MB141 -4. přednáška Vektorové prostory, báze, dimenze Martin Čadek s využitím přednášky Ondřeje Klímy pro předmět MB101 Jarní semestr 2021 4. přednáška Vektorové prostory 1/24 Osnova přednášky • Vektorové prostory • Výběr vhodné generující množiny 9 Báze a dimenze podprostorů • Průnik a součet podprostorů 4. přednáška Vektorové prostory 2/24 Motivace Vektory - sčítání, násobky. Uvažujme systém m lineárních rovnic pro n proměnných a předpokládejme, že jde o soustavu tvaru A • x = 0, tj. (aAA ... a^n\ /xA /0\ \^a7?1 amnJ \xnJ \0J Součet dvou řešení x = (xi,..., xn) a y = (yi,..., yn) splňuje A-(x + y) = A-x + A-y = 0 a je tedy také řešením, o Stejně tak zůstává řešením i skalární násobek a • x. © Máme tedy podmnožinu Kn sestávající ze všech řešení soustavy M = {x e Kn | A • x = 0} se sčítáním a násobky 4. přednáška Vektorové prostory 3/24 Vektorové prostory Nechť K je množina reálných čísel R nebo racionálních čísel Q nebo komplexních čísel C. Definice_J Vektorový prostor V nad polem skalárů K je neprázdná množina s operacemi sčítání vektorů + : V x V ->■ V a násobení vektoru skalárem • : K x V V, pro které platí (u + v) + w = u + (v + w) (1) u + v = v + u (2) 30e V : u + 0 = u (3) a-(v+w) = a-v + a-w (4) Vtv g V 3(—u) g V : u + (-i/) = 0 (5) (a + Ď)-i/ = a- i/ + Ďv (6) a • (b ■ v) = (a ■ b) ■ v (7) 1 • v = v (8) 4. přednáška Vektorové prostory 4/24 Vektorové prostory - příklady Rozumné (známé) příklady: • Vektory v rovině: IR2. • Prostory vyšší dimenze: Rn. • Matice nad polem: Marn?A7?(R). • Polynomy omezeného stupně: R4M = {a4*4 + a3x3 + a2x2 + aAx + a0 | a4, a3, a2, aA, a0 e R} Obecně Rn[x]- • Množina řešení homogenní soustavy lineárních rovnic. • C vektorový prostor nad R. Všechno to jsou reálné vektorové prostory, tj. K = R. Lze uvažovat i příklady Qn, Cn, Q„[x], kde K = Q či K = C. 4. přednáška Vektorové prostory 5/24 Vektorové prostory - príklady II Poněkud složitější príklady: o Polynomy: R[x]. • Funkce: F(R) = {f : R IR}. o R vektorový prostor nad Q. Poslední dva jsou trochu divoké. Příklady množin, které netvoří vektorový prostor. • Z x Z nad R. • M = {x g Kn I A • x = £>}, pro b nenulové. • Čtvercové matice s determinantem 1. « Polynomy stupně n. 4. přednáška Vektorové prostory 6/24 Vektorové prostory - další vlastnosti Věta_ Nechť V je vektorový prostor nad polem skalárů K, dále uvažme skaláry a, b, a,- e K a vektory u, v, uj e V. Potom • a • u = 0 právě když a = 0 nebo u = 0, o (-1) • u = -u, • a - (u - v) = a - u - a - v, • (a - b) • u = a - u - b • u, • (£ÍLi ^) • (Ef=i uy) = EÍLi Ef=i a, • uy. 4. přednáška Vektorové prostory 7/24 Výběr optimálních základních vektorů • Cíl: najít (co nejmenší) základní množinu vektorů, abychom mohli pomocí nich ostatní vektory (jednoznačně) vyjádřit. Definice • Výrazy tvaru a^ • ^ h-----\- ak • vk nazýváme lineární kombinace vektorů ^,..., vk e V (zde a, e K skaláry). • Množina vektorů M = , v2,..., vk} c V ve vektorovém prostoru V nad K se nazývá lineárně nezávislá, jestliže pro každou /c-tici skalárů a-i,..., ak e K platí: a-i • ^ h-----h a/c • v/c = 0 =4> a-i = a2 = • • • = ak = 0. a M je lineárně závislá, jestliže není lineárně nezávislá. • M je závislá, právě když aspoň jeden z jejích vektorů je vyjádřitelný jako lineární kombinace ostatních. 