
Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

Hyperledger fabric first network tutorial

Installing Prerequisites for Hyperledger Fabric:

 CURL : curl is a command line tool to transfer data to or from a server, using any of the

supported protocols (HTTP, FTP, IMAP, POP3, SCP, SFTP, SMTP, TFTP, TELNET,

LDAP or FILE). curl can transfer multiple file at once.

 GO Programming Language with setup of path variable: GoLang is a very powerful

programming language developed by Google. It is a compiled programming language. It

means, Go source codes are converted to machine code or commonly known as

executable file. Then you can run these executable files on other computers. Unlike Java

that converts source code to byte code, then runs these byte codes using JVM (Java

Virtual Machine), Go does not use any VM (Virtual Machines).

 Docker & Docker Compose: Compose is a tool for defining and running multi-container

Docker applications. With Compose, you use a YAML file to configure your

application's services. Then, with a single command, you create and start all the services

from your configuration. ... Run docker-compose up and Compose starts and runs your

entire app

 Node.js Runtime & NPM : js runtime is basically what will understand your javascript

code and execute it to produce a result. Npm package manager is a tool which will allow

you to install third party libraries (other people's code) by using the command line. npm

install express.

 PYTHON

To install all these prerequisites run following commands in terminal window one by one,

everything should go smooth.

sudo apt-get install curl
sudo apt-get install golang-go
export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin
sudo apt-get install nodejs
sudo apt-get install npm
sudo apt-get install python
sudo apt-get install docker
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
sudo apt-get update
apt-cache policy docker-ce
sudo apt-get install -y docker-ce
sudo apt-get install docker-compose
sudo apt-get upgrade

http://www.ziaahmedshaikh.com/what-is-curl/

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

Till now the environment is ready to install Hyperledger Fabric, Now we will download fabric

samples. To do that run following commands in terminal one by one…

sudo curl -sSL https://goo.gl/6wtTN5 | sudo bash -s 1.1.0
sudo chmod 777 -R fabric-samples

Now go into first-network directory which is inside fabric-samples folder and then we will run

generate script that will create certificates and keys for the entities on our first blockchain

network. This will also create genesis block (first block on blockchain)

cd fabric-samples/first-network
sudo ./byfn.sh generate

Bring your first network up by running following command. byfn stands for “Build Your First

Network”

sudo ./byfn.sh up

If everything works fine you should see start screen of fabric network. To bring network down

following command is used.

sudo ./byfn.sh down

List of files in BYFN

In this part 1 tutorial, I am going to introduce files in BYFN. I plan to introduce all files in 2

parts. Then, we continue some practical steps.

Let’s switch to BYFN directory (*supposed that you finish the prerequisite part, you should have

all needed files and directories):

cd fabric-samples/first-network

This is the file or directory list that we will study:

1. docker-compose-cli.yaml (Part 1)
2. base/docker-compose-base.yaml

3. base/peer-base.yaml

4. channel-artifacts/

5. crypto-config.yaml

6. configtx.yaml

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

7. byfn.sh

8. scripts/script.sh

9. script/utils.sh

There are other files in fabric-samples/first-network/, but they are not directly related to BYFN,

we will ignore them.

docker-compose-cli.yaml

In order to develop Blockchain application, we need to have a Blockchain network first, right?

This is a file related to setting up the network.

This is a Docker compose file, which defines your (virtual) Fabric network, such as what nodes

are in the network, their internal use domain names, etc.

Below is docker-compose-cli.yaml

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

base/docker-compose-base.yaml

In part 1, we have introduceddocker-compose-cli.yaml, which is to define our (virtual) Fabric

network. We review a part of docker-compose-cli.yaml

https://medium.com/@reasdom/hyperledger-fabric-building-your-first-network-tutorial-part-1-2d3b32213529

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

Notice that there is an extends keyword. As discussed in part 1, it is to re-use another base Docker
compose file. The purpose of this is to make things cleaner — by grouping the shared configurations in
one base file, such that other Docker compose files can extend it. It is about good practice — reusability,
but this is not mandatory.

Then, the file keyword in line 8 specifies which base file to extend, and service keyword specifies which
item (service) in the base file to extend.

Now, we look at base/docker-compose-base.yaml:

The base file is similar to docker-compose-cli.yaml.

Lines 3 to 28 define a template node called orderer.example.com, and docker-compose-

cli.yaml extends it and add some extra configurations based on this template.

Line 5 specifies which image this node uses. In our case, the node uses an image from

Hyperledger official — hyperledger/fabric-orderer. That $IMAGE_TAG is the image version,

such as 1.4.

Other keywords and configurations are similar to docker-compose-cli.yaml. The point of

having a base file is just to group common configurations to a base file to make them reusable.

