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Enhancers are gene regulatory elements that activate expression 
of target genes from a distance1. The vast majority of enhanc-
ers and their spatiotemporal activities remain unknown2,3. 

Understanding enhancer function and evolution is currently an 
area of great interest because many variants within distal regulatory 
elements also have been associated with various traits and diseases 
during genome-wide association studies4–6. Traditionally, regulatory 
activities of enhancers were experimentally validated using heterol-
ogous reporter constructs, which has led to a relatively small num-
ber of enhancers that are functionally validated in several selected 
mammalian-cell types7,8. These validated enhancers are typically 
in conserved non-coding regions9,10 with particular patterns of 
chromatin11, transcription factor (TF) binding12 or non-coding 
transcription13. When complex computational methods for pre-
dicting tissue- or cell-line-specific enhancers were trained on these 
validated enhancers, they could be susceptible to potential biases 
and were difficult to generalize to other tissues or species, as the 
number of training data were usually not sufficient. Some published 
methods also featured models trained on the basis of TF-binding 
sites12,14–16. The TF-binding sites provide a larger dataset for training. 
However, most enhancers do not bind to one or a small group of 
TFs. In addition, it has remained challenging to assess the perfor-
mance of different methods for enhancer prediction with a limited 
number of putative enhancers being validated.

The development of self-transcribing active regulatory region 
sequencing (STARR-seq) has made it possible to quantitatively 
assess the activity of millions of candidate enhancers across entire 

genomes17. In these experiments, plasmids that each contain a 
potential enhancer element downstream of a green fluorescent pro-
tein (GFP) gene are transfected into target cells. The differences 
in the activities of the tested regions are reflected by quantifying 
the levels of the resulting reporter transcripts through sequencing. 
STARR-seq confirmed previous findings that active enhancers and 
promoters are usually located at open chromatin regions where 
various TFs and cofactors bind18–20. In addition, it confirmed that 
the regulatory regions are often flanked by nucleosomes that con-
tain histone proteins with certain characteristic post-translational 
modifications, such as histone H3 acetyl K27 (H3K27ac)21.  
These attributes lead to an enriched peak-trough-peak (‘double 
peak’) signal, which has been observed in previous studies22. 
Recently, similar epigenetic patterns were repeatedly observed close 
to regulatory regions identified in a number of massively parallel 
reporter assays23,24.

We developed a method to take into account the specific 
enhancer-associated pattern within different epigenetic signals. 
Previous Encyclopedia of DNA Elements (ENCODE) and modEN-
CODE efforts showed that the chromatin modifications on active 
promoters and enhancers are conserved across higher eukary-
otes25–31. We further explored this conservation of epigenetic signal 
shapes for constructing simple-to-use transferrable statistical mod-
els using six epigenetic marks to predict enhancers and promoters 
in different eukaryotic species, including fly, mouse and human.

Working on different organisms allowed us to take advantage of 
different assays to validate our predictions in a robust fashion using 
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multiple experimental approaches. In the first stage, we predicted 
enhancers in six embryonic mouse tissues and tested the activity 
of these predictions in vivo with transgenic mouse assays. We then 
proceeded to test the activity of these elements in vitro in human 
cell lines, such as H1 human embryonic stem cells (H1-hESCs), an 
extensively studied and well-characterized cell line. We showed that 
the enhancer predictions from our transferrable model are compa-
rable to the prediction accuracy of species-specific models.

Results
Aggregation of epigenetic signals in Drosophila to create 
metaprofiles. We developed a framework to predict active regula-
tory elements using the epigenetic signal patterns associated with 
experimentally validated promoters and enhancers (Fig. 1). The 
STARR-seq studies on Drosophila cell lines provide the most com-
prehensive datasets as they were performed genome-wide and with 
multiple core promoters17,32. These peaks typically consist of a mix-
ture of enhancers and promoters. At this stage, we did not differ-
entiate between the two sets of regulatory elements. As STARR-seq 
quantifies enhancer activity in an episomal fashion, not all peaks 
would be active in the native chromatin environment. Arnold and 
colleagues17 showed that the STARR-seq peaks that occur with 
enriched DNase hypersensitivity or H3K27ac modifications tend 

to be associated with active genes, whereas other STARR-seq peaks 
tend to be associated with enrichment of repressive marks, such as 
H3 trimethylated at K27 (H3K27me3). Hence, we took the overlap 
of the STARR-seq enhancers with H3K27ac and/or DHS peaks to 
get a high-confidence set of enhancers that are active in vivo, and 
based on these, we created representative metaprofiles for each his-
tone modification and DNase signal, respectively. During aggrega-
tion, we first aligned the two maxima in the H3K27ac signal across 
active STARR-seq peaks, followed by interpolation of the signal 
before calculating the average to generate the metaprofile. Then, we 
calculated the dependent metaprofiles for other histone marks fol-
lowing the same procedure (Fig. 1).

Match of a metaprofile is predictive of regulatory activity. To cal-
culate the matched-filter scores, we first smoothed the input signal 
track for each epigenetic mark. Then, we scanned the H3K27ac sig-
nal track to find each pair of local maximum points between 300 and 
1,100 base pairs (bp). Due to the variability of the distance between 
the double peaks, we interpolated each double-peak region before 
convolving it with the filter to get an initial score (Extended Data 
Fig. 1). If there were multiple overlapping double-peak regions, we 
used the highest score within a 1,500-bp region as the prediction 
for the regulatory potential. We then calculated the matched-filter 
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Fig. 1 | Flowchart of the matched-filter model. a, We identified the double-peak pattern in the H3K27ac signal close to STARR-seq peaks. The red triangles 
denote the position of the two maxima in the double peak. b, We aggregated the H3K27ac signal around these regions after aligning the flanking maxima, 
using interpolation and smoothing on the H3K27ac signal, and averaged the signal across different STARR-seq peaks to create the metaprofile in c. The 
same operations were performed on other histone signals and DHS to create metaprofiles in other dependent epigenetic signals. d, Matched filters were 
used to scan the histone and/or DHS datasets to identify the occurrence of the corresponding pattern in the genome. We use s to denote the metaprofile, 
h for the filter, y for the epigenetic signal and r for the matched-filter score. s*(N – n) is the complex conjugate of the flipped metaprofile s, where N is the 
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scores for other epigenetic marks on the basis of those same 
double-peak regions (Methods).

We calculated the matched-filter score for all 30 epigenetic- 
modification signals available in the Drosophila cell lines on 
STARR-seq peaks and a negative control set (Extended Data Fig. 2).  
The negatives were randomly chosen regions in the genome that 
were not STARR-seq peaks and that had the same length distri-
bution as the enhancers from STARR-seq (‘Model assessment’ in 
Methods). Interestingly, the distribution of matched-filter scores for 
STARR-seq peaks was unimodal for each histone mark except for 
H3K4me1, H3K4me3 and H2Av, which had bimodal distributions. 
We looked at the degree to which the matched-filter scores for pro-
moters and enhancers were higher than the matched-filter scores 
for the rest of the genome (Extended Data Fig. 2), as this is a mea-
sure of the signal-to-noise ratio for prediction of regulatory regions. 
We observed that the H3K27ac matched-filter score was the most 
accurate feature for predicting active regulatory regions identified 
using STARR-seq (Supplementary Table 1), consistent with previ-
ous studies21,33,34. In addition, several histone acetylation marks, as 
well as H1 and H3K4 methylations and DHS, were also accurate 
prediction features, whereas other histone marks, such as H3K79m1 
and H4K20me1, were not well suited, as their matched-filter scores 
for positive regions and negative regions were not distinguishable.

