IA008: Computational Logic Ehrenfeucht-Fraïssé Games Achim Blumensath blumens@fi.muni.cz Faculty of Informatics, Masaryk University, Brno Back-and-forth equivalence Definition The quantifier rank of a formula φ is the nesting depth of quantifiers in φ. Back-and-forth equivalence Definition The quantifier rank of a formula φ is the nesting depth of quantifiers in φ. qr(s = t) = 0 , qr(φ ∧ ψ) = max {qr(φ), qr(ψ)} , qr(R¯t) = 0 , qr(φ ∨ ψ) = max {qr(φ), qr(ψ)} , qr(∃xφ) = 1 + qr(φ) , qr(¬φ) = qr(φ) , qr(∀xφ) = 1 + qr(φ) . Back-and-forth equivalence Definition The quantifier rank of a formula φ is the nesting depth of quantifiers in φ. qr(s = t) = 0 , qr(φ ∧ ψ) = max {qr(φ), qr(ψ)} , qr(R¯t) = 0 , qr(φ ∨ ψ) = max {qr(φ), qr(ψ)} , qr(∃xφ) = 1 + qr(φ) , qr(¬φ) = qr(φ) , qr(∀xφ) = 1 + qr(φ) . Example qr(∀x∃yR(x, y)) = 2 , qr(∀x[P(x) ∨ Q(x)] ∧ ∀z[∃yR(y, z) ∨ ∃yR(z, y)]) = 2 . Back-and-forth equivalence m-equivalence A, ¯a ≡m B, ¯b :iff A ⊧ φ(¯a) ⇔ B ⊧ φ(¯b) , for all φ(¯x) with qr(φ) ≤ m . Back-and-forth equivalence m-equivalence A, ¯a ≡m B, ¯b :iff A ⊧ φ(¯a) ⇔ B ⊧ φ(¯b) , for all φ(¯x) with qr(φ) ≤ m . Lemma A, ¯a ≡m+1 B, ¯b if, and only if, • for all c ∈ A, exists d ∈ B with A, ¯ac ≡m B, ¯bd and • for all d ∈ B, exists c ∈ A with A, ¯ac ≡m B, ¯bd. (‘Back-and-forth conditions’) Back-and-forth equivalence Proof (⇐) Suppose A ⊧ ∃xφ(¯a, x) with qr(φ) ≤ m. Back-and-forth equivalence Proof (⇐) Suppose A ⊧ ∃xφ(¯a, x) with qr(φ) ≤ m. ⇒ exists c ∈ A with A ⊧ φ(¯a, c). Back-and-forth equivalence Proof (⇐) Suppose A ⊧ ∃xφ(¯a, x) with qr(φ) ≤ m. ⇒ exists c ∈ A with A ⊧ φ(¯a, c). By assumption, exists d ∈ B with A, ¯ac ≡m B, ¯bd. Back-and-forth equivalence Proof (⇐) Suppose A ⊧ ∃xφ(¯a, x) with qr(φ) ≤ m. ⇒ exists c ∈ A with A ⊧ φ(¯a, c). By assumption, exists d ∈ B with A, ¯ac ≡m B, ¯bd. ⇒ B ⊧ φ(¯b, d) Back-and-forth equivalence Proof (⇐) Suppose A ⊧ ∃xφ(¯a, x) with qr(φ) ≤ m. ⇒ exists c ∈ A with A ⊧ φ(¯a, c). By assumption, exists d ∈ B with A, ¯ac ≡m B, ¯bd. ⇒ B ⊧ φ(¯b, d) ⇒ B ⊧ ∃xφ(¯b, x) Back-and-forth equivalence Proof (⇒) Fix c ∈ A. Back-and-forth equivalence Proof (⇒) Fix c ∈ A. θ = {ψ(¯x, y) qr(ψ) ≤ m , A ⊧ ψ(¯a, c)} ϑ = ⋀ θ Back-and-forth equivalence Proof (⇒) Fix c ∈ A. θ = {ψ(¯x, y) qr(ψ) ≤ m , A ⊧ ψ(¯a, c)} ϑ = ⋀ θ ⇒ A ⊧ ϑ(¯a, c) Back-and-forth equivalence