PV204 Security technologies

Hardware Security Modules (HSM), crypto in cloud

Petr Svenda e svenda@fi.muni.cz ¥ @rngsec C R
«,CS

Centre for Research on Cryptography and Security, Masaryk University

Centre for Research on
Cryptography and Security

Please comment on slides with anything unclear, incorrect or suggestions for improvement

https://drive.google.com/file/d/1fYCLrz6cZmJVUYpYOEwYaVOvaUHW 8p6N/view?usp=sharing m

https://drive.google.com/file/d/1fYCLrz6cZmJVUYpY0EwYaV0vaUHW8p6N/view?usp=sharing

I Top questions (1) v

o

1]

Is my password brute-force-able if consists of 9 printable
characters?

hr
[=]

» Place/upvote guestions in slido
while listening to lecture video
Join at : :
: We will together discuss these
slido.com

#0v204 2021 during every week lecture Q&A
(every Monday, 17-18:00)

2 | PV204: Hardware Security Modules

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Hardware Security Module

HARDWARE SECURITY MODULE

3 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Hardware Security Module - definition

« HSM is trusted hardware element
— Contains own physical and logical protection
— May provide increased performance (compared to CPU)

Attached to or put inside PC/server/network box
Provides in-device:

p ,

— Secure key generation (and entry) You already know one

— Secure storage (and backup) example of HSM —a
% cryptographic smartcard

— Secure use (cryptographic algorithms)

Should never export sensitive data in plaintext
— Especially keys = Critical Security Parameters (CSP)

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

I

"""""""

»
»
)
9
9
i
H
i
3

HSMs “-_m"':/

* Price: $3-30 $100-$10000

Smart cards

« 2-5 RSA/ECC signs/sec « 100-10000 RSA/ECC signs/sec
« USB/serial connection - UTP/PCI connected

* Mostly disconnected « Always connected

* No battery « Own battery (time...)

- 3KB RAM, 100KB flash MBs-GBs, SSD

 Limited algs. support « Wide range of algorithms

* Rich API + management
— Common applications

« Trusted input interface (smartcard reader)

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Typical use-cases for HSMs

~ DT 2/

« Payment industry (PIN and transaction verification)
« TLS accelerator (server’s private key)
 Certification authority (protection of CA private key)
- Key management (distribution, derivation)

« Software signing

* Custom uses (DRM...)

* Vendors - market is now consolidating
—iBM, RCisher- Thales-Safenet; Gemalie; Utimaco...

YubiHSM

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Many HSM forms possible

Z

P

a0 § -

Stand-alone Ethernet boxes (1U/2U)
PCI cards

Serial/USB tokens

SmartCards, TPMs...

Note: we will focus on more powerful
devices (smart cards already covered)

YubiHSM

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Hardware Security Module - specification

« Common functions
— Generate functions (generate new key)
— Load functions (import key, plain/wrapped by other key)
— Use key functions (various cryptographic algorithms)
— Export key functions (wrapping)
— Access control functions (public, login user, login admin)
— Destroy secrets functions

» Possibility to write custom “plugins”
— Custom code running inside HSM
— (usually invalidates certification)

8 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Hardware Security Module - protection

* Protections against physical attacks (tamper)
— Invasive, semi-invasive and non-invasive attacks

* Protection against logical attacks
— APlI-level attacks, Fuzzing...

* Preventive measures
— Statistical testing of random number generator
— Self-testing of cryptographic engines (encrypt twice, KAT)
— Firmware integrity checks
— Periodic reset of device (e.g., every 24 hour)

9 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

HSM — tamper security

* Protection epoxy
* Wiring mesh

- Temperature sensors

* Light sensors I
- Variations (glitches) in power supply

* Erasure of memory (write O/random)
— After tamper detection to mitigate data remanence

O Which one is tamper resistance,
® cvidence, detection and/or reaction?

10 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

HSM — logical security

« Access control with limited/delayed tries
— < 1:1000 000 probability of random guess of password
— < 1:100 000 probability of unauthorized access in one minute

* [ntegrity and authentication of firmware update

— Signed firmware updates
 Logical separation of multiple users (memory)

— Additional protection logic for separate memory regions
* Audit trails

11 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

*% Common Criteria

CERTIFICATIONS

12 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Common Criteria certification primer

* Product vendor make some claims about Target of Evaluation (ToE, product or parts of it)
— Security functional components (SFRs) — security functions provided by the ToE (product)
— Security assurance components (SARS) — measures taken during the ToE lifetime
— Implementation-dependent statement of security needs written in Security Target (ST) document
« Claims about product (ST) can be constructed from:
1. Individual SFRs, SARs as mandated by the targeted Evaluation Assurance Level (EAL)
2. Taken from an approved Protection Profile (“template” for ST, now significantly preferred option)

éroduct Non-certified functionality \ /Protection Profile\ s

for HSMs

(TO E \ (" SRFs FDP_DAU.1) % 250

FIA_UAU.2 ==
User authentication

ection Profile
file

t
rotection Pro

security

Conforms to PP for HSMs | [Frmorpe=

(SARs [AVAVAN3

ALC_FLRA analysis
te faw N[ATE_coOV.2 |
vidence of coverage

1)