To quantitatively evaluate whether the occurrence of the epi-
genetic metaprofiles could be used to predict active enhancers and 
promoters, we did a tenfold cross-validation assessing the average 
area under the receiver operating characteristic (AUROC) and 
area under the precision–recall (AUPR) curves. Comparing the 
matched-filter result with the peak-calling result, we found that 
the AUROC and AUPR of the matched-filter scores for different 
histone modifications were higher than those of the peaks of corre-
sponding histone marks (Fig. 2), suggesting that the matched-filter 
score is more accurate in predicting active STARR-seq peaks than 
the simple enrichment of the signals.

Integration of matched-filter scores of multiple epigenetic fea-
tures. We first combined the matched-filter scores from all 30 mea-
sured histone marks along with the DHS in statistical models, such 
as random forest and support vector machine (SVM) (Extended 
Data Fig. 3). We evaluated the performance of the integrated model 
using tenfold cross-validation. For each fold of validation, 90% 
of the positives and negatives were used to build metaprofiles for  
each epigenetic mark, generate matched-filter scores and train the 

integrative model. The remaining 10% of data were used to test 
model accuracy. The integrated models with 30 epigenetic features 
displayed high accuracy (average AUROC = 0.97 and AUPR = 0.93 
for SVM model with multiple core promoters). We obtained the fea-
ture coefficients or Gini scores of each epigenetic mark from the 
integrated models.

We then built an integrated model with combined matched-filter 
scores of six commonly available and discriminative epigenetic 
marks (H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac and 
DHS) associated with active regulatory regions using a linear SVM35. 
The selection of these six features was based on their matched-filter 
score performance, their importance in the integrated model and 
data availability (‘Feature selection’ in Methods). We then assessed 
the performance of different statistical approaches, including ran-
dom forest, ridge regression, Naive Bayes and SVM to combine the 
features. While all these approaches performed similarly (Extended 
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Fig. 2 | Performance of matched filters and integrated models for 
predicting STARR-seq peaks, compared with that of peak-based models. 
The performance of the matched filters of different epigenetic marks and 
the integrated model for predicting all STARR-seq peaks was compared 
using tenfold cross-validation. a, The AUROC and AUPR curves were used 
to measure the accuracy of different matched filters and the integrated 
model. b, Weights of the different features in the integrated model are 
plotted; the mean value is displayed in the bar plot, and the error bars show 
the s.d. of feature weights measured by tenfold cross-validation. These 
weights may be used as a proxy for the importance of each feature in the 
integrated model. c,d, The individual ROC and PR curves for each matched 
filter and the integrated model are shown. The performance of these 
features and the integrated model for predicting the STARR-seq peaks 
using multiple core promoters and a single core promoter were compared 
with the performance of peak-based models. The colored numbers within 
the parentheses in a refer to the AUROC and AUPR for predicting the peaks 
using a single STARR-seq core promoter; the colored numbers outside the 
parentheses refer to the performance of the model for predicting peaks 
from multiple core promoters; the gray numbers in the parentheses refer to 
the performance of the peak-based models. TP rate, true-positive rate; FP 
rate, false-positive rate.
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Data Fig. 4), we used a linear SVM in our framework because its 
performances were the most stable in cross-validations.

We found that the simplified SVM model had a high perfor-
mance similar to that of the full SVM model using all 30 epigen-
etic marks, with an AUROC of 0.96 (0.97 in the full model) and 
an AUPR of 0.91 (0.93 in the full model). We also trained an SVM 
model using all STARR-seq peaks (including those with no DHS 
and H3K27ac signals) with the same six features. We found that 
H3K27ac still had the highest Gini score in random forest, albeit 
with a slightly smaller coefficient in SVM (Supplementary Fig. 2). 
In general, the integrated model trained on the six features achieved 
good performance upon cross-validation, and this set of input fea-
tures allowed the integrated model to be applied to a variety of cell 
lines and tissues, as many relevant chromatin immunoprecipita-
tion with sequencing (ChIP–seq) and DNase experiments have 
been performed by the Roadmap Epigenomics Mapping36 and the 
ENCODE37 Consortium in a wide variety of samples.

Distinct epigenetic signals associated with promoters and enhanc-
ers. We created individual metaprofiles and machine-learning 
models for the two classes of regulatory activators—promoters (or 
proximal) and enhancers (or distal). We assessed the performance 
of the matched filters for predicting active regulatory regions within 
each category (Fig. 3). We also combined the peaks identified from 
multiple STARR-seq experiments of S2 cells and reassessed the per-
formance of the matched filters at predicting promoters and enhanc-
ers, respectively. Merging the STARR-seq peaks from multiple core 
promoters led to higher AUROC and AUPR scores for the matched 
filters of most histone marks (Supplementary Table 2). The highest 
matched-filter scores were typically observed on promoters, and the 
matched filters for each of the six features tended to perform better 
for promoter prediction. We observed, similar to what was found in 
previous studies38,39, that the H3K4me1 metaprofile was very predic-
tive for enhancers but was close to random for predicting promoters. 
In contrast, the H3K4me3 metaprofile could be utilized to predict 
promoters and not enhancers. The histogram for matched-filter 
scores showed that the H3K4me1 matched-filter score was higher 
near enhancers, whereas the H3K4me3 matched-filter score tended 
to be higher near promoters. The mixture of these two popula-
tions led to bimodal distributions for H3K4me1 and H3K4me3 
matched-filter scores when calculated over all regulatory regions 
(Extended Data Fig. 2).

We again trained different statistical models to learn the com-
bination of features associated with promoters and enhancers, 
respectively. These integrated models outperformed the individual 
matched filters at predicting active enhancers and promoters (Fig. 
3 and Extended Data Fig. 5). In addition, the weights of the indi-
vidual features identified the difference in the roles of H3K4me1 
and H3K4me3 matched-filter scores at discriminating active pro-
moters and enhancers from inactive regions in the genome. The 
trained promoter-specific model has a high weight for H3K4me3, 
which is considered a marker for promoters33, but a lower weight 
for H3K4me1, which is considered a marker for enhancers33. This 
result is reversed in the enhancer-specific model, indicating the 
unique features that were captured for different identification tasks 
(Supplementary Figs. 4 and 5). We also created two integrated mod-
els utilizing matched-filter scores of all 30 histone marks as features 
for predicting enhancers and promoters. The additional histone 
marks provided independent information regarding the activity of 
promoters and enhancers, as these features increased the accuracy 
of these models (Extended Data Fig. 6).

Application of the STARR-seq model to predict enhancers in 
mammalian species. One of the important findings of previous 
ENCODE and model-organism ENCODE efforts was the con-
served patterns of chromatin marks close to regulatory elements 

across hundreds of millions of years of evolution25–31. The relation-
ship of chromatin marks to gene expression was very similar, for 
instance, in worms, flies, mice and humans. Therefore, it is possible 
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Fig. 3 | Performance of matched filters and integrated models for 
predicting promoters and enhancers. The performance of the matched 
filters of different epigenetic marks and the integrated model for 
predicting active promoters and enhancers were compared using tenfold 
cross-validation. a, The numbers within parentheses refer to the AUROC 
and AUPR for predicting promoters; the numbers outside the parentheses 
refer the performance of the models for predicting enhancers. b, Weights 
of the different features in the integrated models for promoter and 
enhancer prediction are plotted; the mean value is displayed in the bar plot, 
and the error bars show the s.d. of feature weights measured by tenfold 
cross-validation. c,d, The ROC and PR curves for each matched filter 
and the integrated model are shown. The performance of these features 
and that of the integrated model for predicting the active promoters and 
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NATuRE METHoDS | VOL 17 | AUGUST 2020 | 807–814 | www.nature.com/naturemethods810

http://www.nature.com/naturemethods


ArticlesNATuRE METHoDS

to build a statistical model relating chromatin modification to gene 
expression that would work without re-parameterization for differ-
ent organisms. This motivated us to transfer our well-parameterized 
model based on the STARR-seq data from flies to mammalian 
systems (for example, mouse and human) and to test our model’s 
performance.