Proof (⇒) Fix c ∈ A. θ = {ψ(¯x, y) qr(ψ) ≤ m , A ⊧ ψ(¯a, c)} ϑ = ⋀ θ ⇒ A ⊧ ϑ(¯a, c) ⇒ A ⊧ ∃yϑ(¯a, y) Back-and-forth equivalence Proof (⇒) Fix c ∈ A. θ = {ψ(¯x, y) qr(ψ) ≤ m , A ⊧ ψ(¯a, c)} ϑ = ⋀ θ ⇒ A ⊧ ϑ(¯a, c) ⇒ A ⊧ ∃yϑ(¯a, y) By assumption, B ⊧ ∃yϑ(¯b, y). Back-and-forth equivalence Proof (⇒) Fix c ∈ A. θ = {ψ(¯x, y) qr(ψ) ≤ m , A ⊧ ψ(¯a, c)} ϑ = ⋀ θ ⇒ A ⊧ ϑ(¯a, c) ⇒ A ⊧ ∃yϑ(¯a, y) By assumption, B ⊧ ∃yϑ(¯b, y). ⇒ exists d ∈ B with B ⊧ ϑ(¯b, d) Back-and-forth equivalence Proof (⇒) Fix c ∈ A. θ = {ψ(¯x, y) qr(ψ) ≤ m , A ⊧ ψ(¯a, c)} ϑ = ⋀ θ ⇒ A ⊧ ϑ(¯a, c) ⇒ A ⊧ ∃yϑ(¯a, y) By assumption, B ⊧ ∃yϑ(¯b, y). ⇒ exists d ∈ B with B ⊧ ϑ(¯b, d) ⇒ A, ¯ac ≡m B, ¯bd Back-and-forth equivalence Example linear orders ⟨A, ≤⟩ ≡m ⟨B, ≤⟩ iff A = B or A , B ≥ 2m − 1 . Back-and-forth equivalence Example linear orders ⟨A, ≤⟩ ≡m ⟨B, ≤⟩ iff A = B or A , B ≥ 2m − 1 . Corollary There does not exist an FO-formula φ such that ⟨A, ≤⟩ ⊧ φ iff A is even, for all finite linear orders. Ehrenfeucht-Fraïssé Games Game Gm(A, ¯a;B, ¯b) Players: Spoiler and Duplicator m rounds: • Spoiler picks an element of one structure. • Duplicator picks an element of the other structure. Winning: A, ¯a¯c ≡0 B, ¯b¯d (¯c ∈ Am , ¯d ∈ Bm picked elements) Ehrenfeucht-Fraïssé Games Game Gm(A, ¯a;B, ¯b) Players: Spoiler and Duplicator m rounds: • Spoiler picks an element of one structure. • Duplicator picks an element of the other structure. Winning: A, ¯a¯c ≡0 B, ¯b¯d (¯c ∈ Am , ¯d ∈ Bm picked elements) Theorem A, ¯a ≡m B, ¯b if, and only if, Duplicator wins Gm(A, ¯a;B, ¯b) Words Word structures We can represent u = a0 . . . an−1 ∈ Σ∗ as a structure ⟨{0, . . . , n − 1}, ≤, (Pc)c∈Σ⟩ with Pc = {i < n ai = c } . Lemma u ≡m u′ and v ≡m v′ ⇒ uv ≡m u′ v′ . Words Word structures We can represent u = a0 . . . an−1 ∈ Σ∗ as a structure ⟨{0, . . . , n − 1}, ≤, (Pc)c∈Σ⟩ with Pc = {i < n ai = c } . Lemma u ≡m u′ and v ≡m v′ ⇒ uv ≡m u′ v′ . Corollary For L ⊆ Σ∗ FO-definable, there exists n ∈ N such that uvn w ∈ L ⇔ uvn+1 w ∈ L , for all u, v, w ∈ Σ∗ . Examples The following languages are not first-order definable. • (aa)∗ Examples The following languages are not first-order definable. • (aa)∗ • {an bn n ∈ N} Examples The following languages are not first-order definable. • (aa)∗ • {an bn n ∈ N} • all correctly parenthesised