IA008: Computational Logic
7. Modal Logic

Achim Blumensath

blumens@fi.muni.cz

Faculty of Informatics, Masaryk University, Brno

mailto:blumens@fi.muni.cz

Basic Concepts

Transition Systems
directed graph & = (S, (Ea)aea» (Pi)id,so) with

> states S
> initial state sy € S
» edge relations E, with edge colours a € A (‘actions’)

» unary predicates P; with vertex colours i € I (‘properties’)
_,.—“,.Q a

b b

a,b C.‘—.Q a
g b p

Modal logic

Propositional logic with modal operators

» (a)p ‘there exists an a-successor where ¢ holds’

» [a]le¢ ‘¢ holds in every a-successor’

Notation: <¢, O¢ if there are no edge labels

Formal semantics

S,sEP
S,sEQAY
S,sEQVvy
S,sE ¢
S,sE (a)p
S,sk=[a]e

seP

S,sEpand &,s=y
S,sEporS,sey

S,s# ¢

thereis s > t such that S, ¢ = ¢
foralls »% ¢, wehave S,t = ¢

Examples

P AQ ‘The state is in P and there exists a transition to Q.

[a]L “The state has no outgoing a-transition.

Interpretations
» Temporal Logic talks about time:

> states: points in time (discrete/continuous)
» O ‘sometime in the future ¢ holds’
> D¢ ‘always in the future ¢ holds’

» Epistemic Logic talks about knowledge:

> states: possible worlds
» O¢ ‘g might be tru€’
> Op ‘@ is certainly true’

Examples: Temporal Logic

system G = (S, <, P)
> “P never holds.”
-OP
> “After every P there is some Q”
O(P — ©Q)
> “Once P holds, it holds forever”
o(P — oP)

» “There are infinitely many P”
ooP

Translation to first-order logic

Proposition

For every formula ¢ of propositional modal logic, there exists a
formula ¢* (x) of first-order logic such that

S,sEe iff SE@'(s).
Proof

P* := P(x)
(pAy)" = 9" (x) Ay (x)
(pvy)" = ¢ (x) vy (x)
(~9)" = -9"(x)
({a)g)" = Fy[Ea(x,9) A @™ ()]
([alg)" = Vy[Ea(x,y) = 9" ()]

Bisimulation

G and T transition systems
Z c S x T is a bisimulation if, for all (s, t) € Z,
(local) seP < teP
(forth) for everys —% ¢, exists t > ¢ with (s, ¢') € Z,

(back) for every t —“ t/, exists s > s’ with (s', ') € Z.

S, sand T, t are bisimilar if there is a bisimulation Z with (s, t) € Z.

VA
S t
a a
v 7 v
s’ t'

Examples

Examples

Examples

Examples

........................

Unravelling

Lemma
S and U(S) are bisimilar.

Bisimulation invariance

Theorem

Two finite transition systems &, s and T, t are bisimilar if, and only if,
S,sFp < I tEo, for every modal formula ¢ .

Proof (for =) induction on ¢
(p=P)seP<=teP

(boolean combinations) by inductive hypothesis
(¢ =(a)y) &,skE (a)y

=ex.s > with&,s =y

S,s~T,t = ex.t->"1withS,s ~%, ¢
=3 t'Ey

=T, tE(a)y

Bisimulation invariance

Theorem

Two finite transition systems &, s and T, t are bisimilar if, and only if,
S,sFp < I tEo, for every modal formula ¢ .

Theorem

Every satisfiable modal formula has a model that is a finite tree.

Definition

A formula ¢(x) is bisimulation invariant if
S,s~%,t implies Gk ¢(s) = TE(1).

Theorem

A first-order formula ¢ is equivalent to a modal formula if, and only
if, it is bisimulation invariant.

First-Order Modal Logic

Syntax

first-order logic with modal operators (a)¢ and [a]¢

Models

transistion systems where each state s is labelled with a >-structure 2,
such that

s—>%t implies A;CA;
Examples

» OVxe(x) — Vx O ¢(x) is valid.
» VxO¢(x) - OYxe(x) is not valid.