We started by making genome-wide predictions of mouse 
regulatory regions. Predictions were made in six different tissues 
(forebrain, midbrain, hindbrain, limb, heart and neural tube) at 
embryonic day 11.5 (e11.5) (predictions are available on our website 
at http://matchedfilter.gersteinlab.org). Using our model, we pre-
dicted 31,000 to 39,000 regulatory regions in individual tissues in 
mouse, with each region ranging from 300 bp to 1,100 bp. Similarly, 
we performed a genome-wide prediction of regulatory regions in the 
ENCODE top-tier human cell lines, including H1-hESC, GM12878, 
K562, HepG2, A549 and MCF-7. In H1-hESC, for example, we pre-
dicted 43,463 active regulatory regions, of which 22,828 (52.5%) 
were within 2 kilobase pairs of the transcription start site and were 
labeled as promoters. Most of the predicted regulatory regions were 
also present near active genes (Extended Data Fig. 7).

Validation in vivo in mice. To test the activity of predicted mouse 
enhancers in vivo, we performed transgenic mouse enhancer assays 
(Extended Data Fig. 8) in e11.5 mice for 133 regions, including 
102 regions selected on the basis of the H3K27ac-signal rank of 
the corresponding mouse tissues, and another 31 regions selected 
by an ensemble approach from human homolog sequences 
(Supplementary Tables 4–9). In addition, we included other pub-
lished transgenic mouse experiments from the VISTA database for 
validation. In total, we had 1,253 positive regions and 8,631 nega-
tive regions pulled together from different tissues. This large set of 
validated enhancers allowed us to comprehensively evaluate the 
predictability of the matched-filter scores of each epigenetic mark, 
as well as the integrated SVM model (Fig. 4). On average, the inte-
grated model trained with Drosophila STARR-seq data achieved an 
AUROC of 0.8. We did a similar evaluation with publicly available 
FIREWACh assay data40 from mice, and the outcome was in accor-
dance with our other results (Extended Data Fig. 9). For compari-
son, we trained an integrated model based directly on the validated 
mouse enhancers. We observed a similar prediction accuracy upon 
cross-validation (Extended Data Fig. 10).

Validation in human cell lines. We validated our STARR-seq-based 
model for predicting human enhancers using a cell-line-based trans-
duction assay (Supplementary Methods). We randomly selected 20 
predicted intergenic enhancers for validation. Insertion of 11 of 
the putative enhancers into the HIV vector resulted in a significant 
increase in enhanced GFP expression (P < 0.05 for both directions) 
in H1-hESCs (Supplementary Table 10 and Supplementary Data 
1). The positive enhancers displayed a significant increase in gene 
expressions in both orientations. In contrast, the negatives displayed 
much lower levels of gene expression (Extended Data Fig. 11).  
The activity of these tested enhancers also showed cell-type speci-
ficity. More than half of the predicted enhancers show activity in 
H1-hESCs (Extended Data Fig. 12), but less in A549 and TZM-bl 
cells, which are derived from tumor cells (Supplementary Table 10). 
Overall, 16 of the 20 tested predictions displayed a statistically sig-
nificant increase in gene expression of the reporter gene in at least 
one of the cell lines. Given the promoter specificity of enhancers in 
such assays, we anticipate that some of the elements that could not 
be validated in this particular vector would function as enhancers 
in a more natural biological context (for example, with the cognate 
promoter or in the absence of surrounding HIV vector sequences).

TFs exhibit different binding patterns at enhancers and promoters.  
We further studied the differences in TF binding at promoters and 

enhancers (Fig. 5). We focused on the human H1-hESC cell line, 
as there is a large amount of functional genomic assays from the 
ENCODE37 and Roadmap Epigenomics Mapping Consortium36 of 
this cell line. Together, the consortia have generated ChIP–seq data 
for 60 transcription-related factors in the H1-hESC cell line, includ-
ing a few chromatin remodelers and histone-modification enzymes. 
Collectively, we call these transcription-related factors ‘TFs’  
for simplicity.

We showed that the patterns of TF binding within regulatory 
regions could be utilized in a logistic-regression model to dis-
tinguish active enhancers from promoters with high accuracy 
(AUPR = 0.90, AUROC = 0.87) (Fig. 5). We were also able to iden-
tify the most important features that distinguish promoters from 
enhancers. In addition to TATA-box-associated factors such as 
TAF1, TAF7, and TBP, the RNA-polymerase-II binding patterns as 
well as those for chromatin remodelers such as KDM5A and PHF8 
are some of the most important factors that distinguish promoters 
from enhancers in H1-hESCs. This provides a framework that can 
be utilized to identify the most important TFs associated with active 
enhancers and promoters in each cell type.

We found that although most promoters and enhancers contain 
multiple TF-binding sites, the pattern of TF binding at promoters 
was different than that at enhancers, and that TF binding at enhanc-
ers displayed more heterogeneity: more than 70% of the promot-
ers bound to the same set of 2 or 3 sequence-specific TFs, which  
was not observed for enhancers (Fig. 5c). The majority of the  
promoters contained peaks for several TATA-associated factors 
(TAF1, TAF7 and TBP). These TF coassociations could lead to 
mechanistic insights of cooperativity between TFs. Similarly, CTCF 
and ZNF143 may function cooperatively as they are observed to 
co-occur frequently at distal regulatory regions, consistent with a 
previous report41.

Discussion
In this study, we developed a framework using transferable super-
vised machine-learning models trained on regulatory regions 
identified by STARR-seq to accurately predict active enhancers in 
a cell-type-specific manner. The rich amount of whole-genome 
STARR-seq experiments established the characteristic pattern flank-
ing active regulatory regions within certain histone modifications17. 
This motivated us to train a shape-matching and filtering model that 
could be used to identify these patterns in the ChIP–seq signals. As 
the chromatin marks and epigenetic profiles associated with active 
regulatory regions are highly conserved among organisms25–31, we 
showed that a well-parameterized model in one model organism can 
be transferred to another with high prediction accuracy.

While STARR-seq provides a genome-wide unbiased test of the 
enhancer activity of putative sequences, it is intrinsically episomal 
and thus does not completely reveal the enhancer activity in the 
native chromatin environment. Selecting for chromosomally active 
enhancers using H3K27ac and DHS could introduce subtle biases 
in model training. To address this issue, we employed very different 
experimental techniques and provided orthogonal validations. This 
included in vivo transgenic assays and in vitro transduction assays, 
in which the predicted regions were tested for regulatory activity 
in the native chromatin environment. With these orthogonal vali-
dations, we were able to comprehensively assess our tissue-specific 
predictions in six tissues in mice. With multiple comparisons to 
other published methods trained directly on mouse data, we have 
shown that the matched-filter model is transferable with high accu-
racy in predicting active enhancers in mouse tissues. The in vitro 
transduction assays were performed in H1-hESCs and three other 
human cell lines to validate the human regulatory-element predic-
tions. The majority of the predicted elements displayed a substantial 
increase in expression of the reporter gene, further confirming the 
capability of our model to make enhancer predictions in mammals. 
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Our predictions depend on the availability of high-quality histone 
ChIP–seq datasets in the relevant tissue or cell type of interest. It 
may be impossible to produce such high-quality datasets for differ-
ent human tissues and developmental timelines.