\
_ y

CR&,CS

. . - . . EALA
Assurance IEnl_o\n;ts—l‘; valuation

Common Criteria certification primer s | g | s G
ADV—ARC EAL1 E}‘iLZ EA1L3 E.AIIA E;'-‘;-LS EJ?LES E}‘iL?
ADV_FSP 1 2 3 4 5 5 [
. . 3 t ADV_IMP 1 1 2 2
- Evaluation Assurance Level (EAL) corresponds to extend of scrutiny | ™" [avar 2 o [
— EAL1-7, augmented - particular EAL also mandates minimal SAR levels i facoore |+ i3 {111
— Certificates mutually recognized up to EAL 2, up to EAL 4 inside EU i‘;{‘éﬁ‘; T m R
. . - . ALC DEL 1 1 1 1 1 1
« Common Criteria Recognition Arrangement (CCRA) “ppont | -ALCDVS L1 o
- Claims validated by accredited laboratories/evaluation facilities ATt | e
— If successful, product certificate is given and published Seouriy [ASENT |1 1T T T 11T 1T 111
Target ASEOBI | 1 | 2 | 2 2 2 | 2 2
* by Certificate Authorizing Members (e.g., French ANSSI, German BSI)| e (ARt 2 = =2 2 2
. g . . ASE TSS 1 1 1 1 1 1 1
« validity period typically 3 or 6 years o ame N T N R
— Maintenance Report(s) — smaller changes which doesn’t require full e T T T N T T

. Vulnerabili

recertification, or just continuation wsment |AVAVAN| 1| 2 [2 [3 |4 5]

« submitted by vendor, again validated by lab

— Labs comply with ISO/IEC 17025, national cert. bodies approved against
ISO/IEC 17065

14 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Documents produced and publicly available

* Documents produced and/or publicly available

o — Security Target document — provided by vendor (or on behalf) to Evaluation facility

- — Certification Report — issued by Cert. Auth. Member (e.g., French ANSSI), after
— checks by accredited Evaluation facility/lab (e.g., Serma Technologies)

‘%, — Maintenance Report(s) — smaller changes which doesn’t require full recertification

% — Protection Profiles documents — template for specific functionality, single vendor or
=% collaborative

=a
@ «» — CSV/HTML pages with some additional metadata, summary documents
g « automatically generated by CC portal, Cert. Auth. Members...

 (Additional confidential documents shared between vendor and lab)

¥y

15 | PV204: Hardware Security Modules

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS

What: Category of certified devices over the years
[Other devices]

3501 EE Access Control Devices and Systems
Biometric Systems and Devices <
300 go:m:)ar}c/ Prt?tectlon Devices and Systems Operating
ata Protection
Systems

Databases
Detection Devices and Systems
ICs, Smart Cards and Smart Card-Related Devices and Systems =
Key Management Systems

Mobility

Multi-Function Devices

Network and Network-Related Devices and Systems
Operating Systems

Other Devices and Systems
Products for Digital Signatures
Trusted Computing

2501

[Network-related]

2001 Multi-function

1501

100

Number of certificates issued

[ICs, Smart Cards]

501

O O A OO > D
ISP ID

Q)
P O
NTRTAT A A A
Year of issuance ni.cz @CRoCS_MUNI

CR&CS

Security level frequency peryear o, |
: As by specific :
Protection Profile

--

1201 —— Basic
...... EALO+
—— EAL1
1001 ——— EAL1+
—— EAL2 : .
w0l EAL2+ e, B [rmm=mmmm———————— -
—-— EAL3 B ! I EALS+ E
--- EAL3+ K " g / o J
EAL4 ’
EAL4+
—-— EAL5
~~ EAL5+
—— EAL6+
....... EAL7

201 —— EAL7+

60_ " EEE

40 -

Number of certificates issued

)

O A DO O DAL HD DA DD DN
PP LS ECETELEEREE I
AT AT AT AT RDT AR AR ADT ADT AR AR AR AR ADT ADT AD
Year of issuance

CR&,CS

NIST FIPS140-2 certification primer

Security Requirements for Cryptographic Modules
— More specific domain than Common Criteria - both hardware and software

Module — evaluated item with some security/cryptographic functionality
— Certificate #3820

Algorithm - implementation of security algorithm by given module
— List of approved algorithms

* e.g., AES in GCM mode, RSA key wrapping, SHA2 hash function...
— Other algorithms possibly available in non-FIPS mode

Public documents: Security Policy document, certificate web page

18 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS

Certified module levels in FIPS140-2 (grjyed are CC results)

300

2501

Number of certificates issued

501

Certificates issuance frequency per level and year

200 1

1507

100

B Level 1 - no specific physical security mechanisms are required
Level 1+
i Level 2 - physical evidence of tampering
Level 2+
B Level 3 - detecting and responding to attempts at physical access
Level 3+
W Level 4 - penetration has a very high probability immedi
Level 4+ /\/
«9&\9&«9&\90’%«?’@0)WQQQ'»QQ\/'»Q&'»°&’L°&'»°&f@gb'ﬁé\'LQQ%WQQQ'@\'Q'9\’\/@\'%'9&'9\9"»\f)m&b@om@'%'ﬁ@m&g

Year of issuance
cal vl 1oosualive

19 | PV204: Hardware Security Modules

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Certifications: FIPS140-2

 NIST FIPS 140-2
— Verified under Cryptographic Module Validation Program (CMVP)

— NIST FIPS 140-2 Level 1+2 — basic levels, tamper evidence (broken shell, epoxy), role-based
authentication (user/admin))

— NIST FIPS 140-2 Level 3 — addition of physical tamper-resistance, identity-based auth,
separation of interfaces with different sensitivity

— NIST FIPS 140-2 Level 4 + additional physical security requirements, environmental attacks
(very few devices certified)

 NIST FIPS 140-3
— for a long time only draft, then abandoned, then in March 2019 somewhat surprisingly approved

« Additional focus on software security and non-invasive attacks
« Testing from September 2020, supersedes FIPS140-2 but in parallel till 2026

 List of validated devices https://csrc.nist.gov/projects/cryptographic-module-validation-program

20 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://csrc.nist.gov/projects/cryptographic-module-validation-program

CR&,CS

Some problems...

