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Abstract

Motivation: Deciphering the language of non-coding DNA is one of the fundamental problems in genome research.
Gene regulatory code is highly complex due to the existence of polysemy and distant semantic relationship, which
previous informatics methods often fail to capture especially in data-scarce scenarios.

Results: To address this challenge, we developed a novel pre-trained bidirectional encoder representation, named
DNABERT, to capture global and transferrable understanding of genomic DNA sequences based on up and down-
stream nucleotide contexts. We compared DNABERT to the most widely used programs for genome-wide regulatory
elements prediction and demonstrate its ease of use, accuracy and efficiency. We show that the single pre-trained
transformers model can simultaneously achieve state-of-the-art performance on prediction of promoters, splice sites
and transcription factor binding sites, after easy fine-tuning using small task-specific labeled data. Further,
DNABERT enables direct visualization of nucleotide-level importance and semantic relationship within input sequen-
ces for better interpretability and accurate identification of conserved sequence motifs and functional genetic variant
candidates. Finally, we demonstrate that pre-trained DNABERT with human genome can even be readily applied to
other organisms with exceptional performance. We anticipate that the pre-trained DNABERT model can be fined
tuned to many other sequence analyses tasks.

Availability and implementation: The source code, pretrained and finetuned model for DNABERT are available at
GitHub (https://github.com/jerryji1993/DNABERT).

Contact: ramana.davuluri@stonybrookmedicine.edu or hanliu@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Deciphering the language of DNA for hidden instructions has been
one of the major goals of biological research (Andersson and
Sandelin, 2020). While the genetic code explaining how DNA is
translated into proteins is universal, the regulatory code that deter-
mines when and how the genes are expressed varies across different
cell-types and organisms (Nirenberg et al., 1965). Same cis-regula-
tory elements (CREs) often have distinct functions and activities in
different biological contexts, while widely spaced multiple CREs
may cooperate, resulting in context-dependent use of alternative
promoters with varied functional roles (Davuluri et al., 2008;
Gibcus and Dekker, 2012; Ji et al., 2020; Vitting-Seerup and

Sandelin, 2017). Such observations suggest existence of polysemy
and distant semantic relationship within sequence codes, which are
key properties of natural language. Previous linguistics studies con-
firmed that the DNA, especially the non-coding region, indeed
exhibits great similarity to human language, ranging from alphabets
and lexicons to grammar and phonetics (Brendel and Busse, 1984;
Head, 1987; Ji, 1999; Mantegna et al., 1994; Searls, 1992; 2002).
However, how the semantics (i.e. functions) of CREs vary across dif-
ferent contexts (up and downstream nucleotide sequences) remains
largely unknown.

In recent years, many computational tools have been developed
by successfully applying deep learning techniques on genomic se-
quence data to study the individual aspects of cis-regulatory
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landscapes, including DNA-protein interactions (Alipanahi et al.,
2015), chromatin accessibility (Kelley et al., 2016), non-coding var-
iants (Zhou and Troyanskaya, 2015) and others. Most methods
adopted Convolutional Neural Network (CNN)-based architecture
(Zou et al., 2019). Other tools focus on the sequential characteristic
of DNA and attempt to capture the dependency between states by
applying Recurrent Neural Network (RNN)-based models, such as
Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Units (GRU) (Cho et al., 2014) net-
works. Several hybrid methods were also proposed to integrate the
advantages of the two model architectures (Hassanzadeh and Wang,
2016; Quang and Xie, 2016; Shen et al., 2018).

To better model DNA as a language, an ideal computational
method should (i) globally take all the contextual information into
account to distinguish polysemous CREs; (ii) develop generic under-
standing transferable to various tasks; (iii) generalize well when
labeled data is limited. However, both CNN and RNN architectures
fail to satisfy these requirements (Fig. 1a) (Bengio et al., 2013;
LeCun et al., 2015). CNN is usually unable to capture semantic de-
pendency within long-range contexts, as its capability to extract
local features is limited by the filter size. RNN models (LSTM,
GRU), although able to learn long-term dependency, greatly suffer
from vanishing gradient and low-efficiency problem when it sequen-
tially processes all past states and compresses contextual informa-
tion into a bottleneck with long input sequences. In addition, most
existing models require massive amount of labeled data, resulting in
limited performance and applicability in data-scarce scenarios,
where high quality data with labels is expensive and time-
consuming to obtain.