Recently, genome-wide STARR-seq has been applied to mam-
malian systems such as HeLa-S3 cells42. In the future, we expect 
that more extensive whole-genome STARR-seq datasets will 

become available in mammalian systems. It could be advantageous 
to re-train the matched filter model on state-of-the-art datasets.  
With the set-up of our framework, re-training the model with  
newly generated datasets should be straightforward. We envision 
that our framework would benefit from these datasets and gener-
ate more comprehensive regulatory-element annotations across 
eukaryotic species.
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Methods
Creation of metaprofile. A metaprofile is a template used to estimate the signal 
distribution on active enhancers for one epigenetic signal. We evaluated whether 
we could utilize the metaprofiles to predict active promoters and enhancers using 
matched filters (Fig. 1). Matched filter is a well-established pattern recognition 
algorithm that uses a shape-matching filter to recognize the occurrence of a 
template in the presence of stochastic noise43. We started with creating the 
metaprofiles, which we generally denote as s(n), based on experimentally  
validated active enhancers. The STARR-seq studies on Drosophila cell lines  
provide the most comprehensive datasets, as they were performed genome wide 
and with multiple core promoters17,32. These peaks typically consist of a mixture 
of enhancers and promoters. At this stage, we did not differentiate between the 
two sets of regulatory elements. As STARR-seq quantifies enhancer activity 
in an episomal fashion, not all peaks would be active in the native chromatin 
environment. Arnold and colleagues17 showed that the STARR-seq peaks that 
occur with enriched DNase hypersensitivity or H3K27ac modifications tend to be 
associated with active genes, whereas other STARR-seq peaks tend to be associated 
with an enrichment of repressive marks such as H3K27me3. Hence, we took the 
overlap of the STARR-seq enhancers with H3K27ac and/or DHS peaks to get a 
high-confidence set of enhancers that are active in vivo, upon which we created 
representative metaprofiles for each histone modification and DNase signal, 
respectively.

We utilized the smoothed histone signal tracks for the Drosophila S2 cell line 
provided by the modENCODE consortium44 to create metaprofiles for ChIP–seq 
signals. The genome-wide profile for open chromatin (DNase-seq or DHS) for the 
S2 cell line was calculated on the basis of experiments by the Stark lab17. To create 
the metaprofiles, we aligned active STARR-seq peaks with identifiable double-peak 
patterns of the H3K27ac signal and aggregated the signals in the S2 cell line (Fig. 
1b). Aggregation of signals over a large number of enhancers reduced the noise 
in the metaprofiles. To identify double-peak regions, we initially identified the 
minimum in the H3K27ac signal track closest to the middle of the STARR-seq 
peaks. A minimum was accepted if it had the lowest signal within a 100-bp region 
in the H3K27ac signal track. We then proceeded to identify the flanking maxima 
(both sides of the minimum) within a total of 2-kilobase-pair (2-kb) region around 
the STARR-seq peak (1 kb in each direction from the center of the STARR-seq 
peak). These maxima were accepted only if they had the highest signal within a 
100-bp region in the H3K27ac signal track.

Approximately 70% of the active STARR-seq peaks contained an identifiable 
double peak within the H3K27ac signal, although there was variability in the 
distance between the 2 maxima of the double peak in the ChIP–chip signal 
(Extended Data Fig. 1a). While the minimum tended to occur in the center of 
these 2 maxima on average, the distance between the 2 maxima in the double 
peaks varied between 300 and 1,100 bp. During aggregation, we first aligned 
the two maxima in the H3K27ac signal across active STARR-seq peaks. We then 
interpolated the signal with a cubic-spline fit so that the signal track contained 
an equal number of points for each double-peak region. All interpolation 
and smoothing steps were performed using the scipy module in Python. 
The aggregated signal tracks were averaged to create the metaprofile for the 
double-peak regions. While the signal tracks were aggregated on the basis of 
identifying the double-peak regions in the H3K27ac signal track, the same set of 
operations could be performed with any epigenetic mark expected to have the 
double-peak pattern flanking regulatory regions.

We calculated the metaprofiles of ~30 other epigenomic datasets (histone 
marks and DHS signal). These metaprofiles were calculated by aggregating 
the corresponding ChIP–seq or DHS signals based on the same regions where 
H3K27ac double peaks were identified, so the matched-filter scores of each 
epigenetic mark were calculated on the same regions in the integrated model. 
We observed that the metaprofiles for some epigenetic marks also showed a 
double-peak pattern, and the maxima across different histone-modification  
signals tended to align with each other on average, likely because these epigenetic 
marks flank enhancers in a similar pattern as H3K27ac does (Extended  
Data Fig. 1). This indicates that a large number of histone modifications would 
simultaneously co-occur on the nucleosomes flanking an active enhancer  
or promoter. In contrast, the repressive histone marks did not contain a 
double-peak pattern, so they did not have the same epigenetic template associated 
with enhancers. The DHS signal, as expected, displayed a single peak at the  
center of the H3K27ac double peak.

Matched-filter algorithm. The epigenetic signal at enhancers and promoters 
can be approximated as the linear superposition of background noise and the 
metaprofile s(n) learned in Fig. 1. To identify the occurrence of the metaprofile 
with the presence of noise, we adopted the canonical signaling processing method 
known as matched filter. The matched-filter process convolves the signal y(n) 
with the filter h(n). Before calculating the matched-filter score, the signal was 
interpolated to ensure that the scanned region contained the same number of 
points as the metaprofile:

rðnÞ ¼ ðy * hÞðnÞ ¼
Xn

i¼n�N

yðiÞhðn� iÞ

where * stands for convolution and r(n) is the resulting matched-filter score. The 
matched filter is defined as the conjugated reverse of the metaprofile template:

hðxÞ ¼ s*ðN � xÞ

where N is the total number of points in the template and * denotes the  
complex conjugate.

There was a large amount of variability in the span (distance between the 
two peaks in the histone signal) of the regulatory region in the epigenetic signal 
(Extended Data Fig. 1). As a result, we scanned different spans of the genome  
with the matched filter (distance between the 2 peaks were allowed to vary between 
300 and 1,100 bp) and took the highest score as the matched-filter score for  
that region. Matched filter recognizes the given template in a signal in the  
presence of noise with the highest signal-to-noise ratio43. At positive regions,  
the presence of the metaprofile within the signal leads to high matched-filter 
scores. At background regions where the signal is mostly comprised of noise,  
the matched-filter score is low.

Statistical learning models. We built an integrated model to include matched filter 
scores from multiple epigenetic signals for more accurate enhancer prediction.  
The matched filter scores from each epigenetic signal are first normalized.  
The distribution of matched-filter scores in random negative regions for 
a particular histone mark is approximately Gaussian and it represents the 
background distribution in the genome. The z-scores of matched-filter scores  
with respect to the negatives (random regions of genome) were used as input 
features for training different statistical learning models. The z-score of the 
matched-filter score is defined as

z ¼ r � μ

σ

where r is the matched-filter scores, and μ and σ are the mean and s.d. of the 
Gaussian fit to the matched-filter scores for random regions in genome.

We have tested different statistical learning models, including the SVM45,  
ridge regression46, random forest47 and Gaussian Naive Bayes48 models. For SVM, 
we utilized a linear kernel to distinguish between positives and negatives.  
The linear SVM identifies a decision boundary that maximally separates the 
regulatory regions and the random regions of the genome from the decision 
boundary. Ridge regression is a linear-regression technique that prevents 
overfitting by penalizing large weights for each feature. Random forest is an 
ensemble learning method that operates by constructing a large number of 
decision trees and outputting the mean prediction of different decision trees.  
We used thousand trees for creating our enhancer and promoter prediction 
models. The naïve Bayes classifier is a family of simple probabilistic classifiers  
that assumes that all the features are independent of one another. We used 
scikit-learn49 with default parameters for training and assessing the performance  
of all the statistical models. In the main text, we discussed the results of the  
support vector machine (SVM) model, which showed high performance, and low 
variance in performance upon cross-validation.

