
Micro-architectural Attacks 1

1

Milan Patnaik
IIT Madras

Things we thought
gave us security!

• Cryptography

• Passwords

• Information Flow Policies

• Privileged Rings

• ASLR

• Virtual Machines and confinement

• Javascript and HTML5
(due to restricted access to system
resouces)

• Enclaves (SGX and Trustzone)

2

Micro-Architectural Attacks
(can break all of this)

3

Cache timing attackCache timing attack

Branch prediction attackBranch prediction attack

Speculation AttacksSpeculation Attacks

Row hammerRow hammer

Fault Injection AttacksFault Injection Attacks

….. and many more….. and many more

cold boot attackscold boot attacks

• Cryptography

• Passwords

• Information Flow Policies

• Privileged Rings

• ASLR

• Virtual Machines and confinement

• Javascript and HTML5
(due to restricted access to system
resouces)

• Enclaves (SGX and Trustzone)

DRAM Row buffer (DRAMA)DRAM Row buffer (DRAMA)

Causes

4

performance

security

Most micro-architectural attacks caused by
performance optimizations

Others due to inherent device properties

Third, due to stronger attackers

Cache Timing Attacks
Cache Covert Channels

5

Cache Timing Attacks
Flush + Reload Attack

15

Copy on Write

16

if (fork() > 0){
 // in parent process
} else{
 // in child process
}

21

• Making a copy of a process
is called forking.
– Parent (is the original)

– child (is the new process)

• When fork is invoked,
– child is an exact copy of

parent
• When fork is called all pages

are shared between parent
and child

• Easily done by copying the
parent s page tables

Physical Memory

Parent
Page
Table

Child
Page
Table

Virtual Addressing Advantage
(easy to make copies of a process)

Child created is an exact replica of the parent process.
- Page tables of the parent duplicated in the child
- New pages created only when parent (or child) modifies data

- Postpone copying of pages as much as possible, thus
optimizing performance

- Thus, common code sections (like libraries) would be
shared across processes.

Process Tree

17

 :
SSLEncryption()
 :

init

 :
SSLEncryption()
 :

Physical Memory

Virtual Memory
(process 1)

Virtual Memory
(process 2)

Interaction with the LLC

18

ProcessesProcesses

Core 1Core 1

LLCLLC

 :
SSLEncryption()
 :

cache misses slow
Core 2Core 2

ProcessesProcesses

Interaction with the LLC

19

 :
SSLEncryption()
 :

cache hits

 :
SSLEncryption()
 :

fast

One process can affect the
execution time of another process

ProcessesProcesses

Core 1Core 1

LLCLLC

Core 2Core 2

ProcessesProcesses

Flush + Reload Attack on LLC

20

Part of an encryption algorithm

executed only when ei = 1

clflush Instruction

Takes an address as input.
Flushes that address from all caches
clflush (line 8)

Flush+Reload Attack, Yuval Yarom and Katrina Falkner (https://eprint.iacr.org/2013/448.pdf)

Flush + Reload Attack

21

 :
SSLEncryption()
 :

 :
Clflush(line 8)
 :

flush

reload

access victim

attacker

ProcessesProcesses

Core 1Core 1

LLCLLC

Core 2Core 2

ProcessesProcesses

Flush+Reload Attack

22

Countermeasures
• Do not use copy-on-write

– Implemented by cloud providers

• Permission checks for clflush
– Do we need clflush?

• Non-inclusive cache memories
– AMD

– Intel i9 versions

• Fuzzing Clocks

• Software Diversification
– Permute location of objects in memory (statically and dynamically)

23

Cache Collision Attacks
Prime + Probe Attack

24

Prime + Probe Attack

26

Core 1Core 1

Last Level CacheLast Level Cache

Core 2Core 2

VictimVictim

SMT
Core

SMT
Core

L1 Cache MemoryL1 Cache Memory

SpySpy

VictimVictim SpySpy

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

Set N-2

Set N-1

Prime Phase

27

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

Victim Execution

28

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

The execution causes some of
the spy data to get evicted

Probe Phase

30

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

While(1){
 for(each cache set){
 start = time();
 access all cache ways
 end = time();
 access_time = end – start
 }
 wait for some time
}

Time taken by sets that have
victim data is more due to the cache
misses

Probe Time Plot

31

0 63

Each row is an iteration of the while loop; darker shades imply higher memory access time

Prime + Probe in Cryptography

32

char Lookup[] = {x, x, x, . . . x};

char RecvDecrypt(socket){
 char key = 0x12;
 char pt, ct;

 read(socket, &ct, 1);
 pt = Lookup[key ^ ct];
 return pt;
}

The attacker know the address of Lookup and the ciphertext (ct)
The memory accessed in Lookup depends on the value of key
Given the set number, one can identify bits of key ^ ct.

Key dependent memory accesses

Keystroke Sniffing
• Keystroke interrupt kernel mode switch ISR execution add to keyboard

buffer … return from interrupt

33

way 0 way 1 way 2 way 3

Set 0

Set 1

Set 2

Set 3

Keystroke Sniffing
• Regular disturbance seen in Probe Time Plot

• Period between disturbance used to predict passwords

34

Svetlana Pinet, Johannes C. Ziegler, and F.-Xavier Alario. 2016. Typing Is Writing: Linguistic Properties Modulate
Typing Execution. Psychon Bull Rev 23, 6

Web Browser Attacks

• Prime+Probe in
– Javascript

– pNACL

– Web assembly

35

Extract Gmail secret key

36
https://www.cs.tau.ac.il/~tromer/drivebycache/drivebycache.pdf

Website Fingerprinting

• Privacy: Find out what websites are being
browsed.

37

Cross VM Attacks (Cache)

38

Cross VM Attacks (DRAM)

39

Cache Collision Attacks
 Time Driven Attacks

40

Internal Collision Attacks

41

(Adversary)

Victim

Internal Collisions on a Cipher

42

Table Table

Part of a Cipher

P0 ,P4

(Adversary)

42

If cache hit (less time) : If cache miss (more time):

00 KP 44 KP

4P0P

0K 4K

4040

4400

PPKK

KPKP

4040

4400

PPKK

KPKP

T

P0

K0

T

P4

K4

Block Cipher

Random
P0

Cipher Text

P4

Suppose
(K0 = 00 and k4 = 50)

• P0 = 0, all other inputs are

random

• Make N time measurements

• Segregate into Y buckets
based on value of P4

• Find average time of each
bucket

• Find deviation of each
average from overall
average (DOM)

P4 Average
Time

DOM

00 2945.3 1.8

10 2944.4 0.9

20 2943.7 0.2

30 2943.7 0.2

40 2944.8 1.3

50 2937.4 -6.3

60 2943.3 -0.2

70 2945.8 2.3

: : :

F0 2941.8 -1.7
Average : 2943.57
Maximum : -6.34040

PPKK

That’s for the Day !!

44

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