Notice that in line 32, there is also an extends keyword, that is, again, to extend or reuse another

base file,base/peer-base.yaml, which we will quickly take a look.

https://medium.com/@reasdom/hyperledger-fabric-building-your-first-network-tutorial-part-1-2d3b32213529

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

channel-artifacts/

Notice that this is an empty directory currently. This directory will be used to store some configuration

transactions and a genesis block. More details later.

crypto-config.yaml

This is a file to define certifications and keys to be generated and used in the network.

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

In Hyperledger Fabric, we have a set of certifications and keys for users and nodes. For example, Peer

needs to have a set of certificates and keys to perform endorsement, prove itself as a member in the

Blockchain network, do signing, etc.

byfn.sh

This is a convenient script file by Hyperledger Fabric to start the network.

We use it this way to bring up the network (we will run together later):

./byfn.sh up

Basically, it does the followings:

1. Generate certificates and keys based on crypto-config.yaml

2. Generate channel artifacts based on configtx.yaml, outputs will be stored in channel-

artifacts/

3. Bring up the (virtual) Fabric network based on docker-compose-cli.yaml

4. Create Hyperledger Fabric channel, mychannel

5. Join Peer nodes into the channel

6. Install the Smart Contract (Chaincode) in Peer nodes

7. Instantiate the Smart Contract (Chaincode) in one of the Peer nodes

Channel in Hyperledger Fabric is a private group in a Blockchain network. And each Blockchain network
could contain multiple Channels, where each Channel is independent to other Channels, has its own
ledger, and contains (multiple) organisation(s).

Run the following script. This script will clone the pre-packaged Hyperledger Fabric samples

and download the binaries you need. Then navigate to the first-network directory we’ll work

out of with the cd command below.

> curl -sSL https://goo.gl/6wtTN5 | bash -s 1.1.0> cd fabric-samples/first-

network

Set an environment variable with a path to your binaries so Fabric knows where to find them.

Replace the < > part below with the full path of the directory where the bin folder is found. You

can find that by typing pwd in your terminal.

> export PATH=<replace this with your path>/bin:$PATH

Great! We have everything we need to proceed with getting our network set up.

https://github.com/hyperledger/fabric-samples/blob/release-1.4/first-network/byfn.sh

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

Create Network Entities

We need to now create the participants in our network. Since they are permissioned participants,

we need to give them all unique, secure IDs. Here is how we do it.

We’ll run the commands first and explain what’s happening after.

> ../bin/cryptogen generate --config=./crypto-config.yaml

You should see:

> export FABRIC_CFG_PATH=$PWD> ../bin/configtxgen -profile

TwoOrgsOrdererGenesis -outputBlock ./channel-artifacts/genesis.block

You should see:

So what happened here? Simply,

 We created 2 organizations

 We created 2 peers per organization

 We created certificates for each of the above, so each transaction can be signed by them

and we know who created and signed the transactions

 We created a genesis block

Next we need to create channels where our peers can interact and create transactions. We’ll call

this mychannel but feel free to change it to whatever you want.

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

> export CHANNEL_NAME=mychannel && ../bin/configtxgen -profile

TwoOrgsChannel -outputCreateChannelTx ./channel-artifacts/channel.tx -

channelID $CHANNEL_NAME> ../bin/configtxgen -profile TwoOrgsChannel -

outputAnchorPeersUpdate ./channel-artifacts/Org1MSPanchors.tx -channelID

$CHANNEL_NAME -asOrg Org1MSP> ../bin/configtxgen -profile TwoOrgsChannel -

outputAnchorPeersUpdate ./channel-artifacts/Org2MSPanchors.tx -channelID

$CHANNEL_NAME -asOrg Org2MSP

The last two lines are important. Anchor Peers are created so that new participants who join the

network can talk to it and find out who the other participants are in the channel.

Enough setup! Let’s start our network!

We’ll use Docker to bring up our network.

> docker-compose -f docker-compose-cli.yaml up -d

You’ll see this:

Let’s also set up our Docker command line interface so we can enter it and execute our

transaction commands.

> docker start cli

Now let’s enter our Docker container.

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

> docker exec -it cli bash

Voila! We’re now in our container:

We’ll now pass in the channel configuration we created earlier so our container can start the

channel.

> export CHANNEL_NAME=mychannel> peer channel create -o

orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/channel.tx -

-tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganization

s/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-

cert.pem

Let’s now add our peers to the channel. We’ll run through the commands first then explain them.