To address the above limitations, we adapted the idea of
Bidirectional Encoder Representations from Transformers (BERT)
model (Devlin et al., 2018) to genomic DNA setting and developed
a deep learning method called DNABERT. DNABERT applies

Transformer, an attention-based architecture that has achieved
state-of-the-art performance in most natural language processing
tasks (Vaswani et al., 2017). We demonstrate that DNABERT
resolves the above challenges by (i) developing general and transfer-
able understandings of DNA from the purely unlabeled human gen-
ome, and utilizing them to generically solve various sequence-
related tasks in a ‘one-model-does-it-all’ fashion; (ii) globally captur-
ing contextual information from the entire input sequence with at-
tention mechanism; (iii) achieving great performance in data-scarce
scenarios; (iv) uncovering important subregions and potential rela-
tionships between different cis-elements of a DNA sequence, with-
out any human guidance; (v) successfully working in a cross-
organism manner. Since the pre-training of DNABERT model is
resource-intensive (about 25 days on 8 NVIDIA 2080Ti GPUs), as a
major contribution of this study, we provide the source code and
pretrained model on GitHub for future academic research.

2 Materials and methods

2.1 The DNABERT model
BERT is a transformer-based contextualized language representa-
tion model that has achieved superhuman performance in many nat-
ural language processing (NLP) tasks. It introduces a paradigm of
pre-training and fine-tuning, which first develops general-purpose
understandings from massive amount of unlabeled data and then
solves various applications with task-specific data with minimal
architectural modification. DNABERT follows the same training
process as BERT. More details are included in Supplementary
Material.

DNABERT first takes a set of sequences represented as k-mer
tokens as input (Fig. 1b). Each sequence is represented as a matrix
M by embedding each token into a numerical vector. Formally,

Fig. 1. Details of architecture and characteristics of DNABERT model.(a) Differences between RNN, CNN and Transformer in understanding contexts. T1 to 5 denotes

embedded tokens which were input into models to develop hidden states (white boxes, orange box is the current token of interest). RNN propagates information through all

hidden states, and CNN takes local information in developing each representation. In contrast, Transformers develop global contextual embedding via self-attention. (b)

DNABERT uses tokenized k-mer sequences as input, which also contains a CLS token (a tag representing meaning of entire sentence), a SEP token (sentence separator) and

MASK tokens (to represent masked k-mers in pre-training). The input passes an embedding layer and is fed to 12 Transformer blocks. The first output among last hidden states

will be used for sentence-level classification while outputs for individual masked token used for token-level classification. Et, It and Ot denote the positional, input embedding

and last hidden state at token t, respectively. (c) DNABERT adopts general-purpose pre-training which can then be fine-tuned for multiple purposes using various task-specific

data. (d) Example overview of global attention patterns across 12 attention heads showing DNABERT correctly focusing on two important regions corresponding to known

binding sites within sequence (boxed regions, where self-attention converged)
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DNABERT captures contextual information by performing the
multi-head self-attention mechanism on M:

MultiHead Mð Þ ¼ Concat head1; . . . ; headhð ÞWO (1)

where

headi ¼ softmax
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for linear projection. headcalculates the next hidden states of M by
first computing the attentions scores between every two tokens and

then utilizing them as weights to sum up lines in MWV
i .

MultiHeadðÞconcatenates results of h independent head with differ-
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i g. The entire procedure is performed L

times with L being number of layers.
Similar to BERT, DNABERT also adopts pre-training—fine-tun-

ing scheme (Fig. 1c). However, we significantly modified the pre-
training process from the original BERT implementation by
removing next sentence prediction, adjusting the sequence length
and forcing the model to predict contiguous k tokens adapting to
DNA scenario. During pre-training, DNABERT learns basic syntax
and semantics of DNA via self-supervision, based on 10 to 510-
length sequences extracted from human genome via truncation and
sampling. For each sequence, we randomly mask regions of k con-
tiguous tokens that constitute 15% of the sequence and let
DNABERT to predict the masked sequences based on the remain-
der, ensuring ample training examples. We pre-trained DNABERT
with cross-entropy loss: L ¼

PN
i¼0

�y0 i logðyiÞ. Here, y0 i and yi are the
ground-truth and predicted probability for each of N classes. The
pre-trained DNABERT model can be fine-tuned with task-specific
training data for applications in various sequence- and token-level
prediction tasks. We fine-tuned DNABERT model on three specific
applications—prediction of promoters, transcription factor binding
sites (TFBSs) and splice sites—and benchmarked the trained models
with the current state-of-the-art tools.