Tableaux

Tableau Proofs

Statements
SEQ SE@ s>t

s, t state labels, ¢ a modal formula

Rules
S E gD

/N

SEYe T s D,

SE Um sE9,

Tableaux

Construction

A tableau for a formula ¢ is constructed as follows:

>

>

>

start with so ¥ ¢

choose a branch of the tree

choose a statement s = /s ¥ v on the branch
choose a rule with head s = y/s & v

add it at the bottom of the branch

repeat until every branch contains both statements s = y and
s # v for some formula y

Tableaux with premises I’

>

choose a branch, a state s on the branch, a premise y € I', and add
s = 1 to the branch

SE-¢ SHE @
| |
SE @ SEQ
SEQAY SEQAY SEQVY SEQVY

| ///\\\ ///\\\

SEQ SEQ SEY SEQ SEvY SEQ

SEY SE Y
SEQ>Y SEQ>Y SEQeoy sSEQ oy
N |

SKEQ SEY SEQ SEQ SEQ SEQ SEQ

SEY SEY SE Y SEY SEY

sk (a)p s (a)y sk [ale s [aly
sl“t t’hlﬁ(p t’tlz(p slat
tizl(p thlgo
SEVxe SKEVxe sEdxe s dxe

segpxu]l sHE@xec] sE@xec] sE[x e u]

t a new state, ¢’ every state with entry s —¢ ¢’ on the branch,
¢ a new constant symbol, u an arbitrary term

Example ¢ = O¢

Example =0(¢ — v) — (Op - OV)

s# (¢ > y) > (He ~Oy)
s=0(e > vy)

s Oe — Oy

sele

s Oy

Example =0OVxgp - VxOg

s#EOVxe — VxUe

seE0Vxe

s VxOe

s Og[x ~ c]

s—> 1t

t# glx]

tEVxe

tE @[x]

Soundness and Completeness

Consequence

v is a consequence of I' if, and only if, for all transition systems &,
S,se¢@, forallseSandgel,
implies that

S,s=y, forallseS.

Theorem

A modal formula ¢ is a consequence of I' if, and only if, there exists a
tableau T for ¢ with premises I' where every branch is contradictory.

Complexity

Theorem

Satisfiability for propositional modal logic is in deterministic linear
space.

Theorem
Satisfiability for first-order modal logic is undecidable.

Temporal Logics

Linear Temporal Logic (LTL)

Speaks about paths. P—e—e—PQ—Q— 0 —>-

Syntax
> atomic predicates P, Q, . ..
> boolean operations A, v, -
> next X¢
> until Uy
» finally Fg := TU¢
> generally Gg := =F-¢

Examples
FP a state in P is reachable
GFP we can reach infinitely many states in P

(=P)U(P A Q) the first reachable state in P is also in Q

Linear Temporal Logic (LTL)

Theorem

Let L be a set of paths. The following statements are equivalent:
» L can be defined in LTL.
» L can be defined in first-order logic.

» L can be defined by a star-free regular expression.

Translation LTL to FO

P* := P(x)
(pAy)” = ¢ (x) Ay'(x)
(pvy)" = ¢"(x) vy'(x)
(=p)" = —¢"(x)
(Xp)® = Fy[x<yn-Fz(x<zrz<y)ne ()]
(pUy)" = Iy[x<yny () AVz[x<znz<y > 9™ (2)]]

Linear Temporal Logic (LTL)

Theorem

Satisfiablity of LTL formulae is PSPACE-complete.

Theorem

Model checking G, s = ¢ for LTL is PSPACE-complete. It can be
done in

time O(|S| -20(|"’|)) or space O((|g| +log|s|)?).

Formula complexity: PSPACE-complete
Data complexity: NLOGSPACE-complete

Computation Tree Logic (CTL and CTL¥)

Applies LTL-formulae to the branches of a tree.

Syntax (of CTL¥)
> state formulae ¢:

pu=Plonrng|oVve|-¢|Ay|Ey

» path formulae y:
ye=glyaylyvy |-y | Xy[yUy|Fy |Gy

Examples
EFP a state in P is reachable
AFP every branch contains a state in P
EGFP there is a branch with infinitely many P
EGEFP there is a branch such that we can reach P from every

of its states

Computation Tree Logic (CTL and CTL¥)

Theorem

Satisfiability for CTL is EXPTIME-complete.

Model checking G, s = ¢ for CTL is P-complete. It can be done in
time O(J¢]-|5]) or space O(|g|-log’ (lg]-I3))).

Data complexity: NLOGSPACE-complete

Theorem
Satisfiability for CTL* is 2EXPTIME-complete.

Model checking S, s = ¢ for CTL* is PSPACE-complete. It can be
done in

timeO(|S|2-20(“PD) or space O(|¢|(|¢| +1log|S|)?).