4. přednáška Vektorové prostory 8/24 Odstraňování přebytečných vektorů Základní množina vektorů, aby byla co nejmenší, musí být lineárně nezávislá. Jak to poznáme? Příklad Rozhodněte, zda jsou vektory ^ = (1,1,1), v2 = (-1,0,1) a v3 = (1,2,3) lineárně nezávislé (v reálném prostoru IR3). Soustava x1 ^ + x2v2 + x3v3 = 0 s maticí má řešení x-i = -2r, x2 = -ŕ, x3 = ř. Napr. pro ř = 1 dostaneme -2 • ^ - t/2 + \/3 = 0, tzn. v3 = 2 • ^ + v2. Zkouška: 2^ + i/2 = (2,2,2) + (-1,0,1) = (1,2,3) = v3. Odpověď: zadané vektory jsou lineárně závislé. 4. přednáška Vektorové prostory 9/24 Odstraňování přebytečných vektorů II Příklad Rozhodněte, zda jsou vektory x3 - x + 1, 2x3 + x2 - 2x. x4 + x3 - x a x4 - x2 + 1 lineárně nezávislé. xl x: xl x x o 1 o -1 V 1 0 2 1 2 0 1 1 0 1 0 1 o -1 0 1 o o o o / Odpověď: jsou lineárně závislé. Postup (obecně): vektory dáme do (sloupců) matice a řešíme příslušnou homogenní rovnici. 4. přednáška Podprostory Umíme se zbavovat přebytečných vektorů z potencionální základní množiny. Máme jich ale dost? Tj. stačí na vyjádření všech vektorů? K tomu definujeme další užitečný pojem. Definice Podmnožina 0 ^ U c V se nazývá vektorovým podprostorem, jestliže, spolu se zúženými operacemi sčítání a násobení skaláry, je sama vektorovým prostorem. Tzn. požadujeme, aby platilo Va, í)gK, Vv, w g U, a - v + b • w e U. Příklady: • Rn[x] C R[x]. oicc. • M = {x g K" I A • x = 0} c Kn. • Sudé polynomy {f e R4[x] \ f (x) = f {-x)} c M4[x]}. 4. přednáška Lineární obal množiny vektorů Říkáme, že vektory v^,v2,... ,vn generují vektorový prostor, jestliže každý vektor u e V je nějakou jejich lineární kombinací: tj. existují a1,a2,...,anGK, že u = a-i ^ + a2v2 H-----h anvn Lineární kombinace vektorů ^, v2,..., vn nemusí dávat všechny vektory ve V. Nicméně tvoří vždy nějaký jeho podprostor. Říkáme mu lineární obal těchto vektorů. Definice Lineární obal vektorů v-\,v2,... ,vn je množina [v,, v2,..., vn] = fa ■ ui + • • • + ak ■ uk | a,- e K} 4. přednáška Báze vektorového prostoru • Vektorový prostor, který je generován konečnou množinou vektorů se nazývá konečněrozměrný. • Nechť V je konečněrozměrný vektorový prostor. Vektory v-i, v2,..., vn g V tvoří bázi vektorového prostoru V, jestliže generují V a jsou lineárně nezávislé. • Počet prvků báze nazýváme dimenzí prostoru V. Značíme dim V. Triviální podprostor {0} je generován prázdnou množinou, která je "prázdnou" bází. Má tedy