2.2 Training of the DNABERT model
2.2.1Tokenization

Instead of regarding each base as a single token, we tokenized a
DNA sequence with the k-mer representation, an approach that has
been widely used in analyzing DNA sequences. The k-mer represen-
tation incorporates richer contextual information for each deoxynu-
cleotide base by concatenating it with its following ones. The
concatenation of them is called a k-mer. For example, a DNA se-
quence ‘ATGGCT’ can be tokenized to a sequence of four 3-mers:
fATG, TGG, GGC, GCTg or to a sequence of two 5-mers:
fATGGC, TGGCTg. Since different k leads to different tokenization
of a DNA sequence. In our experiments, we respectively set k as
3,4,5 and 6 and train 4 different models: DNABERT-3, DNABERT-
4, DNABERT-5, DNABERT-6. For DNABERT-k, the vocabulary
of it consists of all the permutations of the k-mer as well as 5 special
tokens: [CLS] stands for classification token; [PAD] stands for pad-
ding token, [UNK] stands for unknown token, [SEP] stands for sep-
aration token and [MASK] stands for masked token. Thus, there are
4k þ 5 tokens in the vocabulary of DNABERT-k.

2.2.2Pre-training

Following previous works (Devlin et al., 2018; Liu et al., 2019;
Yang et al., 2019), DNABERT takes a sequence with a max length
of 512 as input. As illustrated in Figure 1b, for a DNA sequence, we
tokenized it into a sequence of k-mers and added a special token
[CLS] at the beginning of it (which represents the whole sequence)
as well as a special token [SEP] at the end (which denotes the end of
sequence). In the pre-training step, we masked contiguous k-length
spans of certain k-mers, considering a token could be trivially
inferred from the immediately surrounding k-mers (total �15% of
input sequence), while in the fine-tuning, we skipped the masking
step and directly fed the tokenized sequence to the Embedding layer.

We generated training data from human genome via two
approaches: direct non-overlap splitting and random sampling, with
length of the sequence between 5 and 510. We pre-trained
DNABERT for 120k steps with a batch size of 2000. In this first
100k steps, we masked 15 percent of k-mers in each sequence. In the
last 20k steps, we increased the masking rate to 20 percent. The
learning rate was linearly increased (i.e. warm-up) from 0 to 4e-4 in
the first 10k steps and then linearly decreased to 0 after 200k steps
(Supplementary Fig. S1). We stopped the training procedure after
120k steps since we found the loss curve show a sign of plateauing.
We used the same model architecture as the BERT base, which con-
sists of 12 Transformer layers with 768 hidden units and 12 atten-
tion heads in each layer, and the same parameter setting across all
the four DNABERT models during pre-training. We trained each
DNABERT model with mixed precision floating point arithmetic on
machines with 8 Nvidia2080Ti GPUs.

2.2.3Fine-tuning

For each downstream application, we started from the pre-trained
parameters and fine-tuned DNABERT with task-specific data. We
utilized the same training tricks across all the applications, where
the learning rate was first linear warmed-up to the peak value and
then linear decayed to near 0. We utilized AdamW with fixed weight
decay as optimizer and employed dropout to the output layer. We
split training data into training set and developing set for hyperpara-
meter tuning. For DNABERT with different k, we slightly adjusted
the peak learning rate. The detailed hyperparameter settings were
listed in Supplementary Table S5. For sequences longer than 512,
we split them into pieces and concatenate their representations as
the final representation. This allows DNABERT to process extra-
long sequences (DNABERT-XL). DNABERT with k¼3, 4, 5, 6
achieved very similar performances with slight fluctuations. In all
experiments, we report results of kmer ¼ 6 since it achieves the best
performance.