Feature selection. We selected the features to use in our framework by assessing 
their individual performance with matched filter, their importance in the 
integrative model, and their general data availability in mammalian systems. 
Specifically, the ability to distinguish enhancers from negative regions of each 
feature is shown in Extended Data Fig. 2 and Supplementary Table 1. We  
found that some histone marks, such as H3K27ac, give very different score 
distributions for the enhancer regions and random regions, whereas others,  
such as H3K79m1 and H4K20me1, have indistinguishable score distributions  
on these two categories of region.

For the importance of each feature in the integrative model, we trained an SVM 
model, a random forest mode, and a ridge regression using all 30 epigenetic marks, 
and assessed the importance of each feature using their feature coefficient or Gini 
score. Among these 30 features, H3K27ac, H3K4me1, H3K4me3 and H3K9ac 
showed high feature coefficients or a high GINI score in all three models; DHS and 
H3K4me2 had high GINI scores and were also widely used in previous literature 
to identify promoters and enhancers. In contrast, other histone marks, such as the 
repressive mark H3K27me3, show little contribution to the integrated model, as 
indicated by the Gini score and the feature coefficients.

Finally, as the 30 histone marks we tested were from Drosophila experimental 
data, many of them were unavailable in even top-tier tissues and cell lines for 
mouse and human. For example, H2BKac performed well in matched filter, and 
had a very high feature coefficient in each model, but the ChIP–seq experiment 
data are generally unavailable in mammalian cell lines. As our goal was to build a 
model with broad applicability across organisms, we decided to not include these 
epigenetic marks (for example, H2BK5ac, H4ac and H4K12ac) for now, but if more 
study is done on these histone marks in the future, we can easily include them in 
our framework. After filtering, we found six features that satisfied all three above 
criteria, namely, H3K27ac, H3K4me1, H3K4me1, H3K4me3, H3K9ac and DHS. 
Integrating these 6 features in the linear SVM model yielded a high performance 
(AUROC of 0.96, AUPR of 0.91) similar to that of the complete SVM model using 
all 30 epigenetic marks (AUROC of 0.97, AUPR of 0.93). We subsequently tested 
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the performance of this simplified model in Drosophila cells, mouse tissue and 
human cells.

In the six-feature model, the DHS signal has lower weight than the other five 
features (Fig. 2). It should be noted that the matched filter on DHS signal performed 
well on its own. The lower weight is likely due to the fact that the information in 
DHS is redundant with the information contained within the histone mark (for 
example, the DHS peaks usually occur at the trough region between two maxima in 
the histone signal). Despite the redundancy, the combination of the DHS and histone 
signals was more predictive of regulatory activity because the reinforcing signals 
strengthened the prediction as compared with the uncorrelated noise.

Model assessment. In order to assess the accuracy of the matched-filter model 
for predicting enhancers and promoters, we used a tenfold cross-validation. The 
STARR-seq positives and negatives were randomly divided into ten groups. For 
each fold of cross-validation on a single histone mark, the profiles were created 
with 90% of the STARR-seq positives, and the remaining 10% of the positives were 
used for testing the accuracy of the model. Similarly, In the integrative SVM model, 
the SVM was trained on 90% of the data in each fold of cross-validation, whereas 
the remaining 10% of the positives were used to test accuracy.

We quantified our model performance with AUROC and AUPR curves. In 
the ROC curve, the TP rate was plotted against the FP rate at different thresholds 
in the statistical model. The TP rate is defined as the number of true positives 
identified by the model divided by the total number of positives. The FP rate is 
defined as the fraction of negatives misclassified as positives by the model, divided 
by the total number of negatives. When comparing the performance of two 
different classifiers in the ROC curve, the classifier with a higher TP rate at the 
same FP rate is considered to be a better classifier. The AUROC is a single measure 
for the accuracy of a model, as models with a higher AUROC are generally 
considered to be better models.

In the PR curve, the precision was plotted against recall at different thresholds 
in the statistical model. The recall is the same as the TP rate of the model (that is, 
the number of true positives identified by the model divided by the total number of 
positives). The precision is the fraction of positives predicted by the model that are 
correct (that is, the number of true positives identified by the model divided by the 
total number of positives predicted by the model). The AUPR is another measure 
of performance of a model. If the AUPR is high, the corresponding model has a low 
false-discovery rate and can better distinguish the positives from the negatives. PR 
curves are particularly useful to assess the performance of classifiers in skewed or 
imbalanced datasets in which one of the classes is observed much more frequently 
than the other class is9. For such skewed datasets, the AUROC values for two different 
models may be very similar even though they actually differ in performance with 
respect to their precision. Hence, the AUPR is a better reflection of the performance 
difference between two models with a similar AUROC in skewed datasets.

In Fig. 2, the positives are defined as the active peaks (intersecting with DHS 
or H3K27ac peaks) from a single STARR-seq experiment (single core promoter) 
or the union of active peaks from multiple STARR-seq experiments (multiple core 
promoters). The negatives are randomly chosen non-STARR-seq-peak regions 
in the genome that had the same lengths distribution as the enhancers from the 
STARR-seq. We required most of the regions to contain some H3K27ac signals, 
as negatives with no H3K27ac signal wouldn’t provide enough information for 
training. We typically chose five to ten times the number of negatives than the 
number of positives in Figs. 2–4, as the number of enhancers and promoters in the 
genome (positives) is far less than the number of negatives; moreover, the AUPR is 
dependent on the ratio of negatives to positives during the tenfold cross-validation.

To evaluate the impact of the training-sample size on model performance, we 
did a saturation analysis in which we down-sampled the training data to different 
levels of fractions and evaluated the model performance on the remaining data. 
For each down-sampling fraction from 10% to 90%, with 10% as the step, we 
performed the 10-fold cross-validations. In each fold, the whole model, including 
the aggregation of signals, was based on the training dataset. The performance was 
tested on the remaining data and was independent of the training data. We found 
that the average AUPR increased with an increasing size of the training data. The 
AUPR of the SVM model started to saturate with 80–90% of the experiment data 
for training (Extended Data Fig. 4). The average AUROC remained comparable, 
although the variances decreased with increasing training-data size. This might 
suggest that a fivefold cross-validation would be sufficient.

Promoters and enhancers. In the STARR-seq experiment, each peak functions 
as an enhancer within the plasmid environment in the S2 cell line. However, 
to delineate the native role of the region, we classified them as promoters and 
enhancers on the basis of their distance to the transcription start sites (TSSs) in the 
genome. In Fig. 3, the active promoters were defined as active STARR-seq peaks 
(multiple core promoter) within 1 kb of a TSS (Ensembl release 78); enhancers were 
defined as active STARR-seq peaks more than 1 kb from any TSS in Drosophila. 
However, a few of the promoters may also regulate distal genes in addition to their 
promoter activity50.

Validating enhancers in mammalian species. We downloaded tissue-specific 
epigenetics data from the ENCODE portal (https://www.encodeproject.org).  

The histone signals were converted to log-fold enrichment (with respect to control 
signal). We ran the integrated matched filter to get the enhancer and promoter 
predictions for six different mouse tissues (forebrain, midbrain, hindbrain, limb, 
heart and neural tube) at the e11.5 stage (genome-wide predictions are available 
through our website at https://goo.gl/E8fLNN). These tissues were selected as 
their epigenetic signals have been highly studied in mouse ENCODE, providing 
us with a rich source of raw data that could be utilized for making enhancer and 
promoter predictions. In addition, the VISTA database contains close to 100 
validated enhancers that could be used to test predictions in each of these tissues. 
Using our model, we predicted 31,000 to 39,000 regulatory regions in individual 
tissues in mice, with each region ranging from 300 bp to 1,100 bp. Notably, a 
consistent proportion of two-thirds (66–70%) of these predicted regulatory regions 
were distal regulatory elements for all 6 tissues, with the other one-third (30–34%) 
being proximal regulators (Supplementary Table 10). These numbers agree with 
a previous enhancer evolution study51, and suggest that the amounts of enhancers 
and promoters are likely comparable in different tissues.

