
Context Switching

Jan Koniarik
433337@mail.muni.cz

Faculty of Informatics, Masaryk University

May 13, 2022



Intro

Goals

Provide a good basic mental model of context switching.
Show that the complexity in lies the specifics of the hardware
platform.

J. Koniarik · Context Switching · May 13, 2022 2 / 30



Intro

The problem

In the simplest terms, a context switch is an act of:
1. Stopping execution of actual job
2. Storing the state of the job
3. Restoring the state of new job
4. Resuming execution of the new job

J. Koniarik · Context Switching · May 13, 2022 3 / 30



Intro

Motivation

Context switching allows us to implement jobs as a reasonable
segment of code that can be stopped at any point.
The alternative is decomposing everything into tiny segments of
code that are called sequentially - high cognitive load.

J. Koniarik · Context Switching · May 13, 2022 4 / 30



Intro

Assumptions

During this lecture, we assume single-core processors without a big
operating system - an embedded device.
The knowledge is transferable. We want to keep the explanation
simple.

J. Koniarik · Context Switching · May 13, 2022 5 / 30



Basic context switching

Basic context switching

J. Koniarik · Context Switching · May 13, 2022 6 / 30



Basic context switching

Basic context switching

To explain basic context switching, we need to:
1. Define a simplified model of a processor and necessary concepts.
2. Show how context switching works on that model.
Having the basic terms properly defined is necessary, as that greatly
simplifies the explanation.

J. Koniarik · Context Switching · May 13, 2022 7 / 30



Basic context switching Model

Model

The model of processor is inspired by ARM platform and provides a
specific simplified example. It is used only for the explanation of the
basic context switching.

J. Koniarik · Context Switching · May 13, 2022 8 / 30



Basic context switching Model

Processor

Processor consists of interconnected:
core executes instruction

memory stores code, stacks, and
data

registers local memory:
R0..R9 general
purpose
PC instruction address
ST stack address

J. Koniarik · Context Switching · May 13, 2022 9 / 30



Basic context switching Model

Program

We assume that the program has two
forms:
1. source code
2. compiled code
Register PC contains the address of the
next instruction of the program that
should be executed.

J. Koniarik · Context Switching · May 13, 2022 10 / 30



Basic context switching Model

Stack

A part of memory where the program
stores local data for functions. The
processor stores an address at the end of
a stack in ST register.

J. Koniarik · Context Switching · May 13, 2022 11 / 30



Basic context switching Model

Function call

From the perspective of instructions, the
call of function has a form of jump
instruction - PC register is changed to
the target address:

jump example:
bl 801440c <abort>

Key questions:
What happens with the registers?
How are the arguments passed?

J. Koniarik · Context Switching · May 13, 2022 12 / 30



Basic context switching Model

Function call - registers

Let’s define a convention about how
registers should be handled between
jumps.
When caller routine calls a callee
routine:

R0-R4 can be corrupted by the call
R5-R9 has to be preserved during

the call

J. Koniarik · Context Switching · May 13, 2022 13 / 30



Basic context switching Model

Function call - arguments

There are multiple ways for the code to
pass data between caller and called:

Data can be pushed on a stack.
Data can be stored in R0-R4
registers.

J. Koniarik · Context Switching · May 13, 2022 14 / 30



Basic context switching Model

Interrupts

An interrupt is an event that can happen at any time. It is serviced by
the processor that executes a designated function - interrupt handler.

J. Koniarik · Context Switching · May 13, 2022 15 / 30



Basic context switching Model

Interrupts

Once processor detects interrupt:
P finishes active instruction
P simulates function call behavior - R0-R4 registers are
stored on the stack

P executes interrupt handler
H takes care of the rest of the registers if necessary (it acts
as called function)

H executes interrupt-related logic
H clears it’s data from stack
H returns from code
P Restores last state on stack into R0-R4 registers

P - processor, H - handler

J. Koniarik · Context Switching · May 13, 2022 16 / 30



Basic context switching Model

Interrupts

For our purposes, there are two important sources of interrupts:
Timer peripheral that can cause events periodically or after a

delay. The peripheral is driven by the same clock as the
processor - cycle-level resolution.

Software caused internally by the code - originates from within

J. Koniarik · Context Switching · May 13, 2022 17 / 30



Basic context switching Model

Threads

Thread works in familiar manner. There
are two key properties:
1. We work with a single processor -
threads are sequentially interleaved.