3 Results

3.1 DNABERT-Prom effectively predicts proximal and

core promoter regions
Predicting gene promoters is one of the most challenging bioinformat-
ics problems. We began by evaluating our pre-trained model on iden-
tifying proximal promoter regions. To fairly compare with existing
tools with different sequence length settings, we fine-tuned two mod-
els, named DNABERT-Prom-300 and DNABERT-Prom-scan, using
human TATA and non-TATA promoters of 10 000 bp length, from
Eukaryotic Promoter Database (EPDnew) (Dreos et al., 2013). We
compared DNABERT-Prom-300 with DeePromoter(Oubounyt et al.,
2019) using -249 to 50 bp sequences around TSS as positive exam-
ples, randomly selected 300 bp-long, TATA-containing sequences as
TATA negative examples, and dinucleotide-shuffled sequences as
non-TATA negative examples (Supplementary Methods). We com-
pared DNABERT-Prom-scan with currently accessible methods,
including recent state-of-the-art methods PromID(Umarov et al.,
2019), FPROM (Solovyev et al., 2006), and our previous software
FirstEF(Davuluri, 2003), using sliding window-based scans from
10 000 bp-long sequences. To appropriately benchmark with PromID
under same setting, we used 1001 bp-long scans, which exceed the
length capacity of traditional BERT model. Hence, we developed
DNABERT-XL specifically for this task (Supplementary Methods).
We used same evaluation criteria used in PromID by scanning sequen-
ces and overlapping predictions with -500 to þ500 bp of known TSS.
The resulting 1001 bp sequences with � 50% overlap to -500 to
þ500 bp of TSS were deemed as positives and the remaining as nega-
tives. For PromID and FPROM, the test set was directly input for
evaluation. In contrast, FirstEF first generates genome-wide predic-
tions, which were then aligned to the positive sequences.

DNABERT-Prom outperformed all other models by significantly
improved accuracy metrics regardless of different settings (Fig. 2).
Specifically, for prom-300 setting TATA promoters, DNABERT-
Prom-300 exceeded DeePromoter in accuracy and MCC metrics by
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0.335 and 0.554, respectively (Fig. 2a). Similarly, we observed sig-
nificantly improved performance of DNABERT-Prom in both non-
TATA and combined cases (Supplementary Fig. S2). Meanwhile, the
prom-scan setting is intrinsically more difficult as the classes are
highly imbalanced, so all the tested baseline models performed
poorly. Among the baselines, FirstEF achieved the best performance
with an F1-score of 0.277 for TATA, 0.377 for non-TATA and
0.331 for combined datasets (Fig. 2b). However, DNABERT-Prom-
scan achieved F1-score and MCC that largely surpassed FirstEF.
Next, we evaluated our model’s predictive performance on core pro-
moters, a more challenging problem due to reduced size of the se-
quence context. We used 70 bp, centered around TSS, of the Prom-
300 data and compared with CNN, CNNþLSTM and CNNþGRU.
DNABERT-Prom-core clearly outperformed all the three baselines
across different datasets (Fig. 2c–g), clearly demonstrating that
DNABERT can be reliably fine-tuned to accurately predict both the
long proximal promoters and shorter core promoters, relying only
on nearby sequence patterns around the TSS region. To further dem-
onstrates the effectiveness of DNABERT-XL, we also conducted
experiments on 301 bp-long sequences and 2001 bp-long sequences.
Experiments shows that the model achieves a better performance in
predicting 2001 bp-long sequences (Supplementary Table S7).

3.2 DNABERT-TF accurately identifies transcription fac-

tor binding sites
NextGen sequencing (NGS) technologies have facilitated genome-
wide identification of gene regulatory regions in an unprecedented
way and unveiled the complexity of gene regulation. An important
step in the analyses of in vivo genome-wide binding interaction data
is prediction of TFBS in the target cis-regulatory regions and cur-
ation of the resulting TF binding profiles. We thus fine-tuned

DNABERT-TF model to predict TFBSs in the ChIP-seq enriched
regions, using 690 TF ChIP-seq uniform peak profiles from
ENCODE database (Dunham et al., 2012) and compared with well-
known and previous published TFBS prediction tools, including
DeepBind(Alipanahi et al., 2015), DeepSEA(Zhou and
Troyanskaya, 2015), Basset (Kelley et al., 2016), DeepSite(Zhang
et al., 2020), DanQ(Quang and Xie, 2016) and DESSO (Khamis
et al., 2018). DNABERT-TF is the only method with both mean and
median accuracy and F1-score above 0.9 (Fig. 3, 0.918 and 0.919),
greatly exceeding the second best competitor (DeepSEA, Wilcoxon
one-sided signed-rank test, n¼690, adjusted P¼4.5�10-100 and
1�10-98 for mean). Other tools made many false positive (FP) and
false negative (FN) predictions in certain experiments, resulting in
even less satisfactory performance, when comparing the mean due
to skewed distribution (Supplementary Table S1). Several tools
achieved comparable performance with DNABERT in finding the
true negatives (TN) for experiments using high-quality data, yet per-
formed poorly when predicting on low-quality experimental data. In
contrast, even on low-quality data, DNABERT achieved significant-
ly higher recall than other tools (Fig. 3, middle left). Meanwhile,
DNABERT-TF made much fewer FP predictions than any other