« CC certification is costly and takes long time (>$100k, >>3 months)
— Works well for static, long-time usable products (hardware, smartcards...)
— CC generally not suitable for quickly changing products (software in cloud with daily updates...)

- Hard to interpret actual security by end-users
— Evaluation only with respect to ToE (crucial parts can be put out-of-scope by vendor)

« Marketing claims like “Common Criteria certified” (important is TOE details, achieved EAL,
PP conformance, laboratory used...) or “Common Criteria ready”

— Product is changing (sw/hw updates) — what is actually certified?

/Product Non-cettified funct:o@@ \

« How well was product scrutinized by testing laboratory? oy
— Lack of public details, tools used, configurations and results... No%{@&x@@mn ity [\
— Exact procedures under NDA and IP of labs/vendors Ce o ﬁ%
\ ' & (EAL4)/

21 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Cost of certification

 Certification is usually done by commercial “independent” laboratories
— Laboratories are certified by governing body
— Quality and price differ
— Usually payed for by device manufacturer
1. Certification pre-study
— Verify if product is ready for certification
2. Full certification
— Checklist if all required procedures were followed

22 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Motivation to keep already certified]

Cost of CC EAL (US GAQO, 2006) [version longer in production (

W
o Still true today (2021) (years to certify, $250k+ cost) =]

Months
25

1]

2 3 4
Evalualation assurance lavel
Source: GAD analysis of data provided by labombories.
UVvval € cC LU V IVIOUUIC

23

CR&,CS

Be aware what Is actually certified

Certified != secure

— Satisfies defined criteria, producer claims were verified to be valid
— Infineon’s RSA prime generation algorithm (BSI, CVE-2017-15361)
Typically, bundle of hardware and software is certified

— Concrete underlying hardware

— Concrete version of firmware, OS and pre-loaded application
Certification usually invalidated when:

— New hardware revision used (less common)

— New version of firmware, OS, application (common)

— Any customization, e.g., user firmware module (very common)
Pragmatic result

— “I'm using product that was certified at some point in time”

24 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

How Is certified product used?

« Trade-off between security functionality and required data centre operations
» Certification FIPS 140-2

— users usually turn FIPS mode off (want use additional functionality)

 “Almost” FIPS 140-2 mode

— Everything FIPS except what user added (custom module)

25 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

HSM PERFORMANCE

26 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

HSM — performance |.

- Limited independent public information available
— Claim: “up to 9000 RSA-1024b operations / second”

* But...
— Real operations are not just raw crypto (formatting of messages...)
— Longer key length may be needed (RSA-2048b and longer)
— Internal vs. external speed (data in/out excluded)

— Measurements in “optimal” situations (single pre-prepared key, large data
blocks...)

27 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

HSM — performance |l.

+ Relatively difficult to obtain fair comparison

* F. Demaertelaere (2010)
— https://handouts.secappdev.org/handouts/2010/Filip%20Demaertelaere/HSM. pdf

 RSA 1024 bit private key operation: 100 — 7000 ops/sec
« ECC 160 bit ECDSA signatures: 250 — 2500 ops/sec

« 3DES: 2 - 8 Mbytes/sec

* AES: 6 - 40 Mbytes/sec (256 bit key)

* No significant breakthrough in technology since 2010
* Higher throughput achieved by multiple HSMs

28 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://handouts.secappdev.org/handouts/2010/Filip%20Demaertelaere/HSM.pdf

CR&CS

Recent update (Feb 2018)

Available Models and Performance

nShield
Connect Models

500+

XC
Base

1500+

6000+

Mid

High

RSA Signing Performance (tps)

2048 bit
4096 bit

ECC Prime Curve Signing Performance (tps

256 bit
Client Licenses
Included

Maximum

http://go.thalesesecurity.com/rs/480-LWA-970/images/ThalesEsecurity_nShield_Connect_ds.pdf
https://crocs.fi.muni.cz @CRoCS_MUNI

29 | PV204: Hardware Security Modules

150
80

540

for NIST Recommended Key Lengths

430
100

680

450

190

) for NIST
1,260

3,000
500

3,500
850

8,600
2,025

Recommended Key Lengths

2,400

5,500

14,400

© Thales - February 2018 = PLB6317

CR&,CS

HSM - load balancing, failover

« HSMs often used in business critical scenarios
— Authorization of payment transaction
— TLS accelerator for internet banking

« Redundancy and load-balancing required

« Single HSM is not enough
— At least two In production for failover
— At least one or two for development and test

30 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Hardware Security Module

STEPS OF CRYPTO OPERATION

31 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Steps of cryptographic operation

Transfer input data

Transfer wrapped key in

Initialize unwrap engine

Unwrap data/key (decrypt/verify)
Initialize key object with key value
Initialize cryptographic engine with key
Start, execute and finalize crypto operation
. Initialize wrap engine

D« 9. Wrap data/key (encrypt/sign)

. Erase key(s)/engine(s)

. Transfer output data

. Transfer wrapped key out

32 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Modes for sharing of hardware security module