Formula complexity: PSPACE-complete
Data complexity: NLOGSPACE-complete

Fixed points

Theorem (Knaster, Tarski)

Let (A, <) be a complete partial order and f : A — A monotone. Then
f has aleast and a greatest fixed point and

Ifp(f) = lim f*(1) and gfp(f) = lim f*(T)

Examples (P(N),c)

.f(X)::(X\A)UB

Ifp(f) =B and gfp(f)=(NNA)UB
fX)={yly<sxeX}

fixed points: @, {0}, {0,1},...,{0,...,n},..., N
o f(X):=N~X hasno fixed points

Ordinals

0,1,2,3,...w, 0w+, w+2,... v+ w=w2, w2+1, w2+2,...

w3,...w4,...w5,..w. ww:wz,...w3,... w4,...
T L L P S P S
3 Kinds
o0
e successor « + 1
o limit &
Proposition

Every non-empty set of ordinals has a least element.

Iteration
fO(x)=x,
[N = (4 (%),
f‘S (x) :=supf*(x), forlimitordinals ¢ .

a<d

Proof

Monotonicity f*(1) gfﬁ(i) fora <
L<f(L)

s = o) <
Fe(L) <fO(L) foralla<d

= foH(L) < fO(0)

= f2(1) = supgs f*(1) <fO7(1)
FE(L) < supp s fP(1) = (1)

Existence exists o with f%(1) = f**1(1)

Least fixed point
a = f(a) fixed point, f*(L) = f**(1)
1<a = f%1)<f*a)=a

The modal y-calculus (L,)

Adds recursion to modal logic.
Syntax
9:=Plonglovel-¢l{a)g|[ale|uX.o(X)[vX.9(X)
(X positive in pX.¢(X) and vX.¢(X))
Semantics
Fo(X)={s€S|6,sk¢(X)}

uX.9(X): Xo:=0, X :=Fyo(X;)
VX.p(X): Xo:=S, Xip = Fp(X))

Examples

pX(Pv &X) o astate in P is reachable
vX(PAOX) there is a branch with all states in P

Examples

pX(Pv &X) astate in P is reachable

Examples

pX(Pv &X) astate in P is reachable

Examples

pX(Pv &X) astate in P is reachable

Examples

pX(Pv &X) astate in P is reachable

Examples

pX(Pv &X) astate in P is reachable

Examples

pX(Pv &X) astate in P is reachable

Examples

vX(PAOX) there is a branch with all states in P

P p P
—»@—»—» j—>

AT

Examples

vX(PAOX) there is a branch with all states in P

P p P
—»@—»—» j —»

AT

Examples

vX(PAOX) there is a branch with all states in P

P p P
—»@—»—» j—>

AT

Examples

vX(PAOX) there is a branch with all states in P

P p P
—»@—»—» j—>

AT

Examples

vX(PAOX) there is a branch with all states in P

P p P
—»@—»—» j—>

AT

Examples

vX(PAOX) there is a branch with all states in P

P p P
—»@—»—» j—>

AT

Examples

vX(PAOX) there is a branch with all states in P

P p P
—»@—»—» j—>

AT

Expressive power

Theorem

For every CTL*-formula ¢ there exists an equivalent formula ¢* of the
modal y-calculus.

Proof (for CTL)
P =P
(pAy)" = 9" ny”
(pvy)" = ¢ vy’
(~g)" = —g"
(EXg)" = O¢”
(AXg)" := Dg"
(EeUy)" = uX[y" v (9" A OX)]
(ApUy)" = uX[y" v (9" AOX)]

The modal y-calculus (L,)

Theorem

A regular tree language can be defined in the modal y-calculus if, and
only if, it is bisimulation invariant.
Theorem

Satisfiability of y-calculus formulae is decidable and complete for
exponential time.

Model checking G, s = ¢ for the modal y-calculus can be done in
time O((|g| - [S))!*)).

(The satisfiability algorithm uses tree automata and parity games.)

Parity Games
®=(Ve, Vo, E,0) Q:V >N
Infinite plays v, v;, ... are won by Player & if

lim inf Q(v,) is even.
n—>oo

Bl+—O S [——»

ONL LT\

ST 2R—C R B

Parity Games
®=(Ve, Vo, E,0) Q:V >N
Infinite plays v, v;, ... are won by Player & if

lim inf Q(v,) is even.
n—>oo

Bl— OO —O—

N LT\

OTEE—CE B

Parity Games
®=(Ve, Vo, E,0) Q:V >N
Infinite plays v, v;, ... are won by Player & if

liminf Q(v,) is even.
n—>oo

Theorem

Parity games are positionally determined: from each position some
player has a positional/memory-less winning strategy.