Fig. 2. DNABERT significantly outperforms other models in identifying promoter

regions. (a) (Left to right) accuracy, F1 and MCC of prom-300 prediction in TATA,

no-TATA and combined datasets. (b) Stacked barplot showing F1 (left) and MCC

(right) of Prom-scan predictions in different settings. (c–f) ROC (c, TATA; d,

noTATA) and Preci- sion-recall (PR) curves (e, TATA; f, noTATA) with adjusted P-

values from Delong test. (g) (Left to right) accuracy, F1 and MCC of core promoters

prediction in TATA, no-TATA and combined datasets

Fig. 3. DNABERT accurately identifies TFBSs.Violin plots showing accuracy (top

left), precision (top right), recall (middle left), F1 (middle right), MCC (bottom left)-

and AUC (bottom right) of TFBS prediction with ENCODE 690 ChIP-Seq datasets.

Pairwise comparison using Wilcoxon one-sided signed-rank test (n¼ 690) and

adjusted P-values using Benjamini-Hochberg procedure were shown. Global hy-

pothesis testing across all models done by Kruskal-Wallis test (n¼690)
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model regardless of the quality of the experiment (Fig. 3, top right).
These results are further supported by benchmarking using a subset
of ChIP-seq profiles with limited number of peaks, where
DNABERT-TF consistently outperformed other methods
(Supplementary Fig. S3).

To evaluate whether our method can effectively distinguish
polysemouscis-regulatory elements, we focused on p53 family pro-
teins (which recognize same motifs) and investigated contextual dif-
ferences in binding specificities between TAp73-alpha and TAp73-
beta isoforms. We overlapped p53, TAp73-alpha and TAp73-beta
ChIP-seq peaks from Gene Expression Omnibus (GEO) dataset
GSE15780 with binding sites predicted by our P53Scan program
(Koeppel et al., 2011; Yoon et al., 2002) and used the resulting
ChIP-seq-characterized BS (�35 bp) to fine-tune our model.
DNABERT-TF achieved near perfect performances (�0.99) on bin-
ary classification of individual TFs (Supplementary Table S2). Using
input sequences with a much wider context (500 bp), DNABERT-
TF effectively distinguished the two TAp73 isoforms with an accur-
acy of 0.828 (Supplementary Table S2). In summary, DNABERT-
TF can accurately identify even very similar TFBSs based on the dis-
tinct context windows.

3.3 DNABERT-viz allows visualization of important

regions, contexts and sequence motifs
To overcome the common ‘black-box’ problem, deep learning mod-
els need to maintain interpretability, while exceling in performance
in comparison to traditional methods. Therefore, to summarize and
understand important sequence features on which fine-tuned
DNABERT models base classification decisions on, we developed
DNABERT-viz module for direct visualization of important regions
contributing to the model decision. We demonstrate that
DNABERT is naturally suitable for finding important patterns in
DNA sequences and understanding their relationship within con-
texts due to the attention mechanism, thus ensuring model
interpretability.

Figure 4a shows the learned attention maps of three TAp73-beta
response elements, where DNABERT-viz accurately determines
both positions and scores of TFBS predicted by P53Scan in an un-
supervised manner. We then aggregated all heatmaps to produce at-
tention landscapes on test sets of Prom-300 and ENCODE 690 TF.
For TATA promoters, DNABERT consistently put high attention
upon -20 to -30 bp region upstream of TSS where TATA box is
located, while for majority of non-TATA promoters a more scat-
tered attention pattern is observed (Fig. 4b). Such pattern is also
seen in TF-690 datasets, where each peak displays a distinct set of

high attention regions, most of which scattered around the center of
the peaks (Supplementary Fig. S4). We specifically looked into
examples of individual ChIP-seq experiments to better understand
the attention patterns. Most high-quality experiments show enrich-
ment of attention either around the center of the ChIP-seq peaks or
on TFBS region (Fig. 4c and Supplementary Fig. S5). In contrast,
low-quality ones tend to have dispersed attention without strongly
observable pattern, except the high attention only at the beginning
of sequences, which is likely due to model bias (Fig. 4d).

