What is Software Architecture... Architectural Styles

PV260 Software Quality

W/ Ondfiej “Ondra” Krajicek [t =]

° ondrej.krajicek@ysoft.com K.
T=erT @OndrejKrajicek [=]

Architectural Styles

Architectural Styles

- Tiered Architecture

- Hexagonal Architecture

- Onion Architecture

- Object Oriented Architecture
- Service Oriented Architecture
- Microservices

Which one is the best one?

- Consistency

- Cohesion Cost of

—> Change

(affected by technical debt)

- Coupling
- Clarity

How can we measure
technical debt?

‘—;?LQDE
S AR
V¢ "‘Jltl‘ 'l,;{‘ =S

Principles over Patterns.

Consistency

"ERNS OF
‘RP*
SATION
N

MAR) SOWLI

Module, Data, Service, Interaction Dependencies.

Coupling

Module Coupling

O O
O O

Uncoupled: no Loosely Coupled: Highly Coupled:
dependencies Some dependencies Many dependencies
(a) (b) (c)

https://www.javatpoint.com/software-engineering-coupling-and-cohesion

Types of Modules Cohesion

Functional Cohesion Best

A
Well-Designed or Leaking Abstractions. Sequential Cohesion

Communication 03

Cohesion

Cohesion ——

Procedural Cohesion
Temporal Cohesion

Coin Cidental Cohesion Worst

https://www.javatpoint.com/software-engineering-coupling-and-cohesion

Everyone understands why, how and what to do. System deteriorates
slower and technical delbt does not grow quickly.

Clarity

Personal Banking
Customer

mer of the bank, with
ersonal bank accour

%)

Stores allof the core banking
information a

hashed authentication mdenﬂals,v functionality via a JSON/HTTPS API.

transactions, etc.

-
€ e oo -

i |
| |
! Web Application Mobile A} |
. Single-Page Application Pl] | E-mail System
[l Deivers the siatic content and the SRR Provides limited subsetofthe i
[l internet banking single page Provides all ofthe Internet banking Internet banking functionaliy to [s STl Mirosfl Echeres
‘ application. functionalty to customers va thelr customers via their mobie device. [N emailsystem.
| |
| 7 [
| \ / I
| A
I Uses Sends e-mail

wsonnTTes) using |
| \ _oowm |
| \ / - |
| = |
| |
| | Mainframe Banking
| Database API Application | System
[l o v b s __ Readsfromand ST o [N o)
[stores user registration information, res o Provides Internet bankin oo |
| |
| |
| |

|

| nteret Banking sysem
Container diagram for Internet Banking System

The container iagram for the nternet Banking Syster.

Last moifed: Wednesday 02 May 2018 13:46 UTC

Replaceable Architecture

Wait, what?

Osaka Castle

o

it~ Mo e e SENT

Giza Pyramids

- Built to last: hundreds and thousands of years.

- Built to survive natural disasters, especially earthquakes (shinbashira).
- Both have very different architecture.

- You cannot replace one with the other.

- Why would you"?

Replaceable as in Having rather low Cost of Change

How to decrease Cost of Change?

2-Tier Architecture

- Original Client / Server

- Business Logic is implemented on the client,
server or both.

- What are the issues?

6@ CLIENT

SERVER

Presentation
Layer

:

Business Logic

Data Layer

3-Tler Architecture

- Decouple presentation from business logic.

Business logic is isolated from client and
server.

- Business layer often historically hosted in
application servers with obscure
technologies (j2ee, Microsoft ASP, PHP,
ColdFusion, etc.).

- How is it different from 2-Tier?

Presentation tier

The top-most level of the application

is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

Logic tier

This layer coordinates the
application, processes commands,
makes logical decisions and
evaluations, and performs
calculations. It also moves and
processes data between the two
surrounding layers.

Data tier

Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.

>GET SALES
TOTAL

GET LIST OF ALL
SALES MADE
LAST YEAR

AN

QUERY

TOTAL

4 TOTAL SALES

ADD ALL SALES
TOGETHER

A

AN
SALE 1
SALE 2
SALE 3

i

-
E

Database

Storage

https://en.wikipedia.org/wiki/Multitier_architecture#/media/File:Overview_of_a_three-tier_application_vectorVersion.svg

Onion Architecture

- Built on the observation that most / all
interfaces are alike.

- Outer layers depend on inner layers.

- Inner layers must not depend on outer
layers.

- Enforces Inversion of Control.

Application Core

- How is it different from N-Tier?

Hexagonal Architecture

- Ports and Adapters Architecture

- Sometimes Onion and Hexagonal are viewed
as the same.

- Hexagonal Architecture is more explicit and
structured.

- Recommended reading:
https://herbertograca.com/2017/11/16/
explicit-architecture-01-ddd-hexagonal-
onion-clean-cars-how-i-put-it-all-together/

'
User Interface E Infrastructure

Understand all of this, i
but use only what you need | www.herbertograca.com
'

The Clean Architecture

The Clean Architecture

»+ Onion + Screaming Architecture.

- Independent of Frameworks.

- Testable: all parts and as a whole.

- Independent of Interfaces.

- Independent of the data store /
database / object persistence.

- Independent of any external
impact.

Controllers

|| Enterprise Business Rules

Use Cases [] Application Business Rules

|| Interface Adapters

| | Frameworks & Drivers

I+
Presenter |[—> OUuI uEEP‘:rt

{

Use Case
Interactor

v

<I
Controller |—> mf,',’o':

>

3
O
z
o
Z
q

FOR SOMETHING
COMPLETELY
DIFFERENT.

POASER SUSU IR © O SRSt Ju0UAGY G WY TRLEIAEOLRA MM

also known as the current silver bullet.

https://www.cgl.ucsf.edu/Outreach/pc204/NoSilverBullet.html

Microservices

Conway's Law

Business Processes S
834 AL
\J \J
- e a2 | B > Se <

Ul Back-End Database
Company System
Structure Design
iy

O rg an izat i O n St ru Ct U re d ete rm i n eS https://medium.com/@learnstuff.io/conways-law-in-software-
system architecture / design.

As the systems get larger, complexity grows quickly and systems
become unmanageable.

http://www.laputan.org/mud/mud.html#BigBallOfMud

https://medium.com/raa-labs/part-1-domain-driven-design-like-a-pro-f9e78d081f10

- Split system in a set of loosely coupled, cohesive services.
» Each service does only one thing and does it well.

- Each service is represented only by its API.

- Each service has its own data.

Microservices

A
Y

Service 1 Service 2

|

https://medium.com/hashmapinc/the-what-why-and-how-of-a-microservices-architecture-4179579423a9

What are the challenges of Microservices?

Compensating for high decentralisation. Patterns are emerging.

Use an AP| gateway

Controller

Traditional server-side
web application

Controller

Variation: Backends for frontends

Single entry point

REST Product Info

service

Web application
Gateway

\

Mobile
Mobile app s A\ REST
Gateway

REST Catalog

service

Recommendation
REST Service

Recommendation
Service

Review
service

AMQP Review

service

: 3rd party applications
Client

specific APls

Protocol
translation

Gateway

@crichardson

https://microservices.io/patterns/apigateway.html

AP| Gateway Pattern Thank you NETFLIX!

Y4"\"1 -

\¢ /
A x

Key Takeaways

Architectural style is a choice driven by stakeholder values.

Everyone talks about microservices, yet that does not make it the

silver bullet.

