
Service Oriented
Architecture and

Web Services
Martin Kuba, ÚVT MU
makub@ics.muni.cz

PA160 lecture, spring 2022

Overview

● RPC, RMI, SOA, Microservices
● Web Services
● SOAP/WSDL
● REST
● Web APIs
● OpenAPI
● AJAX, Mash ups
● Authentication and Authorization in Web

Services
○ SAML, OAuth 2, OpenID Connect, JWT

Glossary
AJAX - Asynchronous JavaScript and XML
API - Application Programming Interface
GUI - Graphical User Interface
HTTP - Hypertext Transfer Protocol
HTML - Hypertext Markup Language
IDL - Interface Description Language
JSON - JavaScript Object Notation
REST - Representational State Transfer
SSL/TLS - Secure Sockets Layer/Transport Layer Security

SAML - Security Assertion Markup Language
URL - Uniform Resource Locator
XML - Extensible Markup Language

Communication in Distributed Systems

● synchronicity point of view
○ synchronous – the calling side blocks until

an answer is received
○ asynchronous – the calling side does not

wait, it is notified of an answer
● persistency point of view

○ transient (disappearing with time)
○ persistent (storing messages until receiver is

ready)
● TCP is transient, JMS or IBM MQ are persistent
● all 4 combinations are possible

 RPC - Remote Procedure Calls

● distributed systems are communicating by sending
messages

● harder to use than local procedure calls
● remote procedure calls try to hide the complexity
● request-response communication:

○ call a procedure, pass parameters by value
○ return values

● client stub and server skeleton generated from IDL
○ used locally in a given programming language
○ they do marshalling/serialization, communication,

unmarshaling/deserialization
● examples: DCE/RPC, XML-RPC, SOAP

RMI - Remote Method Invocation

● distributed object-oriented systems need to pass
parameters by reference

● a distributed object has state, interface, and
implementation

● examples: CORBA, Java RMI, Microsoft DCOM
● original Java RMI (JRMP - Java Remote Method

Protocol) is pure Java, it can pass implementation of
classes between the server and the client

● Java RMI works only between the same version of JVM
● later Java RMI-IIOP (Internet Inter-ORB [Object

Request Broker] Protocol) is based on CORBA
● CORBA implementations from different vendors were

never truly interoperable

RMI Problems

● RMI works only in systems under a centralized
control

● thus RMI does not scale to Internet-size
● synchronous communication does not scale
● tight coupling - versioning and evolution of both

communicating ends are difficult
● distribution cannot be transparent because of

possible partial failure

SOA - Service Oriented Architecture

● SOA is an architectural style whose goal is to
achieve loose coupling among interacting
software agents. A service is a unit of work done
by a service provider to achieve desired end
results for a service consumer [1]

● in SOA, services provide only interface
● the interface is defined by messages, not by

operations on data types
● data types are not interoperable, e.g. String[] in

Java is different from string[] in .NET, the former
may contain nulls, the latter must not

Difference between OO and SOA

● from [1] Hao He: What is Service-Oriented
Architecture:
○ a CD player offers a CD playing service
○ different quality of service on a portable player

and on an expensive stereo
○ in object oriented programming style, every

CD would come with its own player and they
are not supposed to be separated

● SOA more corresponds to how interactions are
organized in the real world

● loose coupling - independent evolution of clients
and services operated by different organizations

https://www.xml.com/pub/a/ws/2003/09/30/soa.html
https://www.xml.com/pub/a/ws/2003/09/30/soa.html

Microservices

● popular, but no sound definition
● services are fine-grained and the protocols

are lightweight
● microservices are composed using Unix-like

pipelines
● inter-service calls over a network have

a higher cost in terms of network latency and
message processing time than in-process
calls

● difficult to maintain data consistency among
transaction participants

A web service is a software system
designed to support interoperable

machine-to-machine interaction over a
network.

(W3C, Web Services Glossary)

Brief web services history
1989 - World Wide Web invented
1991 - HTTP 0.9 specified
1992 - Internet at Masaryk University :-)
1993 - first GUI web browser Mosaic
1993 - Common Gateway Interface for executing programs
1995 - JavaScript introduced by Netscape browser
1996 - SSL 3.0 (first usable encryption)
1998 - XML 1.0 (the first interoperable text data format)
1998 - SOAP 1.1 by Microsoft (text-based RPC)
2003 - SOAP 1.2 by W3C (never used)
2004 - WS-Interoperability Basic Profile (SOAP usable)

Brief web services history (2)
2000 - REST defined by Roy Fielding
2001 - JSON invented (simple interoperable data format)
2004 - GMail, Google Maps, Web 2.0, wikis, mash-ups
2005 - AJAX, Yahoo offers JSON web services, SAML
2006 - OpenID 2.0 (decentralized authentication)
2008 - HTML5 (first public working draft)
2010 - mobile devices with Android and small screens
2012 - OAuth 2.0 (authorization framework)
2013 - responsive web design as an answer to devices
with wildly different screen sizes