We next extended DNABERT-viz to allow for direct visualiza-
tion of contextual relationship within any input sequence (Fig. 4e).
For example, the leftmost plot shows global self-attention pattern of
an input sequence in the p53 dataset, where individual attentions
from most k-mer tokens over all heads correctly converge at the two
centers of the dimeric BS. We can further infer the interdependent
relationship between the BS with other regions of input sequence by
observing which tokens specifically paid high attention to the site
(Fig. 4e, right). Among attention heads, the orange one clearly dis-
covered hidden semantic relationship within context, as it broadly
highlights various short regions contributing to attention of this im-
portant token CTT. Moreover, three heads (green, purple and pink)
successfully relate this token with the downstream half of the dimer-
ic BS, demonstrating contextual understanding of the input
sequence.

To extract conserved motif patterns across many input sequen-
ces, we applied DNABERT-viz to find contiguous high-attention
regions and filtered them by hypergeometric test (Supplementary
Methods). The resulting significant motif instances were then
aligned and merged to produce position-weight matrices (PWMs).
By applying TOMTOM program (Gupta et al., 2007) on the discov-
ered motifs from ENCODE 690 dataset and compared with
JASPAR 2018 database, we found that 1595 out of 1999 motifs dis-
covered successfully aligned to validated motifs (Supplementary Fig.
S6, q-value < 0.01). Motifs identified are overall of very high quality
illustrated by strong similarity to the documented motifs
(Supplementary Fig. S7).

We finally applied DNABERT-viz to understand important fac-
tors in distinguishing binding sites of TAp73-alpha from beta iso-
forms. The attention landscape indeed shows many short regions
differentially enriched between two isoforms, with alpha having
higher attention concentrated at center and beta more scattered into
the contexts (Supplementary Fig. S8). Many strong motif patterns
extracted were not aligned to JASPAR database except for a few
highlighting unknown relationship (Supplementary Fig. S9).
Importantly, differential crosstalk between c-Fos, c-Jun and TAp73-
alpha/beta isoforms contributes to apoptosis balance (Koeppel et al.,

Fig. 4. Visualizations of attention and context by DNABERT-viz.(a) Attention maps of two example ChIP-Seq-validated TAp73-beta binding sites (top, middle) and one non-

binding site (bottom). Numbers below represent binding scores previously predicted by P53Scan. (b) Attention landscapes of TATA (top) and noTATA (bottom) promoters in

Prom-300 test set. (c,d) Example attention landscapes for individual ENCODE 690 dataset. CTCF (left) is of good quality while SMARCA4 (right) has concerned quality. (e)

Attention-head (context) plots of a p53 binding site. (left) sentence-level self-attention across all heads; (middle left, middle right, right) attention of the ‘CTT’ token within

one of the important regions, with only attention � 0.2, 0.4 and 0.6 shown respectively. Heatmap on the left shows the corresponding attention head
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2011), and DNABERT-viz successfully captured this relationship.
To conclude, DNABERT can attain comparable interpretability as
CNN-based models in a more straightforward way while greatly
surpassing them in prediction performance.

3.4 DNABERT-Splice accurately recognizes canonical

and non-canonical splice sites
Predicting splice sites is essential for revealing gene structure and
understanding alternative splicing mechanisms. Nevertheless, the
presence of both GT-AG-containing non-splice site sequences, and
non-canonical splice sites without the dinucleotides, creates diffi-
culty for accurate identification (Wang et al., 2019). Recently,
SpliceFinder(Wang et al., 2019) successfully addressed this issue by
reconstructing a dataset via recursive inclusion of previously mis-
classified false positive sequences. To compare with SpliceFinder
performance on identical benchmark data, we iteratively rebuilt the
same dataset with donor, acceptor and non-splice site classes. We
also performed comparative analysis with multiple baseline models.
As expected, all models performed well on initial dataset as the task
is oversimplified, although DNABERT-Splice still achieved the best
(Supplementary Table S3). We, then, compared DNABERT-Splice
with all baselines using a reconstructed dataset that includes ‘adver-
sarial examples’ (Fig. 5a). This time, the predictive performance of
the baseline models greatly dropped, while DNABERT-Splice still
achieved best accuracy of 0.923, F1 of 0.919 and MCC of 0.871,
with AUROC and AUPRC significantly greater than other models
(Fig. 5b and c), which was also supported by Mcnemar’s exact test
(Supplementary Figs S10 and S11). Furthermore, DNABERT-Splice
again outperformed all models when predicting on an independent
test set containing held-out sliding-window scans from our iterative
training process (Supplementary Table S4). We also examined the
attention landscape to elucidate on how model made classification
decision (Supplementary Fig. S12). Surprisingly, DNABERT-Splice

showed globally consistent high attention upon intronic regions
(downstream of donors and upstream of acceptors), highlighting the
presence and functional importance of various intronic splicing
enhancers (ISEs) and silencers (ISSs) acting as CREs for splicing
(Wang and Burge, 2008).