Similarly, we performed a genome-wide prediction of regulatory regions in the 
ENCODE top-tier human cell lines, including H1-hESC, GM12878, K562, HepG2, 
A549 and MCF-7. Predicted active regions within 2 kb of any TSS were annotated 
as promoters, and regions that were more than 2 kb from any TSS were annotated 
as enhancers. The distribution of the expression of the closest gene (GENCODE 
v19 TSS52) from the ENCODE RNA-seq dataset for H1-hESCs was compared with 
the expression of all genes from H1-hESCs. The Wilcoxon test was used to measure 
the significance of changes in gene expression.

To assess the predictions, we ranked all the tested candidate elements by either 
the matched-filter scores of individual features, or the final prediction (probability 
of being an enhancer) from the integrated SVM model. We then took the labels of 
the candidate elements from the experiment readout to assess the predictions using 
ROC and PR curves.

Validation in mouse embryos. In Fig. 4, the enhancers were tested by transgenic 
mouse reporter assays9,53. Predicted enhancers were PCR amplified and cloned 
into a plasmid upstream of a minimal hsp68 promoter and a lacZ reporter gene. 
Resulting plasmids were linearized and injected into single-cell FVB/NCrl strain 
Mus musculus embryos. After reimplantation into surrogate mothers, resulting 
embryos were collected at e11.5, stained for β-galactosidase activity, and imaged. 
Elements were scored positive for enhancer activity if at least three resulting 
transgenic embryos had reporter-gene expression in the same tissue and pattern. 
Elements were scored negative if at least five transgenic embryos were recovered 
and no reproducible staining pattern was observed.

All animal work was reviewed and approved by the Lawrence Berkeley 
National Laboratory (LBNL) Animal Welfare Committee. All mice used in 
this study were housed at the Animal Care Facility (ACF) at LBNL. Mice were 
monitored daily for food and water intake, and animals were inspected weekly 
by the Chair of the Animal Welfare and Research Committee and the head of 
the animal facility in consultation with the veterinary staff. The LBNL ACF is 
accredited by the American Association for the Accreditation of Laboratory 
Animal Care International.

Validation in human cell lines. We used a third-generation, self-inactivating 
(SIN) HIV-1-based vector system in which the enhanced GFP (eGFP) reporter 
was driven by the DNA element of interest to test putative enhancers after stable 
transduction of four cell lines, including H1-hESCs (Extended Data Fig. 11). 
The predicted enhancers were PCR amplified from human genomic DNA and 
separately inserted immediately upstream of a basal Oct-4 promoter of 142 bp 
within the self-inactivating (SIN) HIV vector. Each putative enhancer was 
tested in triplicate for both forward and reverse orientation in H1-hESCs. We 
used empty SIN HIV vector and FG12 as the negative and the positive control, 
respectively. Note that the empty vector had the basal Oct-4 promoter, along 
with the IRES-eGFP reporter cassette. We assessed putative enhancer activity 
by flow-cytometric readout of eGFP expression 48–72 h post-transduction, 
normalized to the negative control.

We selected a total of 23 predicted intergenic enhancers for validation. These 
predictions were chosen at random to ensure that they truly represented the 
whole spectrum of predicted enhancers and not just the top tier of predicted 
enhancers. Of these 23 putative enhancers, 20 were successfully PCR-amplified 
and cloned into the SIN HIV vector in both directions. To measure the distribution 
of gene expression in the absence of enhancer, we also amplified and cloned 20 
non-repetitive elements with a similar length distribution that were predicted to 
be inactive into the same SIN HIV vector. All positive and negative DNA elements 
were transduced and tested for activity in both forward and reverse orientations, 
as enhancers are thought to function in an orientation-independent manner. 
Following the same procedures, we performed functional testing in duplicate in 
HOS, TZM-bl and A549 cell lines in addition to H1-hESCs.

Performance comparison with other computational methods. We compared 
the performance of the matched filter to the peak-based models of the different 
epigenetic marks (Fig. 2). We used the histone (or DHS) peaks that overlapped 
with at least 50% (10%) of the STARR-seq peak to rank that prediction. We used a 
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smaller threshold for DHS peaks as they are much shorter than histone peaks. We 
achieved similar results with thresholds of 25% for both histone and DHS peaks. 
The P value of the intersecting peak was used to rank the peak-based predictions. 
The modENCODE histone peaks and DHS peaks44 were compared with the 
matched-filter scores in Fig. 2.

We compared with other published enhancer prediction tools, including 
ChromHMM, a multivariate hidden Markov model54; CSIANN, a neural network 
based approach55; DELTA, an ensemble model integrating different histone 
modifications56; RFECS, a random forest model based on histone modifications39; 
and REPTILE, a more recent published method that integrates histone 
modifications and whole-genome bisulfite sequencing data57. We used the mouse 
experimental data published in REPTILE for the comparison, and assessed the 
performance of our method compared with the four published methods mentioned 
above for all four mouse tissues with available experimental data, ChIP–seq data 
and DNase data.

Our integrated model outperformed ChromHMM in all four tissues, with 
an AUROC of 0.76 in hindbrain (versus ChromHMM 0.69), 0.81 in limb (versus 
ChromHMM 0.75) and so on (Extended Data Fig. 13a). For comparison with 
supervised algorithms such as CSIANN, DELTA and REPTILE, our method 
had the highest AUROC in three out of four tissues: hindbrain, limb and neural 
tube (Extended Data Fig. 13b). In midbrain, the AUROC for our prediction was 
slightly lower than REPTILE and RFECS, possibly because the DNase experiment 
performed in midbrain was very noisy; the DNase experiment of mouse e11.5 
midbrain was marked as ‘low SPOT score’ in ENCODE, where SPOT stands for 
signal portion of tag. We found that, while 75–81% of the genome regions had 
DNase signals in the other three tissues, only 52% of the genome regions showed 
DNase signal in the experiment in midbrain. Overall, the comparison shows that 
our model trained using the Drosophila STARR-seq data had better performance 
than the other methods that were trained directly using mouse experimental data.

For humans, we did not have an extensive amount of validated enhancer 
data. For comparison, we first checked the overlap of our predicted enhancers 
with the enhancer predictions from ChromHMM54 and Segway58. We observed 
that a majority of our predictions overlap with predictions from either of them 
(Supplementary Figs. 7–10). In addition, we compared our cell-type-specific 
enhancer predictions with the integrative annotation of ChromHMM and Segway 
using CAGE-defined enhancers from the FANTOM5 Atlas59. We found that the 
percentage of overlap for our predicted enhancers was more than three times 
higher than that of the combined ChromHMM and Segway enhancers in each of 
these cell lines. Despite the fact that our framework predicted a smaller number 
of enhancers, the number of overlaps was still higher for our predictions. We 
also compared the predicted promoters from our model with their promoter 
annotations using FANTOM5 promoter sets. Again, the promoters predicted 
in our model had a higher fraction of overlaps with the FANTOM promoters 
(Extended Data Fig. 14). In addition to the integrative ENCODE annotation, we 
again made comparisons using other supervised enhancer predictions, such as 
CSIANN55, DEEP60 and RFECS39, using the FANTOM5 enhancer dataset. We 
found that our predicted K562 enhancers had a similar fraction of overlap with 
FANTOM5 enhancers compared with that of CSIANN, but the fraction was more 
than twice as high as that of DEEP and RFECS (Extended Data Fig. 14).