« S1: One user, few keys

« S2: One user, many keys

« S3: Few users, few keys

« S4: Few users, many keys
S5: Many users, many keys

33 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

S1: One user, few keys

* No sharing, all engines fully prepared

E> 1. Transfer input data

7. Start, execute and finalize crypto operation

<ZI 11. Transfer output data

34 . Harc gymsocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

S2: One user, many keys

* No sharing, frequent crypto context change

E> 1. Transfer input data
2. Transfer wrapped key in

. Unwrap data/key (decrypt/verify)

. Initialize key object with key value

. Initialize cryptographic engine with key

. Start, execute and finalize crypto operation

N ool A

.j‘ 9. Wrap data/key (encrypt/sign)
10. Erase key(s)/engine(s)

<:l 11. Transfer output data

0. 12.Transfer wrapped key out

35 ocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

S3: Few users, few keys

 Device Is shared — iIsolation of users

E> 1. Transfer input data

“% 6. Initialize cryptographic engine with key
7. Start, execute and finalize crypto operation

10. Erase key(s)/engine(s)
<ZI 11. Transfer output data

36 - Harci R . ocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

S4: Few users, many keys

« Limited sharing, frequent crypto context change

E> 1. Transfer input data
2. Transfer wrapped key in

. Unwrap data/key (decrypt/verify)

. Initialize key object with key value

. Initialize cryptographic engine with key

. Start, execute and finalize crypto operation

N ool A

.j‘ 9. Wrap data/key (encrypt/sign)
10. Erase key(s)/engine(s)

<:l 11. Transfer output data

0. 12.Transfer wrapped key out

37 ocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

S5: Many users, many keys

« High sharing, frequent crypto context change

1. Transfer input data
2. Transfer wrapped key in
3. Initialize unwrap engine
- 4. Unwrap data/key (decrypt/verity)
» 5. Initialize key object with key value
6 Initialize cryptographic engine with key
7. Start, execute and finalize crypto operation
8 Initialize wrap engine
9. Wrap data/key (encrypt/sign)
10. Erase key(s)/engine(s)
<:l 11. Transfer output data
0. 12.Transfer wrapped key out

38 ocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Ap

1.

olication Programming Interfaces (API)

Proprietary API (legacy or custom functions)
Standardized API - but proprietary library required (PKCS#11)

Cryptographic service providers — plugin into standardized API (CNG,
CSP...)

Standardized API - no proprietary component (PIV, EMV CAP...)
Proprietary (service-specific), but public APl (MS KeyVault, AWS..)

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

HSM IN CLOUD

40 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Security topics in cloud environment

1. Move of legacy applications into cloud
— Previously used locally connected HSMs

2. Protection of messages exchanged between multiple cloud-based
applications
— Key exchange of used key without pre-distribution?

3. Volume encryption in cloud
— Encrypted block mounted after application request (e.g., Amazon’s Elastic Block Storage)

4. Encrypted databases
— Block encryption of database storage, encryption of rows/cells

5. Cryptography as a Service

— Not only key management, also other cryptographic functionality

41 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

Amazon Web Services ‘ Google Cloud

CLOUD CRYPTO COMF
The Big Three

BRING YOUR OWN KEY

Na infermation ?

1000 - HSM key*

[]
|
2000 - Software key*]

10000 or 5500
(uaries by region)

42

under RSA 2048

No provision

Y e
W

§

No provision 2048,3072, 4096 RSA 2048, 307

ASYMMETRIC MASTER K

W

256 bit AES No p

SYMMETRIC MASTER KF

CMK wrapped

PKCS#12 or
Thales HSM

256 bit AES

e HEEEE
EEEEE

/p | ||

* 2048 bir key
STORED SECRETS

OPERATIONS PER SECOND

© Cryptosense 2018

CLOUD CRYPTOGRAPHY

©\., Amazon Web Services ‘ Google Cloud Platform ol Microsoft Azure

V6. Updated March 2021

AES 256 wrapped
by RSA 2048

AE:S%
RS/\"&

AES 256 wrapped
by RSA 3072

RSA wrapped by
AES and RSA-OAEP

BRING YOUR OWN KEY

CECHCRCS
CHCHCHCHICRCR

RSA-PSS

RSA PKCS#1vi.5

ECDSA with P-256
ECDSA with P-384
ECDSA with P-512
ECDSA with SECP-256k1

SIGNATURE MODES

| PV204: Hardware Security Modules

1 Y
¥

2048, 3072, 4096 RSA 2048, 3072, 4096 RSA 2048, 3072, 4096 RSA

ASYMMETRIC MASTER KEY

256 bit AES 256 bit AES

SYMMETRIC MASTER KEY

DIY only

64KB

STORED SECRETS

™

RSA

PKCS#1v1.5

(o)

™ ™

A
GCM OAEP

SYMMETRIC

ENCRYPTION MODES

ASYMMETRIC

0.25KB

PLAINTEXT SIZE LIMIT

© Cryptosense 2021

https://crocs.fi.muni.cz @CRoCS_MUNI

https://cryptosense.com/cloud-cryptography-comparison/

CR&,CS

Use case: Microsoft Azure KeyVault

SALES 800-701-208 W

Why Azure Solutions Products Documentation Pricing Partners Blog Resources Support

Key Vault

Safeguard cryptographic keys and other secrets used by cloud apps and services

v Increase security and control over keys and passwords v Use FIPS 140-2 Level 2 validated HSMs

v Create and import encryption keys in minutes Reduce latency with cloud scale and global redundancy

v Applications have no direct access to keys v Simplify and automate tasks for SSL/TLS certificates

 REST API to generate keys, export pub, use keys...
— https://docs.microsoft.com/en-us/rest/api/keyvault/

« Language bindings (language specific wrappers)
— JS, PowerShell, C#...