2. Each thread requires a separate
stack in the memory.

J. Koniarik · Context Switching · May 13, 2022 18 / 30



Basic context switching

Context switching

Let A be an active thread and B thread
that shall be used. A context switch is a
process which:
1. Stops thread A
2. Stores the state of A: registers, stack
address

3. Restores the state of B
4. Restores execution of B

J. Koniarik · Context Switching · May 13, 2022 19 / 30



Basic context switching

Sources of context switching

We assume two sources of a requirement for context switch:
1. Explicit yield from thread
2. Initiated by scheduler (i.e. periodic timer)
Both can be handled in the same way - they raise a software interrupt
used for a context switch.

J. Koniarik · Context Switching · May 13, 2022 20 / 30



Basic context switching

How it works
Assume thread A is running and that software interrupt for context
switch is raised:

P stores registers R0-R4 at the end of stackA
P executes handler
H stores registers R5-R9 at the end of stackA
H stores values of ST,PC for thread A
H asks scheduler for next thread - B
H restores values of ST,PC of thread B
H restores registers R5-R9 from stackB
H returns
P restores registers R0-R4 from stackB
P resumes execution of thread B

P - processor, H - handler

J. Koniarik · Context Switching · May 13, 2022 21 / 30



Basic context switching

New thread

What if thread B is new and never executed a single instruction?
When a thread is created, RTOS executes a special procedure that
prepares the stack in a way that:

it looks like the thread was executed
has no effect

J. Koniarik · Context Switching · May 13, 2022 22 / 30



Basic context switching

Complexity

How fast is this?
The execution time of a context switch consists of three steps:
1. Store state of an active thread
2. Select and switch to a new thread
3. Restore the state of the new thread
Steps 1) and 3) can be fast as they boil down to a few instructions.
The complexity is mainly affected by step 2).

J. Koniarik · Context Switching · May 13, 2022 23 / 30



Basic context switching

Complexity
Select and switch

The complexity of selection and switching depends on the exact
algorithm used and the necessary steps of the switching process. For
a simple scheduler with a low amount of tasks, that can be done in a
few instructions. (This is purposefully vague, it could give hints to the
project)

J. Koniarik · Context Switching · May 13, 2022 24 / 30



Basic context switching

Remarks

Do not forget that we used a simplified processor. This is only a
general approach. You always have to think about:
1. Each nuance of your hardware platform:

1.1 What registers are handled by the interrupts
1.2 How the hardware works with stack
1.3 What forms the state of a thread (only registers? Something in

memory?)
2. Each nuance of the rest of RTOS

What forms the state of a thread? For example, some kernels
have a global symbol that always points to the control structure
of actual thread.

J. Koniarik · Context Switching · May 13, 2022 25 / 30



ARM

ARM

J. Koniarik · Context Switching · May 13, 2022 26 / 30



ARM

ARM

1. ARM architecture is modern 32bit architecture used frequently in
industry.

2. Manufacturer provides relevant documents, such as:
Cortex -M4 Devices Generic User Guide
https://developer.arm.com/documentation/
dui0553/latest/
Cortex-M4(F) Lazy Stacking and Context Switching - Application
Note 298
https:
//developer.arm.com/documentation/dai0298/a/

3. There are also publicly available sources, such as article:
ARM Cortex-M RTOS Context Switching
https://interrupt.memfault.com/blog/
cortex-m-rtos-context-switching

J. Koniarik · Context Switching · May 13, 2022 27 / 30

https://developer.arm.com/documentation/dui0553/latest/
https://developer.arm.com/documentation/dui0553/latest/
https://developer.arm.com/documentation/dai0298/a/
https://developer.arm.com/documentation/dai0298/a/
https://interrupt.memfault.com/blog/cortex-m-rtos-context-switching
https://interrupt.memfault.com/blog/cortex-m-rtos-context-switching


ARM

Stacks

ARM has two registers for stacks:
main stack Used by the core of RTOS and interrupts
process stack Used by the application

J. Koniarik · Context Switching · May 13, 2022 28 / 30



ARM

Registers
R0-R12 generic purpose registers
MSP main stack address
PSP process stack address
LR link register
PC program counter
PSR program status register
ASPR application status register
IPSR interrupt program status register
EPSR execution program status register

PRIMASK priority mask register
FAULTMASK fault mask register

BASEPRI base priority mask register
CONTROL CONTROL register

J. Koniarik · Context Switching · May 13, 2022 29 / 30



ARM

Float registers

Floating point unit (FPU) only on some processors
Does not have to be used
Provides additional registers:

1/2 of the registers can be corrupted during a call
1/2 of the registers have to be preserved during a call

Context switching has to take care of the registers based on
whenever FPU was used

J. Koniarik · Context Switching · May 13, 2022 30 / 30




	Intro
	Basic context switching
	Model
	

	ARM