Theorem

Computing the winning region of a parity game with » positions and
d priorities can be done in time n©(1°8¢).

Model-Checking Games

game for S,sp = ¢? (¢ pu-formula in negation normal form)

Positions
Player &: (s,y) forse Sand y a subformula

V=YV, y=Pands¢P, v =uXYo,
v ={(a)vo, y=-PandseP, v=vX.y0,
y=X.

Player 0: [s,y] forse Sand y asubformula

V=Y AYL, y=PandseP,
v =[alyo, y=-Pands¢P.

Initial position (so, ¢) or [so, ¢]

Model-Checking Games

game for S,s0 F ¢? (¢ u-formula in negation normal form)

Edges ((s,y) means either (s, y) or [s,¥].)

(s y0vy1) = (s ¥i),
[s 0 Ay1] = (s, 94)
(s uX.y) >y,
(s, vX.y) > v,
(:X) = (s, uX.y) or (s, vX.y),
(s, (a)y) — (t,y) foreverys—"t,

[s,[a]y] = (t,y) foreverys—*t.
Priorities (all other priorities big)

Q(s, uX.y)) =2k +1, if inside of k fixed points.
Q((s,vX.y)) :=2k.

Model-Checking Games

6= CO—0r ¢ = uX(Pv OX)

Model-Checking Games

6= CO—0r ¢ = uX(Pv OX)

@ (s, uX(Pv 0X))—(s,P Vv OX)

(t.P]
Q) (£ uX(PV 0X))—> (£, Pv o

Model-Checking Games

c=-(CoOo—0r ¢ = vX(OX A uY(PVOY))

Model-Checking Games

c=-(CoOo—0r ¢ = vX(OX A uY(PVOY))

(s, Y)
® o

(s, 9)— [, OX AuY(...)]| —> (s, uY(PVOY)) —»(s, PV OY)—(s5,0Y)

! } ® !

(s, X) ——(5,0X) (s, P)

(t, X) (t, 0X) [t, P]

! ! ® !

(t,) —[s, OX AuY(...)]|—> (s, uY(PVOY)) —»(t,P v OY)—(1,0Y)

© '\
(t.Y)

Description Logics

Description Logic

General Idea

Extend modal logic with operations that are not
bisimulation-invariant.

Applications

Knowledge representation, deductive databases, system modelling,
semantic web

Ingredients

>

>

>

individuals: elements (Anna, John, Paul, Marry,...)
concepts: unary predicates (person, male, female,...)
roles: binary relations (has_child, is_married_to,...)
TBox: terminology definitions

ABox: assertions about the world

Example
TBox

man := person A male
woman := person A female
father := man A Jhas_child.person

mother := woman A Jhas_child.person

ABox

man(John)
man(Paul)
woman(Anna)
woman(Marry)
has_child(Anna, Paul)

is_married_to(Anna, John)

Syntax

Concepts
¢:=P|T|L]-9|lorg|eVve|VYRp|IRy|(>nR)|(<nR)
Terminology axioms
pEY P=vy
TBox Axioms of the form P = ¢.
Assertions
¢(a) R(ab)

Extensions
> operations onroles: RN'S, RUS, Ro S, =R, R*, R*, R™

» extended number restrictions: (>nR)¢, (<nR)¢

Algorithmic Problems

> Satisfiability: Is ¢ satisfiable?

> Subsumption: ¢ = y?

» Equivalence: ¢ = y?

» Disjointness: ¢ A y unsatisfiable?

All problems can be solved with standard methods like tableaux or
tree automata.

Semantic Web: OWL (functional syntax)

Ontology(
Class(pp:man complete
intersectionOf (pp:person pp:male))
Class(pp:woman complete
intersectionOf (pp:person pp:female))
Class(pp:father complete
intersectionOf (pp:man
restriction(pp:has_child pp:person)))
Class(pp:mother complete
intersectionOf (pp:woman
restriction(pp:has_child pp:person)))
Individual (pp:John type(pp:man))
Individual (pp:Paul type(pp:man))
Individual(pp:Anna type(pp:woman)
value(pp:has_child pp:Paul)
value(pp:is_married_to pp:John))
Individual(pp:Marry type(pp:woman))