expressions over the alphabet ()x Monadic Second-Order Logic Syntax • element variables: x, y, z, . . . • set variables: X, Y, Z, . . . • atomic formulae: R(¯x), x = y, x ∈ X • boolean operations: ∧, ∨, ¬, →, ↔ • quantifiers: ∃x, ∀x, ∃X, ∀X Example • “The set X is empty.” Monadic Second-Order Logic Syntax • element variables: x, y, z, . . . • set variables: X, Y, Z, . . . • atomic formulae: R(¯x), x = y, x ∈ X • boolean operations: ∧, ∨, ¬, →, ↔ • quantifiers: ∃x, ∀x, ∃X, ∀X Example • “The set X is empty.” ¬∃x[x ∈ X] • “X ⊆ Y” Monadic Second-Order Logic Syntax • element variables: x, y, z, . . . • set variables: X, Y, Z, . . . • atomic formulae: R(¯x), x = y, x ∈ X • boolean operations: ∧, ∨, ¬, →, ↔ • quantifiers: ∃x, ∀x, ∃X, ∀X Example • “The set X is empty.” ¬∃x[x ∈ X] • “X ⊆ Y” ∀z[z ∈ X → z ∈ Y] • “There exists a path from x to y.” Monadic Second-Order Logic Syntax • element variables: x, y, z, . . . • set variables: X, Y, Z, . . . • atomic formulae: R(¯x), x = y, x ∈ X • boolean operations: ∧, ∨, ¬, →, ↔ • quantifiers: ∃x, ∀x, ∃X, ∀X Example • “The set X is empty.” ¬∃x[x ∈ X] • “X ⊆ Y” ∀z[z ∈ X → z ∈ Y] • “There exists a path from x to y.” ∀Z[x ∈ Z ∧ ∀u∀v[u ∈ Z ∧ E(u, v) → v ∈ Z] → y ∈ Z] Back-and-Forth Equivalence m-equivalence A, ¯P, ¯a ≡MSO m B, ¯Q, ¯b :iff A ⊧ φ(¯P, ¯a) ⇔ B ⊧ φ( ¯Q, ¯b) for all φ( ¯X, ¯x) with qr(φ) ≤ m . Back-and-Forth Equivalence m-equivalence A, ¯P, ¯a ≡MSO m B, ¯Q, ¯b :iff A ⊧ φ(¯P, ¯a) ⇔ B ⊧ φ( ¯Q, ¯b) for all φ( ¯X, ¯x) with qr(φ) ≤ m . Ehrenfeucht-Fraïssé Game Both players choose an element or a set in each round. Back-and-Forth Equivalence m-equivalence A, ¯P, ¯a ≡MSO m B, ¯Q, ¯b :iff A ⊧ φ(¯P, ¯a) ⇔ B ⊧ φ( ¯Q, ¯b) for all φ( ¯X, ¯x) with qr(φ) ≤ m . Ehrenfeucht-Fraïssé Game Both players choose an element or a set in each round. Lemma u ≡MSO m u′ and v ≡MSO m v′ ⇒ uv ≡MSO m u′ v′ . Automata Given φ of quantifier rank m, construct Aφ = ⟨Q, Σ, δ, q0, F⟩ Automata Given φ of quantifier rank m, construct Aφ = ⟨Q, Σ, δ, q0, F⟩ Idea: Given w = a0⋯an−1 compute ≡MSO m -classes [ε]m, [a0]m, [a0a1]m, . . . , [a0a1⋯an−1]m . Automata Given φ of quantifier rank m, construct Aφ = ⟨Q, Σ, δ, q0, F⟩ Idea: Given w = a0⋯an−1 compute ≡MSO m -classes [ε]m, [a0]m, [a0a1]m, . . . , [a0a1⋯an−1]m . • Q = Σ∗ /≡MSO m Automata Given φ of quantifier