43 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://docs.microsoft.com/en-us/rest/api/keyvault/

CR&CS

Microsoft Azure KeyVault

4 _Key Vault < App 3

”

& | KeyVault '« App 2
HSM fe--{ Key Vault |« App 1

5. Use key/secret

Create Key Vault ? 7. Monitor logs 4. Deploy app, configured

Authorize app, users s - with URI of key/secret
Create/import keys/secrets

i o |

_ .' -l'.
Manage keys/secrets ~ 'l

CISO@Fabrikam Dev@Fabrikam

https://channel9.msdn.com/Events/Ignite/2015/BRK2706
44 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Use case: AWS Key Management Service

 AWS Key Management Service Cryptographic Detalls (2015)

— https://docs.aws.amazon.com/kms/latest/cryptographic-details/kms-crypto-
details.pdf

— Centralized key management

— Used by cloud-based applications

— Used by any client application

— Replication of wrapping keys into HSMs in different datacenters

45 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://docs.aws.amazon.com/kms/latest/cryptographic-details/kms-crypto-details.pdf

CR&,CS

Usage scenario: envelope encryption

* Protected message exchange between multiple (cloud-based) application
1. Random key generated in one application
2. Key protected (wrap) using trusted element (HSM)
3. Wrapped key appended to message
4. Key unwrapped in second application (via HSM)

1 encrypted key key ‘ “Hello World!” :
 —

o} ——0

A4

GenerateData
Key(CMK)

[]

[]

/ Encrypt / .

L]

[]

KMS Service .

__________ + o

encrypted key encrypted message

KMS Interface

[} L]
46 | PV204: Hardwars N Envelope encryption of “Hello World!” Hhi.cz @CRoCS_MUNI

CR&CS
GenerateData
Key(CMK)

L T —

| encrypted key key I\ “Hello World*

I _,'®

©

KMS Interface

— ' ®

encrypted key encrypted message

m
S
o
<2
°

Envelope encryption of “Hello World!”

' Iniok
I . encrypted key encrypted message
I Decrypt(enc) I I
| >
I :
| :
I]
| .
]

KMS Interface

4 I
I
I
I
I

T aa s EEs EEE s EEs s

What is difference to t “Hello World”

IS-MIME? Envelope decryption of “Hello World”

-+

S P

47

ni.cz @CRoCS_MUNI

CR&,CS

Who iIs trusted?

« KMS Service to wrap envelope keys properly
« KMS Service not to leak wrapping key
« Cloud operator not to read unwrapped keys from memory

48 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

49

Use case: Amazon AWS CloudHSM *
Amazon’'s AWS CloudHSM o 1

— Based on SafeNet’s Luna HSM FloudnSi
— Only few users can share one HSM (probably no sharing)

— => High initial cost (~$5000 + $1.88 per hour)

Note: significantly different service from AWS KMS

— “Whole” HSM is available to single user/application, not only key (un)wrapping
functionality

— Suitable for legacy apps, compliancy requirements

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Use case: Amazon AWS CloudHSM

@ AWS manages the HSM appliance but ~UE . .

does not have access to your keys

You control and manage your own keys

@ Application performance improves (due

to close proximity with AWS workloads) 6 |—
Application |

® Secure key storage in tamper- SSL ']
: ! . sere PR R sieenee 8 HSM Cliant
resistant hardware available in (D 4—“
multiple regions and AZs CloudHSM
VPC Instance

@ CloudHSMs are in your VPC and E)

isolated from other AWS networks

o Virtual Private Cloud S
_ AWS A

50 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CRYPTOGRAPHY AS A SERVICE

https://crocs.fi.muni.cz @CRoCS_MUNI

Offloading security operations...

WS API: JSON

52 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS

. Into secured environment
Cryptography as a Servme(CaaS)

How to import key(s) securely?
Which hardware platform to use?
High number of clients?

53 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Different levels of trust

« CaaS with trusted server
— Software operation only, HTTPS for in/out
— Trust to server, CaaS platform is target, insider attack

« CaaS with semi-trusted server
— HTTPS for in/out, decrypted by server
— Operation send into trusted hardware
— CaasS platform still target

« CaaS with untrusted server

— HTTPS for in/out, but inner protection
— Data decrypted/processed/encrypted inside device

54 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Requirements — client view

* Untrusted CaasS provider (handling secrets)
« Secure import of app’s secrets - enrollment

* Client<->CaaS communication security
— Confidentiality/integrity of input and output data
— Authentication of input/output requests

» Key use control
— Use constraints — e.g., number of allowed ops

- Easy recovery from client-side compromise

55 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Requirements — CaaS provider view

« Massive scalability
— W.r.t. users, keys, transactions...