nulovou dimenzi. Je-li (v-i, v2,..., vn) báze, pak libovolný vektor ve V lze jediným způsobem zapsat jako lineární kombinaci vektorů báze v = a^v^ + a2v2 H-----hanvn. Koeficienty (a^, a2,..., an) nazýváme souřadnice vektoru v v dané bázi. 4. přednáška Báze - příklady • R2: báze ((1,0), (0,1)); dimenze 2. • Rn: báze (e-i, e2,..., en), kde e, = (0,..., 0,1,0..., 0); dimenze n. • Matnim(R): dimenze nm. Mař2>3(K) = {(ad becŤ) | a, 6, c, of, e, ř e M} = Wi88) + M8i8) + M88i) + tf-(?88) + + e-(oio) + Mooi) |a,Ď,c,cř,e,f eR} Rá7Pip^ioo\ /oio\ foo-n /0 0 0\ /0 0 0\ /ooo^ Dd^u je vVooo/'VOOO/'Vooo/'Vi o o /' v o 1 o; > v o o 1J / ■ • IR4[x]: báze (x4,x3,x2,x, 1); dimenze 5. (]R4[x] = {a4x4 + a3x3 + a2x2 + a-|x + a0 | a4,..., a0 e R}) • [(1,1,1), (-1,0,1), (1,2,3)] = [(1,1,1), (-1,0,1)] je podprostor prostoru R3 dimenze 2. (Příklad z 9. slajdu.) • ]R[x]: není konečněrozměrný. 4. přednáška Báze - základní poznatky Věta Pro konečněrozměrný vektorový prostor V platí: • Z libovolné konečné množiny generátorů vektorového prostoru V lze vybrat bázi. • Všechny báze V mají stejný počet vektorů. • Předchozí defince dimenze je korektní. Příklad Nechť M = {(1,0,2,0,1), (0,2,1, -1,1), (2, -4,2,2,0), (2,1,3,1,1), (0,1,0,0,0)} c R5. Z množiny M vyberte bázi lineárního obalu M (tj. podprostoru V = [M\ c R5). 4. přednáška Příklad - výběr báze z generující množiny • v, = (1,0,2,0,1 ),vz = (O,2,1, -1,1), v3 = (2, -4,2,2,0), ^ = (2,1,3,1,1), ľ5 = (0,1,0,0,0). • Postup již známe - odstraňování přebytečných vektorů. /1 0 2 2 /1 0 2 2 0 2 -4 1 1 0 2 -4 1 1 2 1 2 3 0 - - 0 1 -2 -1 0 0 -1 2 1 0 0 -1 2 1 0 V i 1 0 1 o / 1 -2 -1 o / / 1 0 2 2 0 \ 0 1-2-10 0 0 0 3 1 0 0 0 0 0 V 0 0 0 0 0 / • 1/3 lze vyjádřit pomocí 1/1 a 1/2; 1/5 pomocí 1/1, v2, v4. • Báze (v<[, v2, v4). 4. přednáška Báze - další poznatky Je-li V konečněrozměrný, je vhodné si pamatovat: • Z každé množiny generátorů, lze vybrat bázi. • Báze konečněrozměrných vektorových prostorů jsou právě minimální množiny generátorů. • Každou lineárně nezávislou množinu lze doplnit do báze. • Báze konečněrozměrných vektorových prostorů jsou právě maximální lineárně nezávislé množiny. Důsledek: Pro libovolný konečněrozměrný vektorový prostor V a jeho podprostor U platí: dim U < dim V. • Pro přirozená čísla m > n je libovolná množina m vektorů v prostoru dimenze n (např. Rn) lineárně závislá. 4. přednáška Báze - příklad s polynomy Příklad Je dán vektorový prostor V = IR4[x]. Určete bázi a dimenzi podprostorů P, Q, P n Q, kde P = {f e R4M | (Vc g R)(f(c) = ř(-c)) }, Q = [x3 - x + 1, 2x3 + x2 - 2x, x4 + x3 - x, x4 - x2 + 1]. ►► • P má bázi (x4, x2,1) a dimenzi 3. • Už jsme spočítali bázi a dimenzi Q (slajd 10): dimenze je 3 a báze (x3 - x + 1, 2x3 + x2 - 2x, x4 + x3 - x). • Hledáme skaláry a, £>, c, p, g, r tak, aby ax4 + £>x2 + c = + gv2 + rv3. • To vede na řešení následující soustavy. 