TF-binding patterns at enhancers. To measure the differences in TF-binding 
and TF-cobinding patterns at promoters and enhancers, we overlapped the ChIP–
seq peaks from ENCODE with our predicted enhancers and promoters using 
intersectBed. The two regions were considered to overlap if at least 25% of the 
ChIP–seq peak overlapped with the predicted enhancer or promoter.

To check whether the STARR-seq-based enhancer predictions had different 
TF-binding patterns, we referred to the fraction of TF occupancy of predicted 
enhancer from other methods. The comparison demonstrated in Extended Data 
Fig. 15 shows that the TF-binding pattern of our prediction was very similar to that 
reported in previous literature39.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A detailed description of the datasets used in each part of the study is in the 
corresponding section of Supplementary Methods. Specifically, the Drosophila 
epigenetics datasets used in this study were generated by the modENCODE 
consortium, available online (http://data.modencode.org). The mouse epigenetics 
datasets were generated by the ENCODE and Roadmap Epigenomics consortium, 
available online (https://www.encodeproject.org). We downloaded the Drosophila 
STARR-seq data28 and the mouse FIREWACh data32 from previous studies. Results 
from transgenic-mouse enhancer assays were generated by the Pennacchio lab 
at LBNL. Experimental results are summarized in Supplementary Tables 4–9, 
with the mouse images and additional details available on the VISTA Enhancer 
Browser (https://enhancer.lbl.gov). The human-cell-line enhancer reporter assay 
results were generated by the Sutton lab at Yale University. Experiment results are 
summarized in Supplementary Table 10. More detailed results for each cell line are 
available in Supplementary Data 1.

Code availability
We have implemented our methods in Python. The source code and the output 
annotations referenced in the paper are available at the website http://matchedfilter.
gersteinlab.org. A dockerized image is also provided at this site.
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Extended Data Fig. 1 | Properties of double peak metaprofile. a) The frequency of distance between the two maxima in a double peak flanking active 
STARR-seq peaks is plotted. b) The symmetricity of the double peak pattern is plotted. The ratio of the distance between the two peaks to the ratio 
between one of the maxima and the minima is plotted. While there is large amount of variability in the distance between the two peaks (mostly between 
300-1100 bp), the trough in the double peak tends to occur in the center of the two peaks. (c) The metaprofile around active STARR-seq peaks is plotted 
for different epigenetic marks. Histone marks that are enriched near STARR-seq peaks display the characteristic double peak pattern shown in c) due to 
the depletion of histone proteins at active regulatory regions. In addition, DHS displays a single peak at the center of these regulatory regions as shown 
in c). d) On the other hand, no such double peak pattern is observed on depleted histone marks at STARR-seq peaks. e) The matched filter score is 
calculated using the convolution of the flipped metaprofile and the epigenetic signal using a sliding window of variable length. The significant peaks in the 
final matched filter score are used to identify active regulatory regions.
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Extended Data Fig. 2 | Histogram of matched filter scores. a) The probability density of matched filter scores for different epigenetic marks for 
STARR-seq peaks (positives) and random regions of the genome (negatives) with H3K27ac signal. In most cases, the matched filter scores for positives 
and negatives are Gaussian curves. The amount of overlap between these two curves determines the accuracy of the matched filter for predicting 
STARR-seq peaks using the matched filters for the corresponding epigenetic feature. b) The histogram of matched filter scores for small set of epigenetic 
features on promoters is compared to random regions of the genome. c) The histogram of matched filter scores for small set of epigenetic features on 
enhancers is compared to random regions of the genome. The features chosen in b, c were chosen to display distinct features of epigenetic marks around 
promoters and enhancers.

NATuRE METHoDS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Articles NATuRE METHoDS

