Exercise 1 We consider (undirected) graphs as structures of the form & = (V, E) where E is the
binary edge relation. Express the following statements in first-order logic.

(a) All vertices are neighbours.
(b) The graph contains a triangle.
(c) Every vertex has exactly three neighbours.

(d) Every pair of vertices is connected by a path of length at most 3.

Exercise2  Show that the following formulae are valid using tableau proofs.
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Exercise 3  Prove that the formulae from Exercise 2 are valid using Natural Deduction.



Exercise 4 Find all consistent sets for the following sets of rules.
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Exercise 5 For each of the following subsets @ < £({«, 8}), find a set of rules R such that @ is the
set of all consistent sets for R.

@ {2, {a}, {@B}}
®) {{a}, {8}, {a.}}
© {2, {@.p}}

@ {{a}, {a.B}}

Exercise 6 Derive the following additional rules from the basic ones of the Natural Deduction cal-
culus (that is, combine the basic rules to obtain the ones below).
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