Brief web services history (3)

2006-2013 - cloud computing (Amazon 2006,
Microsoft 2008, Google 2013)
2014 - HTML5 finalised (APIs for in-browser apps)
2014 - OpenID Connect (authentication standard)
2015 - HTTP/2, JSON Web Tokens
2016 - OpenAPI (IDL for JSON web services)
2018 - TLS 1.3 (weak points removed)
2019 - WebAuthN (hardware authenticators)
2021 - Self-sovereign identity

My definition of a web service

web service client communicates with a web
server requesting a web resource identified by
a URL, using HTTP protocol secured by TLS
exchanging messages in JSON or XML formats

this definition covers
● SOAP/WSDL services
● REST APIs
● dynamic web pages using AJAX

SOAP/WSDL web services

● SOAP was Simple Object Access Protocol
● WSDL is Web Service Description Language
● technology for RPC (not RMI!) using exchange of

XML messages
● syntax based on XML Schema and Namespaces
● used in API of the Czech eGovernment’s "Data

Boxes"
● WS-Interoperability Basic Profile needed to

ensure interoperability, it requires SOAP 1.1
● many WS-* extensions

SOAP request

SOAP response

SOAP/WSDL history

● started as XML-based Remote Method
Invocation protocol

● changed to Remote Procedure Call protocol
(no objects - SOAP is not an abbreviation now)

● introduced its own type system
○ big problems with compatibility followed

● later replaced by XML Schema type system
● main lesson learned - remote interfaces should

be defined by messages, not operations

SOAP versus REST

● enterprises prefer complicated stack
○ XML
○ SOAP, WSDL, WS-Interoperability
○ WS-* (WS-Security, WS-Addressing, ...)
○ persistent connections - queues
○ RPC based
○ complex tools and frameworks, need an IT department

● Internet crowd prefers simplicity
○ JSON
○ HTTP requests to URLs, OpenAPI
○ AJAX in browsers
○ transient connections - TCP/IP, HTTP
○ scalable using REST

Web APIs
● well-known APIs

○ Google APIs (Calendar, GMail, Maps, ...)
○ Facebook API
○ Twitter API
○ based on HTTP+TLS+JSON+OAuth

● third party clients
○ web, mobile (Android, iOS), desktop, embedded (TV)

● OAuth
○ developer registers an application at API provider
○ user authorises the application to use certain operations

in the API, giving the application an access token
○ application uses the token to use the API on behalf of

the user

JSON - JavaScript Object Notation

● simple specs at http://json.org
● implemented parsers for every language
● native in web browsers

The same Google Cal event in XML

YAML 1.2
is superset
of JSON

REST

● Representational State Transfer
● software architecture style for creating scalable web

services
● invented by Roy Fielding, author of HTTP 1.1
● resources identified by URIs
● representations of resources as JSON, XML or other

formats
● uses HTTP methods GET, PUT, DELETE and POST

for manipulating resources
● verbs (GET, PUT,...) manipulate nouns (resources)
● not every service using HTTP and JSON is RESTful

Web API Descriptions

● API described in human natural language
○ e.g. “image can be changed by HTTP PUT request

to /image/{imageID} with the image in request body”
● WSDL 2.0 defined in 2007, but never used
● OpenAPI since 2016

○ machine-processable description of HTTP interfaces
○ a form of IDL (Interface Description Language)
○ written in YAML language, which is a more

human-readable superset of JSON
○ can describe both RPC-like and RESTful APIs

OpenAPI

● “machine-readable interface files for
describing, producing, consuming, and
visualizing RESTful web services”

● developed since 2010 as Swagger,
renamed to OpenAPI in 2016

● version 3.0.0 released in 2017
● latest version 3.1 released in February 2021
● API description in file openapi.yml
● tool OpenAPI Generator can generate client

stubs in about 40 programming languages

Java client library generated
by OpenAPI Generator

Python client library generated
by OpenAPI Generator

AJAX

● Asynchronous JavaScript And XML
● (Ajax was a Greek mythological hero)
● AJAX does not need XML, uses JSON mostly
● enabled by introduction of XMLHttpRequest

JavaScript object to web browsers around the
year 2006

● asynchronous request to web server
● enables calling REST services from JavaScript
● same-origin security policy (protocol,host,port)
● Cross-origin resource sharing (CORS)

Mash ups

● combine data from various sources
● typically a Google map with some geospatial

data
○ ships - http://www.marinetraffic.com/
○ aircrafts - http://www.flightradar24.com/

Mash-up of Google Maps with ships data

Authentication and Authorization
in Web Services

● an important problem in web services is to
know who is who (authentication) and what
to allow them to do (authorization)

● the next section talks about
○ federated identity
○ SAML
○ OAuth
○ OpenID
○ OpenID Connect
○ JSON Web Tokens