Extended Data Fig. 3 | Comparison of different statistical models for predicting all STARR-seq peaks using a 30-feature model. The performance of the 
different statistical models to integrate the information from 30 epigenetic features is shown. a) The numbers within the parentheses refer to the AUROC 
and AUPR for predicting the STARR-seq peaks (single core promoter) with histone peaks while the numbers outside the parentheses refer to the AUROC 
and AUPR for predicting STARR-seq peaks identified after combining multiple core promoters. b) The individual ROC and PR curves for each statistical 
model. c) The contribution of the matched filter score for each epigenetic feature to the different integrated models.
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Extended Data Fig. 4 | Comparison of different statistical models for predicting all STARR-seq peaks using a 6-feature model. The performance of the 
different statistical models to integrate the information from six epigenetic features is shown. a) The numbers within the parentheses refer to the AUROC 
and AUPR for predicting the STARR-seq peaks (single core promoter) with histone peaks while the numbers outside the parentheses refer to the AUROC 
and AUPR for predicting STARR-seq peaks identified after combining multiple core promoters. b) The individual ROC and PR curves for each statistical 
model. c) The contribution of the matched filter score for each epigenetic feature to the different integrated models. The mean value is displayed in the 
bar plot while the error bars show the standard deviation of feature weights measured by ten-fold cross validation. d) We evaluated the accuracy of the 
models using different amounts of training data. The AUPR of the model increases with increasing amount of training data until it starts to saturate around 
70% of the data. The mean value is displayed in the bar plot while the error bars show the standard deviation of feature weights measured by ten-fold 
cross validation.
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Extended Data Fig. 5 | Comparison of different statistical models for predicting enhancers and promoters using six features. The performance of the 
different statistical models to integrate the information from six epigenetic features for promoter and enhancer prediction is shown. a) The numbers 
within the parentheses refer to the AUROC and AUPR for predicting the promoters with histone peaks while the numbers outside the parentheses refer 
to the AUROC and AUPR for predicting enhancers. The promoters and enhancers from multiple STARR-seq experiments with different core promoters 
are merged in this analysis. b) The individual ROC and PR curves for each statistical model is shown. The contribution of the matched filter score for each 
epigenetic feature to the different integrated models for promoter prediction (c) and enhancer prediction (d) are shown. The mean value is displayed in 
the bar plot while the error bars show the standard deviation of feature weights measured by ten-fold cross validation.
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Extended Data Fig. 6 | Comparison of different statistical models for predicting enhancers and promoters using 30 features. The performance of the 
different statistical models to integrate the information from thirty epigenetic features for promoter and enhancer prediction is shown. a) The numbers 
within the parentheses refer to the AUROC and AUPR for predicting the promoters with histone peaks while the numbers outside the parentheses refer 
to the AUROC and AUPR for predicting enhancers. The promoters and enhancers from multiple STARR-seq experiments with different core promoters 
are merged in this analysis. b) The individual ROC and PR curves for each statistical model is shown. The contribution of the matched filter score for each 
epigenetic feature to the different integrated models for promoter prediction (c) and enhancer prediction (d) are shown.
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Extended Data Fig. 7 | Location of H1-hESC predictions. a) The probability density of the distance of the predicted promoter and enhancer from the 
closest TSS is shown. b) The location of the enhancers and promoters on genomic elements are shown. Promoters are defined as TSS +/- 2kb. All TSS, 
UTR, exons, introns, and intergenic elements are calculated based on GENCODE 19 definitions. A regulatory region is considered to overlap with the 
elements if more than 50% of the matched filter region overlaps with the corresponding element in b. c) The distribution of gene expression of gene 
closest to the enhancer/promoters are plotted and compared to the gene expression of all genes in H1-hESC. A two-sided Wilcoxon test shows that 
P-value for differences in gene expression of genes close to enhancers and promoters are significantly higher than expression of all genes in H1-hESC  
(< 10−100 each). The center line in each category represents the median expression level for all genes close to corresponding category while the lower and 
upper boundaries of the box indicate the 25th and 75th percentile of the expression levels for genes within that category.
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Extended Data Fig. 8 | Testing predicted enhancers using transgenic mouse enhancer assay. Representative embryo images are shown for transgenic 
mice at the e11.5 stage. Blue staining indicates enhancers displaying reproducible activity in expected tissues (forebrain, midbrain, hindbrain, heart, neural 
tube, or limb). The unique identifiers under each image (accession number starting with ‘mm’) correspond to the element numbers in Supplementary 
Tables 4-9. Details of each experiment can be found in the VISTA enhancer browser (https://enhancer.lbl.gov) under the corresponding accession number.
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Extended Data Fig. 9 | Conservation of epigenetic features. The performance of the fly-based matched filters and the integrated model for predicting 
active promoters and enhancers in mouse embryonic stem cells identified using FIREWACh. a Similar to Fig. 3, the numbers within parentheses refer to the 
AUROC and AUPR for predicting promoters while the numbers outside parentheses refer the performance of the models for predicting enhancers. b) The 
weights of the different features in the integrated models for promoter and enhancer prediction are shown. c) The individual ROC and PR curves for each 
matched filter and d) the integrated model are shown. The performance of these features and the integrated model for predicting the active promoters and 
enhancers identified using FIREWACh are shown.
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Extended Data Fig. 10 | Cross-comparison of integrated models for enhancer prediction. Cross test results of the integrated model on mouse and fly. a) 
Models were trained in a cell line- and tissue-specific fashion. Row names show the context where the model is trained. Column names show the cell line 
or tissue where the model is tested. b) Similar to a), assuming identical distribution of matched filter scores for active enhancer regions in each tissue in 
mouse, we combined the normalized matched filter scores to get a larger training set for the model.
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Extended Data Fig. 11 | Enhancer validation experiments in human cell lines. a) Schematic of the enhancer validation experiment flow. At top is the 
third-generation HIV-based self-inactivating vector (deletion in 3’ LTR indicated by red triangle), with PCR-amplified test DNA (blue, cloned in both 
orientations) inserted just 5’ of a basal Oct4 promoter (P) driving IRES-eGFP (green). Vector supernatant was prepared by plasmid co-transfection of 
293T cells. Cells of interest were transduced and then analyzed by flow cytometry a few days later. Shown below is the expected post-transduction 
structure of the SIN HIV vector, with a duplication of the 3’ LTR deletion rendering both LTRs non-functional. b) Fold changes of gene expression of eGFP 
was compared between negative elements (n=20 biologically independent samples) and putative enhancers (n=20 biologically independent samples) 
chosen at random. Each sample in the plot is the average log fold change of the replicates for each element. c–e) Predicted enhancers increase gene 
expressions in A549, HOS, and TZM-bl cell lines. The enhancers were predicted in H1-hESCs. The activities of these enhancers (N=20 in each plot) were 
compared to control regions (N=20 in each plot) in three other cell lines: c) HOS, d) A549, and e) TZM-bl. The p-value were calculated by the two-sided 
t-test. The center value represented by the green line in the box plot shows the median log FC of each group. The 25th and 75th percentiles of the log fold 
changes in gene expressions for each group are represented by the upper and lower lines of the box, with whiskers connecting to the maximum and the 
minimum value.
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Extended Data Fig. 12 | Activity of putative enhancers tested in H1-hESCs. Each element was tested in triplicate (biologically independent experiments) 
by SIN HIV vector transduction of H1-hESCs. The bar plot shows the average of the activity measured in three replicates for each element by FACS analysis 
gating on eGFP+ cells, with error bars showing the standard deviations. F, forward orientation; R, reverse orientation.
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Extended Data Fig. 13 | Performance comparison of the Matched-filter model in four mouse tissues. We compared the performance of the matched 
filter model to the other state-of-the-art predictive models on four mouse tissues where data is available. a) Comparing the performance of the matched 
filter model and ChromHMM with ROC curves using experimental results from transgenic mouse enhancer assays. The ROC curves for matched filter are 
plotted in blue solid lines, and the ROC curves for ChromHMM are plotted in green dashed lines. ROC curves are shown for all four tissues in embryonic 
mice at the e11.5 stage. b) Comparing the performance of the matched filter model with the reported performance of other published methods, including 
REPTILE, RFECS, DELTA, and CSI-ANN. Bar plots show the areas under the ROC curve (AUROC) of each methods in different tissues of embryonic mice at 
the e11.5 stage.
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Extended Data Fig. 14 | Evaluating the Matched-filter prediction using FANToM5 experimental data. We assessed the percentage overlap of the 
matched filter prediction with the FANTOM5 enhancers/promoters, and compared the percentages with other state-of-the-art methods. A) Comparison 
of the matched filter enhancer prediction in human cell lines with the integrated ChromHMM and Segway annotations using the FANTOM5 enhancer 
set. Bar plots on the left show the percentage of predicted enhancers overlapping with FANTOM enhancers; bar plots on the right show the percentage 
of FANTOM5 enhancers overlapping with predicted enhancers. B) Comparison of the overlap of matched filter promoter predictions with the FANTOM5 
promoter set to that of the integrated ChromHMM and Segway annotations. The bar plots show the percentage of predicted promoters overlapping with 
FANTOM5 promoters, with dark blue denoting the matched filter model and light blue denoting the integrated ChromHMM and Segway annotations. C) 
Comparison of the overlap of K562 enhancers predicted by matched filter and other published methods with the FANTOM5 enhancer set. The bar plots 
show the percentage of predicted enhancers overlapping with FANTOM5 K562 enhancers for the matched filter model, CSI-ANN, DEEP, and RFECS.
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Extended Data Fig. 15 | Comparison of the transcription factor binding pattern of matched filter and RFECS in H1-hESCs. Potentially positive enhancers 
were considered as regions with either DNase-I hypersensitive sites (DHS), or bound by transcription factors (TFs) such as NANOG, OCT4, SOX2, or 
p300. TSS were defined as within 2.5kb of any known GENCODE TSS. Predictions that fell out of the above categories were classified as unknown.
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    Experimental design
1.   Sample size

Describe how sample size was determined. For validation experiments in human cell lines, we estimated the enhancer effects 
to do power analysis to determine the number of elements we need to test. For 
transgenic mouse enhancer tests, we tested 150 elements in addition to the 
validated enhancers in the VISTA database, which allow us more than sufficient 
samples to test our method. 

2.   Data exclusions

Describe any data exclusions. No data were excluded from the analyses

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

For experiments in human cell lines, each tested elements has multiple biological 
replicates. The result is reported positive only if the enhancing effect is statistically 
significant from the biological replicates. For mouse transgenic assay, each element 
is tested in multiple transgenic embryos which can be viewed in VISTA enhancer 
browser. Elements were scored positive for enhancer activity if at least three 
resulting transgenic embryos had reporter gene expression in the same tissue and 
pattern. Elements were scored negative if at least five transgenic embryos were 
recovered and no reproducible staining patterns was observed.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

The predicted mouse enhancers are selected from three rank tiers for validation. 
The predicted human enhancers are selected randomly for validation. 

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Experiments are done with blinding to group allocations

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Our tool is implemented in Python2.7  with the following packages: 
numpy 1.10.4 
scipy 0.17.0 
scikit-learn 0.16.1 
matplotlib 1.5.1 
seaborn 0.7.0 
metaseq 0.5.5.4 
pybedtools 0.7.1 
 
A dockerized image has been provided on our website

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

There were no unique materials used in this study. 

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in this study.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. H1 hESC was obtained from WiCell. HOS and A549 were obtained from ATCC and 

TZMbl from the AIDS Reagent Repository

b.  Describe the method of cell line authentication used. Cell lines are ATCC authenticated

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

All cell lines were tested negative for mycoplasma contamination

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly mis-identified cell lines were used
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

Enhancer transgene analysis was performed at embryonic day 11.5 in FVB strain 
male and female mice.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The study did not involve human research participants.
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