latency GLUE
85k 67k 3.7k 5.7k 364k 393k 108k 2.5k
ELMo-BiLSTM-Attn - - - 33.6 904 844 723 63.1 74.1/745 79.8 58.9( 70.0
OpenAl GPT 109M - - 472 93.1 877 848 70.1  80.7/80.6 87.2 69.1| 76.9
BERTgAsE 109M 225B 342ms | 52.1 935 889 858 712 84.6/83.4 90.5 66.4| 783
BERTgasg-6L-PKD* 66.5M  11.3B - - 92.0 85.0 - 70.7  81.5/81.0 89.0 65.5 -
BERTgasg-4L-PKD7* | 52.2M 7.6B - 248 894 826 798 702 79.9/79.3 85.1 623 -
BERTgasg-3L-PKD* 45.3M 5.7B - - 87.5 80.7 - 68.1  76.7/76.3 84.7 58.2 -
DistilBERTase-6L 622M  11.3B - - 92.0 85.0 70.7  81.5/81.0 89.0 65.5 -
DistilBERTpase-4Lf 52.2M 7.6B - 328 914 824 76.1 685 78.9/78.0 852 54.1 -
TinyBERT* 14.5M 1.2B - 433 926 864 799 713 82.5/81.8 87.7 629 754
MobileBERT vy 15.1M 3.1B 40ms | 46.7 917 879 80.1 689 81.5/81.6 89.5 65.1| 758
MobileBERT 25.3M 5.7B 62ms | 50.5 928 888 844 702 83.3/82.6 90.6 66.2( 77.7
MobileBERT w/o OPT| 25.3M 57B  192ms | 51.1 92.6 88.8 84.8 70.5 84.3/83.4 91.6 704 | 78.5




Lottery ticket hypothesis



Idea

e Ingeneral the sparser the network, the slower the
learning and the lower the eventual test accuracy
e But...



Idea

e Ingeneral the sparser the network, the slower the learning
and the lower the eventual test accuracy

e But...maybe there exist smaller subnetworks which train
from the start and learn at least as fast as their larger
counterparts while reaching similar test accuracy



LTH - formal definition

e Consider adense feed-forward neural network f(x; 6) with initial parameters 6 = 8, ~ D

e When optimizing with stochastic gradient descent (SGD) on a training set, f reaches
minimum validation loss [ at iteration j with test accuracya.

e Inaddition, consider training f(x; m. 90) with a mask m € {0, 1} '®lon its parameters such that
its initializationis m GO. When optimizing with SGD on the same training set (with m fixed), f
reaches minimum validation loss I’ at iteration j’ with test accuracy a’

e Thelottery ticket hypothesis predicts that 3 m for which |’ < j (commensurate training
time), a’ 2 a (commensurate accuracy), and ||m||, << 8] (fewer parameters).



Identifying winning tickets

Randomly initialize a neural network with params D,
Train the network for j iterations, arriving at parameters Gj
Prune p% of the parameters in 9}., creating a mask m
Reset the remaining parameters to their values in 6, creating the
winning ticket.
“Upgrade”:
o iterative pruning
o train, prune, and reset the network over n rounds
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Figure 3: Test accuracy on Lenet (iterative pruning) as training proceeds. Each curve is the average
of five trials. Labels are P,,,—the fraction of weights remaining in the network after pruning. Error
bars are the minimum and maximum of any trial.



Iterative vs One shot pruning

—— Random Reinit (Oneshot) —+— Winning Ticket (Oneshot) —+— Random Reinit (Iterative) —+— Winning Ticket (Iterative)
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(a) Early-stopping iteration and accuracy for all pruning methods.
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(b) Accuracy at end of training. (c) Early-stopping iteration and accuracy for one-shot pruning.

Figure 4: Early-stopping iteration and accuracy of Lenet under one-shot and iterative pruning.
Average of five trials; error bars for the minimum and maximum values. At iteration 50,000, training
accuracy = 100% for P, > 2% for iterative winning tickets (see Appendix D, Figure 12).



Iterative vs One shot pruning

e [terative pruning extracts smaller winning tickets, but
their are costly to find

e One-shot pruning makes it possible to identify winning
tickets without this repeated training

e One-shot indeed can find winning tickets, but
iteratively-pruned winning tickets learn faster and reach
higher test accuracy at smaller network sizes



Lottery tickets and NMT

e Toolsused

o Fairseq

o Checkpoint averaging

o Testing on newstests 2014
e Used 2 models Transformer Base and Transformer Base & Transformer Big
e Incontrast with original paper:

o Used late rewinding

https://arxiv.org/pdf/1906.02768.pdf



https://arxiv.org/pdf/1906.02768.pdf

Lottery tickets and NMT - results
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Figure 2: Winning ticket initialization performance for Transformer Base models trained on machine translation.
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Figure 3: Winning ticket initialization performance for Transformer Big models trained on machine translation.



Questions?