3.5 Identifying functional genetic variants with

DNABERT
We applied DNABERT to identify functional variants using around
700 million short variants in dbSNP(Sherry, 2001). Specifically, we
selected only those variants that are located inside DNABERT pre-
dicted high-attention regions and repeated the predictions, using
sequences with altered alleles. Candidate variants resulting in signifi-
cant changes in prediction probability were queried in
ClinVar(Landrum et al., 2014), GRASP (Leslie et al., 2014) and
NHGRI-EBI GWAS Catalog (Buniello et al., 2019). In Prom-300
dataset, we found 24.7% and 31.4% of dbSNP Common variants
we identified using TATA and non-TATA promoters are present in
at least one of the three databases (Supplementary Table S6). We
present some example functional variants that we found using
ENCODE 690 ChIP-seq datasets (Fig. 6a–c). Figure 6a shows a
rare, pathogenic 4 bp deletion completely disrupts a CTCF BS within
MYO7A gene in ECC-1 cell line. This deletion is known to cause
Usher Syndrome, an autosomal recessive disorder characterized by
deafness, although the relationship with CTCF is to be determined
(Jaijo et al., 2006). Similarly, Figure 6b depicts how a rare single nu-
cleotide variant (SNV) at initiator codon of SUMF1 gene, which
leads to multiple sulfatase deficiency (Cosma et al., 2003), simultan-
eously disrupts a YY1 BS with unknown functional consequences.
In Figure 6c, a common risk variant of pancreatic cancer at intronic
region of XPC gene also greatly weakens CTCF BS (Liang et al.,
2018). In all examples, DNABERT consistently shows highest atten-
tion at/around the variants of interest. We finally evaluated the qual-
ity of DNABERT-created mutational scores, comparing to those
from other models, in globally prioritizing functional variants
(Supplementary Methods). Using same set of functional SNVs from
PRVCS benchmark dataset (Li et al., 2016), model trained on muta-
tion scores from DNABERT predictions on ENCODE 690 TF data-
set achieves better AUROC than those using scores from other deep
learning models (Supplementary Fig. S13). We expect the perform-
ance to be further enhanced as we bring in other features, such as
DNase I hypersensitivity (DHS) predictions and others.

3.6 Pre-training substantially enhances performance

and generalizes to other organisms
Lastly, we investigated the importance of pre-training based on per-
formance enhancement and generalizability. When comparing train-
ing loss of pre-trained DNABERT-prom-300 with randomly
initialized ones under same hyperparameters, pre-trained
DNABERT converges to a markedly lower loss, suggesting that ran-
domly initialized models get stuck at local minima very quickly
without pre-training, as it ensures preliminary understanding of
DNA logic by capturing distant contextual information (Fig. 6d).
Similarly, randomly initialized DNABERT-prom-core models either
remain completely untrainable or exhibit suboptimal performance.
An examination of attention maps reveals the gradual comprehen-
sion of input sequence (Fig. 6e). Since separate pre-training of
DNABERT for different organisms can be both very time-
consuming and resource-intensive, we also evaluated whether
DNABERT pre-trained on human genome can be also applied on
other mammalian organisms. Specifically, we fine-tuned DNABERT
pre-trained with human genome on 78 mouse ENCODE ChIP-seq
datasets (Mouse et al., 2012) and compared with CNN,
CNNþLSTM, CNNþGRU and randomly initialized DNABERT.
Pre-trained DNABERT significantly outperformed all baseline mod-
els (Fig. 6f), showing the robustness and applicability of DNABERT
even across a different genome. It is well known that although the
protein-coding regions between human and mouse genomes are ap-
proximately 85% orthologous, the non-coding regions only show
approximately 50% global similarity (Mouse Genome Sequencing

Fig. 5. DNABERT significantly outperforms other models in finding splice sites.(a)