4. přednáška Báze - příklad s polynomy - pokračování /1 0 0 0 0 1 \ (1 0 0 0 0 1 \ 0 0 0 1 2 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 -1 -2 -1 0 0 0 1 2 1 0 1 1 0 o ) ^ o 0 0 0 0 o / • Řešení: g, r volné proměnné, p = —r — 2q. • V průniku jsou tedy vektory tvaru (-r - 2q) • (x3 - x + 1) + q • (2x3 + x2 - 2x) + r • (x4 + x3 - x) = q • (x2 - 2) + r • (x4 - 1). • Proto P n Q má bázi (x2 - 2, x4 - 1) a dimenzi 2. 4. prednáška Průnik a součet podprostoru Nechť U a l/l/, jsou podprostory ve V, a, b e K, u, v e U n l/l/. Pak a-i/ + Ď- vel/nl/. Průnik podprostoru je opět podprostor. Sjednocení podprostoru není obecně podprostor. Místo sjednocení proto definujeme součet podprostoru. Definice Součtem podprostoru U + 1/1/je množina U+w = {u+weV\ueU,weW}. Je to opět vektorový podprostor, nejmenší, který obsahuje podprostory U a l/l/. 4. přednáška Příklad s polynomy - součet podprostorů Určete bázi a dimenzi podprostorů P+ Q. • Sjednotíme báze a dostaneme množinu generátorů. • Z ní vybereme bázi P + Q. • To už máme mimoděk spočítáno: báze P + Q je například (x4, x2,1, x3 - x + 1) a dimenze je 4. • Platí (zkouška): dim P + dim Q = dim(P + Q) + dim(Pn Q). • Závěr: báze i dimenze P+QaPnQse počítá současně. Věta Pro U, W podprostory v konečněrozměrném V platí • dim U < dim V, 9 U = V právě když dim U = dim V, * dimíV + dim W = ď\m(U + M/) + dim(l/n l/l/). 4. přednáška Požadavky Typické příklady: • Určit bázi a dimenzi podprostoru (užitečné dovednosti vyber báze ze zadané množiny generátorů, doplnění množiny vektorů na bázi). o Průnik a součet podprostoru - opět báze a dimenze. 4. přednáška Domácí úloha Příklad (4.1) Pro každou ze zadaných podmnožin M, vektorového prostoru V = R2[x] = {a2x2 + a\x + a0 | a2, ai, a0 gM} rozhodněte, zda je vektorovým podprostorem V7. i) Mi ={feR2[x] | f(1) = f(2)}; ii) M2 = {f gR2[x] I f(1) = 0A (Vcel)(f(c) = f(-c))}; uď M3 = {f GR2[x] I f(1) = 0Af(0) = 1}. Pokud Mj není vektorový podprostor, toto tvrzení zdůvodněte. Pokud M, je vektorový podprostor, určete dimenzi a nějakou bázi tohoto podprostoru. Příklad (4.2) Ve vektorovém prostoru M4 (nad tělesem R) jsou dány vektory ui =(1,1,1,1), u2 = (2,-1,1,6), u3 = (0,3,1,-4) a u4 = (3,1,2,6). Z množiny {1/1, l/2,1/3,1/4} vyberte maximální podmnožinu lineárně nezávislých vektorů a doplňte ji na bázi prostoru IR4. 4. přednáška Doplňující domácí úloha Příklad (4.3) Ve vektorovém prostoru Maf3,3(IR) máme následující podmnožiny. Určete, které z nich jsou vektorové podprostory, a určete jejich dimenzi a bázi. i) Podmnožina všech matic s jedničkami na diagonále. ii) Podmnožina všech matic s nulami na diagonále. iii) Podmnožina všech matic s nulovým determinantem. iv) Podmnožina všech matic x pro které platí (1,0,0) • x = (1,0,0). /1 2 3\ v) Podmnožina všech matic x pro které je součin 4 5 6 • x = 0.