* Low latency of responses
* Robust audit trail of key usage

« Tolerance and recovery from failures
— hardware/software failures

* Easy to use API
— also easy to use securely

56 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Hardware options for CaaS

* Use of general-purpose hardware (CPU, GPU)
« Use of generic programmable hardware (FPGA)
« Use of dedicated cryptographic circuits (ASICs)
« Use of secure processors (HSMs, smartcards)

* (use of additional tamper protection of device)
 (use of fully homomorphic encryption)

57 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

CaaS - Implementation issues

« Security
— Software-only CaaS more vulnerable to attacks
— Access control and operation authorization critical

» Performance
— Classic HSMs are not build for high-level of sharing

— Performance degradation due to frequent context exchange (key scheduling,
engine preparation)

— Logical separation only to few entities (16-32)

— Physical separation on device-level (=> very limited)

58 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Secure parallel multi-processor

« High number of secure processors

— Secure memory, secure execution, crypto engines
— FIPS140-2 Level 3/4, CC EAL 4+

« Secure channels between secure processors

e Untrusted controller
— Small trusted computing base
— Initialization/operational phase

* Restricted use and audit trail (=> state)
* High-speed I/O data interface

« High robustness due to high redundancy
— If one card lock or die, other will serve a request

« Physical separation of secure processors

59 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Conclusions

- Hardware Security Module is device build for security and
performance of cryptographic operations

« Security certifications (but be aware of limits)

« [nitially mostly for banking sector
— Now more widespread (TLS, key management..)

« As applications are moving to cloud, so do HSMs
— Full HSM (legacy apps), or HSM-backed functionality (e.g., KMS)

* Diverse APIs, potential logical attacks

60 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

I Top questions (1) v

o

1]

Is my password brute-force-able if consists of 9 printable
characters?

hr
[=]

» Place/upvote guestions in slido
while listening to lecture video
Join at : :
: We will together discuss these
slido.com

#0v204 2021 during every week lecture Q&A
(every Monday, 17-18:00)

61 | PV204: Hardware Security Modules

https://crocs.fi.muni.cz @CRoCS_MUNI

THANK YOU FOR YOUR TIME!

62 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

PKCS#11 DETAILS

63 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11: Function prototypes

« GetProcAddress() returns untyped function pointer
* We need to cast this function pointer to known function type
* Function types for PKCS#11 are in pkcsll ft.h

typedef CK_RV CK_ENTRY (*FT_C_Encrypt)(
CK_SESSION_HANDLE hSession,
CK_BYTE_PTR pData,
CK_ULONG ulDatalLen,
CK_BYTE_PTR pEncryptedData,
CK_ULONG_PTR pulEncryptedDatalen

)i

64 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11: Load and init library

int LoadAndInitLibrary(const char* path, HINSTANCE* phLib) {
CK_RV status = CKR_OK;
FT_C_Initialize fInitialize = NULL;

if (phLib) {
if ((*phLib = LoadLibrary(path)) = NULL) {
// INITIALIZE LIBRARY

fInitialize = NULL;
if ((fInitialize = (FT_C_Initialize) GetProcAddress(*phLib, "C_Initialize")) = NULL) {
(fInitialize)(NULL);

be

else status = GetLastError();
bs
else status = GetLastError();

}

else status = -1;

return status;

}

65 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11: Finalize and unload library

int FinalizeAndCloseLibrary(HINSTANCE hLib) {

CK_RV status = CKR_OK;

FT_C_Finalize fFinalize;
if (hLib '= NULL) {
// UNINITIALIZE LIBRARY
fFinalize = NULL;
if ((fFinalize = (FT_C_Finalize) GetProcAddress(hLib, "C_Finalize")) = NULL) {

(fFinalize) (NULL);

>

FreeLibrary(hLib);

}

else status = -1;

return status;

}

66 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11: List tokens in system

 Slots In system are equivalent to readers
— C_GetSlotList
— C_GetSlotInfo

 Slot can be empty or with inserted token
— C_GetTokenlInfo

67 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11: Connect to token

* When slot with token is found
— C_OpenSession
— public session is opened
« Switch to private session by inserting PIN
— C_Login
— C_Logout
 C_CloseAllSessions

68 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11: arguments lists

* Most of the PKCS#11 functions accept parameters as CK_ATTRIBUTE]] array

* Every value is encoded in single CK_ATTRIBUTE
— CK_ATTRIBUTE_TYPE type
— CK_VOID PTR pValue
— CK_ULONG ulValuelLen

CK_CHAR label_public[] = {"Test1_public"}; //label of data object
CK_CHAR data_public[] = {"PV204 Public"};
CK_ATTRIBUTE dataTemplate_public[] = {
{CKA_CLASS, &dataClass, sizeof(dataClass)},
{CKA_TOKEN, &ptrue, sizeof(ptrue)},
{CKA_LABEL, label_public, sizeof(label_public)},
{CKA_VALUE, (CK_VOID_PTR) data_public, sizeof(data_public)},
{CKA_PRIVATE, &pfalse, sizeof(pfalse)} //is NOT private object
}i
BYTE numAttributes_public = 5;
C_CreateObject(hSession, dataTemplate_public, numAttributes_public, &hObject);
69 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11: Store/search/get data

« Data created in public/private part of the token
— CKA_PRIVATE attribute
— C_CreateObject()

« User must be logged when creating/read private objects

* You must find target object
— attribute template, must be logged when searching private objects
— C_FindObjectslnit()
— C_FindObjects()
— C_FindObjectsFinal()
* Read data from object
— C_GetAttributeValue()

70 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

HSM SECURITY API

71 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Microsoft CNG

* Cryptography API: Next Generation (CNG API)
* Long-term replacement for CryptoAPI

« CNG API
— Cryptographic Primitives
— Key Storage and Retrieval
— Key Import and Export
— Data Protection API: Next Generation (CNG DPAPI)

* http://msdn.microsoft.com/en-
us/library/windows/desktop/aa376210%28v=vs.85%29.aspx

72 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

http://msdn.microsoft.com/en-us/library/windows/desktop/aa376210(v=vs.85).aspx

CR&,CS

Cryptographic Service Providers (CSP)

* Generic framework with API for providers of cryptographic
functionality
— E.g., implementation of RSA
— Different underlying storage (software vs. hardware-based)

 Allows for runtime selection
— Connect to target provider (usually identification string)
— E.g., “Microsoft Base Cryptographic Provider v1.0”

* Microsoft CSPs
— http://msdn.microsoft.com/en-us/library/windows/desktop/aa386983%28v=vs.85%29.aspx

- Java CSPs (JCE)...