(Left to right) multiclass accuracy, F1 and MCC of splice donor and acceptor pre-

diction. GBM: gradient boosting; LR: logistic regression; DBN: deep belief network;

RF: random forest; tree: decision tree; SVM_RBF: support vector machine with ra-

dial basis function kernel. (b, c) ROC (top) and PR curves (bottom) on splice donor

(b) and acceptor (c) datasets with adjusted P-values from Delong test
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et al., 2002). Since TFBS mostly locate within the non-coding re-
gion, DNABERT model successfully transferred learned information
from one genome to a much less similar genome with very high tol-
erance to the dissimilarities. This demonstrates that the model cor-
rectly captured common deep semantics within DNA sequences
across organisms. The evaluations above demonstrates the essential-
ity of pre-training and guarantees extensibility of the pre-trained

model for efficient application in numerous sequence prediction
tasks across different organisms.

4 Discussion

Transformers-based models have achieved state-of-the-art perform-
ance on various NLP tasks (Devlin et al., 2018; Liu et al., 2019;

Fig. 6. DNABERT identifies functional genetic variants, and pretraining is essential and can be generalized.(a–c) Mutation maps of difference scores (top 3) and log-odds ratio

scores (logOR, bottom 3). Each mutation map contains the attention score indicating importance of the region (top), scores for wild-type (WT, middle) and scores for mutant

(mut, bottom). (Left to right) a rare deletion within a CTCF binding site inside MYO7A gene in ECC-1 cell line completely disrupts the binding site; a rare single-nucleotide

variant (SNV) at initiator codon of SUMF1 gene also disrupts YY1 binding site (5‘-CCGCCATNTT-3’); a common intronic SNP within XPC gene weakens CTCF binding site

and is associated with pancreatic cancer. (d) Fine-tuning loss of pre-trained (pre) versus random initialized (init) DNABERT on Prom-300 (left) and Prom-core (right). (e) p53

attention map for random initialized (top), pre-trained (middle) and fine-tuned (bottom) DNABERT model. (f) Mean Accuracy (top left), F1 (top right), MCC (bottom left)

and AUC (bottom right) across 78 mouse ENCODE datasets
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Yang et al., 2019)and for biomedical and clinical entity extraction
from large-scale EHR notes (Li et al., 2019) and biomedical docu-
ments (Lee et al., 2020). Previous research has applied Transformers
on protein sequences and prokaryotic genomes (Clauwaert and
Waegeman, 2020; Min et al., 2019). Here, we demonstrated that
DNABERT achieved superior performance across various down-
stream DNA sequence prediction tasks by largely surpassing existing
tools. Using an innovative global contextual embedding of input
sequences, DNABERT tackles the problem of sequence specificity
prediction with a ‘top-down’ approach by first developing general
understanding of DNA language via self-supervised pre-training and
then applying it to specific tasks, in contrast to the traditional ‘bot-
tom-up’ approach using task-specific data. These characteristics of
DNABERT ensures that it can more effectively learn from DNA
context with great flexibility adapting to multiple situations, and
enhanced performance with limited data. In particular, we also
observed great generalizability of pre-trained DNABERT across
organisms, which ensures the wide applicability of our method with-
out the need for separate pre-training.

The pre-trained DNABERT model, released as part of this study,
can be implemented for other sequence prediction tasks, for ex-
ample, determining CREs and enhancer regions from ATAC-
seq(Buenrostro et al., 2013) and DAP-seq(Bartlett et al., 2017).
Further, since RNA sequences differs from DNA sequences only by
one base (thymine to uracil), while the syntax and semantics remain
largely the same, our proposed method can also apply to Cross-
linking and immunoprecipitation (CLIP-seq) data for prediction of
binding preferences of RNA-binding proteins (RBPs) (Gerstberger
et al., 2014). Although direct machine translation on DNA is not yet
possible, the successful development of DNABERT shed light on
this possibility. As a successful language model, DNABERT correct-
ly captures the hidden syntax, grammar and semantics within DNA
sequences and should perform equally well on Seq2seq translation
tasks once token-level labels become available. Meanwhile, other
aspects of resemblance between DNA and human language beyond
text (e.g. alternative splicing and punctuation) highlights the need to
combine data of different level for more proper deciphering of DNA
language. In summary, we anticipate that DNABERT can bring new
advancements and insights to the bioinformatics community by
bringing advanced language modeling perspective to gene regulation
analyses.
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