rank m, construct Aφ = ⟨Q, Σ, δ, q0, F⟩ Idea: Given w = a0⋯an−1 compute ≡MSO m -classes [ε]m, [a0]m, [a0a1]m, . . . , [a0a1⋯an−1]m . • Q = Σ∗ /≡MSO m • q0 = [ε]m Automata Given φ of quantifier rank m, construct Aφ = ⟨Q, Σ, δ, q0, F⟩ Idea: Given w = a0⋯an−1 compute ≡MSO m -classes [ε]m, [a0]m, [a0a1]m, . . . , [a0a1⋯an−1]m . • Q = Σ∗ /≡MSO m • q0 = [ε]m • δ([w]m, c) = [wc]m Automata Given φ of quantifier rank m, construct Aφ = ⟨Q, Σ, δ, q0, F⟩ Idea: Given w = a0⋯an−1 compute ≡MSO m -classes [ε]m, [a0]m, [a0a1]m, . . . , [a0a1⋯an−1]m . • Q = Σ∗ /≡MSO m • q0 = [ε]m • δ([w]m, c) = [wc]m • F = {[w]m w ⊧ φ } Automata Given φ of quantifier rank m, construct Aφ = ⟨Q, Σ, δ, q0, F⟩ Idea: Given w = a0⋯an−1 compute ≡MSO m -classes [ε]m, [a0]m, [a0a1]m, . . . , [a0a1⋯an−1]m . • Q = Σ∗ /≡MSO m • q0 = [ε]m • δ([w]m, c) = [wc]m • F = {[w]m w ⊧ φ } Theorem Aφ accepts a word w ∈ Σ∗ if, and only if, w ⊧ φ. Automata Given φ of quantifier rank m, construct Aφ = ⟨Q, Σ, δ, q0, F⟩ Idea: Given w = a0⋯an−1 compute ≡MSO m -classes [ε]m, [a0]m, [a0a1]m, . . . , [a0a1⋯an−1]m . • Q = Σ∗ /≡MSO m • q0 = [ε]m • δ([w]m, c) = [wc]m • F = {[w]m w ⊧ φ } Theorem Aφ accepts a word w ∈ Σ∗ if, and only if, w ⊧ φ. Corollary φ is satisfiable (by a finite word) if, and only if, Aφ accepts some word. Automata Given A = ⟨Q, Σ, δ, q0, F⟩ construct φA. Automata Given A = ⟨Q, Σ, δ, q0, F⟩ construct φA. φA = ∃(Zq)q∈Q[ADM ∧ INIT ∧ TRANS ∧ ACC] Automata Given A = ⟨Q, Σ, δ, q0, F⟩ construct φA. φA = ∃(Zq)q∈Q[ADM ∧ INIT ∧ TRANS ∧ ACC] ADM = ∀x ⋁ q∈Q Zq Automata Given A = ⟨Q, Σ, δ, q0, F⟩ construct φA. φA = ∃(Zq)q∈Q[ADM ∧ INIT ∧ TRANS ∧ ACC] ADM = ∀x ⋁ q∈Q Zq ACC = ⋁ q∈F [last ∈ Zq] Automata Given A = ⟨Q, Σ, δ, q0, F⟩ construct φA. φA = ∃(Zq)q∈Q[ADM ∧ INIT ∧ TRANS ∧ ACC] ADM = ∀x ⋁ q∈Q Zq ACC = ⋁ q∈F [last ∈ Zq] INIT = ⋁ c∈Σ [Pc(first) ∧ first ∈ Zδ(q0,c)] Automata Given A = ⟨Q, Σ, δ, q0, F⟩ construct φA. φA = ∃(Zq)q∈Q[ADM ∧ INIT ∧ TRANS ∧ ACC] TRANS = ∀x∀y[y = x + 1 → ⋀ c∈Σ ⋀ q∈Q [x ∈ Zq ∧ Pc(y) → y ∈ Zδ(q,c)]] . Automata Given A = ⟨Q, Σ, δ, q0, F⟩ construct φA. φA = ∃(Zq)q∈Q[ADM ∧ INIT ∧ TRANS ∧ ACC] TRANS = ∀x∀y[y = x + 1 → ⋀ c∈Σ ⋀ q∈Q [x ∈ Zq ∧ Pc(y) → y ∈ Zδ(q,c)]] . Theorem w ⊧ φA if, and only if, A accepts w. Automata Given A = ⟨Q, Σ, δ, q0, F⟩ construct φA. φA = ∃(Zq)q∈Q[ADM ∧ INIT ∧ TRANS ∧ ACC] TRANS = ∀x∀y[y = x + 1 → ⋀ c∈Σ ⋀ q∈Q [x ∈ Zq ∧ Pc(y) → y ∈ Zδ(q,c)]] . Theorem w ⊧ φA if, and only if, A accepts w. Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Automata Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Example L = {an bn n ∈ N} is not regular. Automata Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Example L = {an bn n ∈ N} is not regular. Proof Suppose that φ ∈ MSO defines L. Automata Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Example L = {an bn n ∈ N} is not regular. Proof Suppose that φ ∈ MSO defines L. Set m = qr(φ). Automata Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Example L = {an bn n ∈ N} is not regular. Proof Suppose that φ ∈ MSO defines L. Set m = qr(φ). There exist i < k with ai ≡MSO m ak . Automata Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Example L = {an bn n ∈ N} is not regular. Proof Suppose that φ ∈ MSO defines L. Set m = qr(φ). There exist i < k with ai ≡MSO m ak . ai bi ∈ L Automata Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Example L = {an bn n ∈ N} is not regular. Proof Suppose that φ ∈ MSO defines L. Set m = qr(φ). There exist i < k with ai ≡MSO m ak . ai bi ∈ L ⇒ ai bi ⊧ φ Automata Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Example L = {an bn n ∈ N} is not regular. Proof Suppose that φ ∈ MSO defines L. Set m = qr(φ). There exist i < k with ai ≡MSO m ak . ai bi ∈ L ⇒ ai bi ⊧ φ ⇒ ak bi ⊧ φ Automata Corollary A language L ⊆ Σ∗ is regular if, and only if, it is MSO-definable. Example L = {an bn n ∈ N} is not regular. Proof Suppose that φ ∈ MSO defines L. Set m = qr(φ). There exist i < k with ai ≡MSO m ak . ai bi ∈ L ⇒ ai bi ⊧ φ ⇒ ak bi ⊧ φ ⇒ ak bi ∈ L Contradiction. The Theorem of Gaifman Gaifman graph G(A) = ⟨A, E⟩ where E = {⟨ci, cj⟩ ¯c ∈ R , ci ≠ cj } d(x, y) distance in G(A) The Theorem of Gaifman Gaifman graph G(A) = ⟨A, E⟩ where E = {⟨ci, cj⟩ ¯c ∈ R , ci ≠ cj } d(x, y) distance in G(A) Relativisation ψ(r) (x) replace ∃yϑ by ∃y[d(x, y) < r ∧ ϑ] replace ∀yϑ by ∀y[d(x, y) < r → ϑ] The Theorem of Gaifman Gaifman graph G(A) = ⟨A, E⟩ where E = {⟨ci, cj⟩ ¯c ∈ R , ci ≠ cj } d(x, y) distance in G(A) Relativisation ψ(r) (x) replace ∃yϑ by ∃y[d(x, y) < r ∧ ϑ] replace ∀yϑ by ∀y[d(x, y) < r → ϑ] Basic local sentence φ = ∃x0 . . . xn−1[⋀ i≠j d(xi, xj) ≥ 2r ∧ ⋀ i