73 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

http://msdn.microsoft.com/en-us/library/windows/desktop/aa386983(v=vs.85).aspx

CR&,CS

Chip Authentication Program (CAP)

« Usage of chip-based banking card for additional operations

* Designed for backward compatibility 5
— existing cards can be used :
— Separate on-card applet is preferred, but not required

* Designed by MasterCard as EMV-CAP
— https://en.wikipedia.org/wiki/Chip Authentication Program

— Adopted by Visa as Dynamic Passcode Authentication (DPA)
« Hardware CAP readers available

« Python software implementation
— http://sites.uclouvain.be/EMV-CAP/Application/

74 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://en.wikipedia.org/wiki/Chip_Authentication_Program
http://sites.uclouvain.be/EMV-CAP/Application/

CR&,CS

CAP — supported commands

« Supported operations
— Codel/identify
— Response
— Sign
 Variants:
— Mode 1: amount included in computed cryptogram
— Mode 2: no amount, used for logging into system
— Mode 2 + TDS
« With transaction data signing
« Multiple data fields of the transaction

75 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Custom API pro/cons

* |s design of own API better idea?

* Pros:

— derive api in line with use
— focused api, no overhead
— highly efficient implementation

» Cons:
— security holes by design
— high effort
— lost certification

76 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11, (PKCS#15), ISO/IEC 7816-15

« Standards for API of cryptographic tokens

« PKCS#11
— http://www.rsa.com/rsalabs/node.asp?id=2133
— software library on PC, rather low level functions
— widely used, TrueCrypt, Mozilla FF/TB, OpenSSL, OpenVPN...

- PKCS#15
— http://www.rsa.com/rsalabs/node.asp?id=2141
— both hardware and software-only tokens, identity cards...
— superseded by ISO/IEC 7816-15 standard

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.rsa.com/rsalabs/node.asp?id=2141

CR&,CS

PKCS#11 v3.0

* Public Review Draft 01, 29 May2019

 https://docs.oasis-open.org/pkcsll/pkesll-base/v3.0/csprdOl/pkesll-
pase-v3.0-csprd0l.pdf

78 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#15 (https://github.com/OpenSC)

* pkcsl5-init

#!/bin/bash

sleep 5

pkcsl5-init --create-pkcslb =--pin 12345678 =-no-so-piln

sleep 5

pkcslb5-init --store-pin --auth-1d 01 --pin 12345678
--puk 12345678 =--label “PV204 Tutorial"

* pkcsl5-tool --dump
* pkcsl5-tool --list-keys

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

ATTACKS AGAINST API

80 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Attacks against PKCS#11

 Lack of policy for function calls
— functions are too “low-level”
— sensitive objects can be manipulated directly
« Key binding attack (C_WrapKey)
— target key with double length is exported from SC
— encrypted by unknown master key
— attacker divide key into two parts and import them as wrapped key for ECB mode
— perform brute-force search on each half separately

* Missing authentication of wrapped key
— attacker can create its own wrapping key
— and ask for export of unknown key under his own wrapping key

« Export of longer keys under shorter, ...

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

RSA padding oracle attack

 Allows to recover content of encrypted message even when key is unknown

- Based on 1 bit leakage from correct/incorrect padding

— Error status returned by device
* (cycle) mess with encrypted message, send to card, inspect error
« 30 minutes with HSM, hours/days with smart card

e See more at

— http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-
on-RSA.html

82 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

http://secgroup.dais.unive.it/wp-content/uploads/2012/11/Practical-Padding-Oracle-Attacks-on-RSA.html

CR&,CS

Tookan tool

« Formal verification with real device model
— probe PKCS#11 token with multiple function calls
— automatically create formal model for token
— run model checker and find attack
— try to execute attack against real token

o http://secgroup.dais.unive.it/projects/tookan/

3 -
> a iI 4
-~
SATMC TOO AN Device
2 *ﬂf"'
-l

83 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

http://secgroup.dais.unive.it/projects/tookan/

CERTIFICATION: MORE DETAILS

84 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Certifications: NIST FIPS 140-2

85

Requirements on hardware and software components of security modules to
be used by US government
— Verified under Cryptographic Module Validation Program (CMVP)

— Testing against a defined cryptographic module, provides a suite of conformance tests to
required security level

— List of validated devices http://csrc.nist.gov/groups/STM/cmvp/validation.html

Common levels for HSMs

— NIST FIPS 140-2 Level 1+2 — basic levels, tamper evidence (broken shell, epoxy), role-
based authentication (user/admin))

— NIST FIPS 140-2 Level 3 — addition of physical tamper-resistance, identity-based
authentication, separation of interfaces with different sensitivity

| PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

http://csrc.nist.gov/groups/STM/cmvp/validation.html

CR&,CS

Certifications: NIST FIPS 140-2 (cont.)

« Common levels for HSMs (cont.)