> peer channel join -b

mychannel.block>CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledge

r/fabric/peer/crypto/peerOrganizations/org2.example.com/users/Admin@org2.exam

ple.com/msp CORE_PEER_ADDRESS=peer0.org2.example.com:7051

CORE_PEER_LOCALMSPID="Org2MSP"

CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/pee

r/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/

ca.crt peer channel join -b mychannel.block> peer channel update -o

orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-

artifacts/Org1MSPanchors.tx --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganization

s/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-

cert.pem>

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/cr

ypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

CORE_PEER_ADDRESS=peer0.org2.example.com:7051 CORE_PEER_LOCALMSPID="Org2MSP"

CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/pee

r/crypto/peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/

ca.crt peer channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f

./channel-artifacts/Org2MSPanchors.tx --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganization

s/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-

cert.pem

What did we just do?

 We joined the first peer of our first organization

 We joined the first peer of our second organization and updated the environment

variables accordingly to recognize it

 We made these two peers the Anchor Peers of each organization so new peers can talk to

them and learn about other peers

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

Install our Smart Contract

Remember, smart contracts are referred to as “chaincode” in Fabric. Here, we will pull some pre-

packaged chaincode that Fabric provides and install it to our network.

> peer chaincode install -n mycc -v 1.0 -p

github.com/chaincode/chaincode_example02/go/> peer chaincode instantiate -o

orderer.example.com:7050 --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganization

s/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-

cert.pem -C $CHANNEL_NAME -n mycc -v 1.0 -c '{"Args":["init","a", "100",

"b","200"]}' -P "OR ('Org1MSP.peer','Org2MSP.peer')"

You’ll see:

What did we do?

 We pulled the chaincode from Github

 We instantiated it then set asset balances (you can think of these as token balances for

simplicity). We set “a”, or the first peer we created as having 100 tokens, and “b”, the

second peer as having 200 tokens.

The fun stuff!

We’ve got our Fabric network up and running with a couple peers with starting token balances!

Let’s play around with it and send some tokens around.

Let’s double check and see how many tokens “a” has

> peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

As expected, we see that “a” has 100 tokens. Now let’s send 10 tokens from “a” to “b”

> peer chaincode invoke -o orderer.example.com:7050 --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/ordererOrganization

s/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.example.com-

cert.pem -C $CHANNEL_NAME -n mycc -c '{"Args":["invoke","a","b","10"]}'

Now let’s try the same query from before. In theory, “a” should now have 90 tokens.

> peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

Lo and behold!

Congratulations!

You’ve just got an entire Hyperledger Fabric network up and running, installed chaincode on it

and created transactions between peers. This is no small feat. You’ve just run through the core

steps of starting a blockchain enterprise application.

Our mission in this tutorial was to give you a simple way to run through the Fabric

documentation without being encumbered by all the unnecessary minutia they give, particularly

when you just want to try Hyperledger for yourself. If you want the full details of all the steps

above, feel free to refer to their more detailed documentation.

Next Steps

http://hyperledger-fabric.readthedocs.io/en/release-1.1/build_network.html

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

You already have all the tools you need to run your own Fabric blockchain and add transactions.

In the next tutorial, we’ll be taking a deeper dive at chaincode and showing you how to

program your own smart contracts on Fabric with Go.

You’ve successfully completed your first step in becoming an enterprise blockchain developer!

Also, be sure to read our previous posts. If you were curious about the basic concepts about the

blockchain that supported this tutorial, these articles are the perfect place to start:

 Code your own blockchain

 Networking

 Proof of Work

 Proof of Stake

 IPFS

 P2P

 Advanced Blockchain Concepts

 Build a DApp on Hyperledger

Until next time, happy blockchain programming!

https://medium.com/@mycoralhealth/code-your-own-blockchain-in-less-than-200-lines-of-go-e296282bcffc
https://medium.com/@mycoralhealth/part-2-networking-code-your-own-blockchain-in-less-than-200-lines-of-go-17fe1dad46e1
https://medium.com/@mycoralhealth/code-your-own-blockchain-mining-algorithm-in-go-82c6a71aba1f
https://medium.com/@mycoralhealth/code-your-own-proof-of-stake-blockchain-in-go-610cd99aa658
https://medium.com/@mycoralhealth/learn-to-securely-share-files-on-the-blockchain-with-ipfs-219ee47df54c
https://medium.com/coinmonks/code-a-simple-p2p-blockchain-in-go-46662601f417
https://medium.com/@mycoralhealth/advanced-blockchain-concepts-for-beginners-32887202afad
https://medium.com/@mycoralhealth/build-a-dapp-on-hyperledger-the-easy-way-178c39e503fa

Dr. Bacem Mbarek , Faculty of Informatics, Masaryk University

	Hyperledger fabric first network tutorial
	Installing Prerequisites for Hyperledger Fabric:
	docker-compose-cli.yaml
	base/docker-compose-base.yaml
	channel-artifacts/
	crypto-config.yaml
	byfn.sh
	Create Network Entities
	Enough setup! Let’s start our network!
	Install our Smart Contract
	The fun stuff!
	Congratulations!
	Next Steps