— NIST FIPS 140-2 Level 4 + additional physical security requirements,
environmental attacks

— http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
— Only very few devices certified to FIPS 140-2 Level 4

* NIST FIPS 140-3 (since 2013, for long time only draft, abanded then
accepted in 2019)
— Additional focus on software security and non-invasive attacks
— https://csrc.nist.gov/projects/fips-140-3-transition-effort
— Testing shall begin in September 2020, till 2026 in parallel with FIPS 140-2

86 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
https://csrc.nist.gov/projects/fips-140-3-transition-effort

CR&,CS

NIST FIPS 140-2 and RNG

* Truly random number generators (TRNG)
— No approved FIPS 140-2 TRNG

« Pseudorandom number generators
— ANSI X9.31 Appendix A.2.4, 3DES/AES-based

* FIPS 140-2 requires testing of RNG
— Known-answer-tests (KAT), Diehard battery

87 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

“Random” FIPS 140-2 example

* https://csrc.nist.gov/projects/cryptographic-module-val

* Futurex EXP9000 HSM (07/2011)

— https://csrc.nist.gov/projects/cryptographic-module-validatio '
program/Certificate/1577 | T o

— FIPS140-2, security level 3 | s

— Approved algorithms

— Non approved algorithms

— Roles and authentication

— Critical Security Parameters (CSP)

— Physical security mechanisms

88 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://csrc.nist.gov/projects/cryptographic-module-validation-program

*% Common Criteria

Certifications: Common Criteria EAL 4-5+

« CC does not directly measure the security of the system/device itself
— only states level on which the system/device was tested
— and against what Security Target

« To achieve particular level, system must meet assurance requirements
— Documentation, design analysis, functional/penetration testing

« CC certifies that system followed certain rules when implementing target goals
— Broader than FIPS 140-2

89 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

*% Common Criteria
Certifications: Common Criteria EAL 4-5+ -

« Common levels for HSMs
— EAL4: Methodically Designed, Tested and Reviewed
— EALS: Semi-formally Designed and Tested

* Protection profiles

— Specifies generic security evaluation criteria to substantiate vendors' claims
(more technical)

— Crypto Module Protection Profile (BSI)
— https://www.bsi.bund.de/cae/serviet/contentblob/480256/publicationFile/29291/p
p0045b_pdf.pdf
* + means “augmented” version (current version + additional
requirements, e.g., EAL4+)

90 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://www.bsi.bund.de/cae/servlet/contentblob/480256/publicationFile/29291/pp0045b_pdf.pdf

__cracs
>Che

Certifications: PCI HSM version 1,2,3

+ PCI HSM v1 (2009), v2 (2012), v3 (2016)

— https://www.pcisecuritystandards.org/security standards/documents.php
* Focused on area of payment transactions

— Payment terminals, backend HSMs...

— Payment transaction processing

— Cardholder authentication

— Card issues procedure

« Set of logical and physical requirements relevant to payment industry
— Closer to NIST FIPS 140-2 then to CC (more concrete requirements)

91 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://www.pcisecuritystandards.org/security_standards/documents.php

Hardware Security Module

HSM SECURITY API

92 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS

PKCS#11

- Standardized interface of security-related functions
— vendor-specific library in OS, often paid -
— communication library->card proprietary interface
* Functionality cover I
— slot and token management
— session management
— management of objects in smartcard memory
— encryption/decryption functions
— message digest
— creation/verification of digital signature
— random number generation
— PIN management

« Secure channel not possible!
— developer can control only App—PKCS#11 lib

PKCS#11 interface

93 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11 library

* API defined in PKCS#11 specification
— http://www.rsa.com/rsalabs/node.asp?id=2133
— functions with prefix ‘C_’ (e.g., C_EncryptFinal())
— header files pkcs1l.h and pkecs1l ft.h
« Usually in the form of dynamically linked library

— cryptoki.dll, opensc-pkcs11.dll, dkck232.dll...
— different flenames, same API functions (PKCS#11)

* Virtual token with storage in file possible

— suitable for easy testing (no need for hardware reader)
— Mozilla NSS, SoftHSM...

94 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

http://www.rsa.com/rsalabs/node.asp?id=2133

CR&,CS

PKCS#11: role model

* Functions for token initialization

— outside scope of the specification
— usually implemented (proprietary function call), but erase all data on token

* Public part of token
— data accessible without login by PIN

* Private part of token
— data visible/accessible only when PIN is entered

95 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11: Cryptographic functionality

« C_GetMechanismList to obtain supported cryptographic mechanisms
(algorithms)

« Many possible mechanisms defined (pkcs11t.h)

— CK_MECHANISM_TYPE, not all supported
— (compare to JavaCard API)

 C_Encrypt, C Decrypt, C Digest, C_Sign, C Verify, C_VerifyRecover,
C_GenerateKey, C_GenerateKeyPair, C_WrapKey, C_UnwrapKey,
C DeriveKey, C_SeedRandom, C_GenerateRandom...

96 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

PKCS#11 - conclusions

* Wide support in existing applications

Low-level API

Difficult to start with

Requires proprietary library by token manufacturer

Complex standard with vague specification => security problems
— Hard to implement properly

97 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Play with HSM (without HSM ©)
+ SoftHSM Q) Soft

— Software-only HSM

— Open-source implementation of cryptographic store
— Botan library for cryptographic operations

— https://www.opendnssec.org/softhsm/

— https://qithub.com/disig/SoftHSM2-for-Windows

e Utimaco HSM simulator
— https://hsm.utimaco.com/download/
— Simulator of physical HSM (with PKCS#11 and other interfaces)

98 | PV204: Hardware Security Modules https://crocs.fi.muni.cz @CRoCS_MUNI

https://www.opendnssec.org/softhsm/
https://sourceforge.net/projects/softhsm4windows/
https://hsm.utimaco.com/download/