Federated identity
● many authentication mechanisms were

developed for the web
○ username+password (hard to remember)
○ X509 digital certificate (complicated to get)
○ digest, Kerberos etc. (not much support in browsers)

● users forget passwords to rarely used accounts
● in federated identity, account from one

organisation can be reused at others
● protocols and identity providers:

○ SAML - in academia, Microsoft O365, Google Apps
○ OAuth - Google, Facebook, Twitter, ...
○ OpenID - MojeID.cz, anybody (obsolete)
○ OpenID Connect - mix of OpenID and OAuth

MUNI Unified Login

● OpenID Connect protocol for internal MUNI
services

● SAML protocol for external services in
federations eduId.cz and eduGAIN

● see https://it.muni.cz/en/services/jednotne-prih
laseni-na-muni

https://it.muni.cz/en/services/jednotne-prihlaseni-na-muni
https://it.muni.cz/en/services/jednotne-prihlaseni-na-muni

SAML
● Security Assertion Markup Language
● introduced in 2001
● provides web browser single sign-on
● SAML document is XML containing user

attributes signed by an identity provider
● trust between identity providers (IdP) and

service providers (SP) is established using
federations

● a federation publishes list of trusted IdPs and
SPs complying with federation’s policy

● WAYF - Where Are Your From? service / DS -
Discovery Service

OAuth 2.0 Authorization Framework

● defined in RFC 6749 in the year 2012
● used by Google, Facebook, Microsoft,

Twitter, LinkedIn, GitHub, …
● designed for delegating limited access to

third parties, but used for authentication too

OAuth 2 - involved parties
● resource owner - the user
● resource server

○ maintains user’s data
○ provides API for operations on the data
○ checks access token for permissions for sets of

operations called scopes
● client - application that wants to use the API

on user’s behalf
● authorization server

○ registers all others - the user, the client and the RS
○ authenticates the user, asks which scopes to allow
○ releases an access token to the client

OAuth 2 Features

● not limited to web apps, also for mobile,
SmartTV, desktop, embedded

● various grant flows depending on abilities to
store secrets and user interface
○ if you log into Youtube app in your SmartTV using QR

code, that’s OAuth’s “Device Authorization Grant”
○ if you log in your mobile app into Google, that’s

“Authorization Code Grant with Proof Key for Code
Exchange”

○ if you log into a server-side web app in your browser,
that’s “Authorization Code Grant” (on the next slide)

introspection endpoint

authorization endpoint

token endpointclient

API endpoint

Resource Server

Authorization Server

client_id + desired scopes

access_code

client_id
client_secret

access_code + client_secret

access_token

access_token + API request

API response

ac
ce

ss
_t

ok
en

sc
op

es

browser

au
th

en
tic

at
e

se
le

ct
 s

co
pe

s

1

2

5
3 4

6

7

8

9 10

11

OpenID versions 1 and 2

● obsolete
● introduced the idea of decentralized

authentication protocol
● users were identified by URLs
● anybody could run an identity provider
● problem of trust
● only large identity providers like Google were

trusted by service providers

OpenID Connect (OIDC)

● promoted as third version of OpenID
● authentication layer built on top of OAuth 2.0
● OAuth 2.0 is for authorization, it does not

define API for obtaining user data
● OIDC defines:

○ UserInfo API for obtaining user data in JSON
○ scopes for the API - openid, profile, email, address,

phone
○ claims - data about the user (e.g. family_name)
○ well-known URI (RFC 8615) for discovery

/.well-known/openid-configuration

Example of UserInfo response
{
 "sub": "3e65bd2aa4c818bd3579023939b546b69e1@einfra.cesnet.cz",
 "name": "Josef Novák",
 "preferred_username": "pepa",
 "given_name": "Josef",
 "family_name": "Novák",
 "nickname": "Pepan",
 "profile": "https://www.muni.cz/en/people/3988",
 "picture": "https://secure.gravatar.com/avatar/f320c89e39d15da1608c8fc31210b8ca",
 "website": "http://pepovo.wordpress.com/",
 "gender": "male",
 "zoneinfo": "Europe/Prague",
 "locale": "cs-CZ",
 "updated_at": "1508428216",
 "birthdate": "1975-01-01",
 "email": "pepa@gmail.com",
 "email_verified": true,
 "phone_number": "+420 603123456",
 "phone_number_verified": true,
 "address": {
 "street_address": "Severní 1",
 "locality": "Dolní Lhota",
 "postal_code": "111 00",
 "country": "Czech Republic"
 }
}

JWT - JSON Web Tokens

● convenient for small digitally signed pieces
of structured data

● TLS does not provide signatures of
transported data

● JWT is often used for OAuth access tokens
● RFC 7515 - JSON Web Signature

○ <header>.<payload>.<signature>
○ all 3 parts are base64-encoded, safe for URLs
○ <header> is JSON metadata identifying signing key

● RFC 7519 - JSON Web Tokens
○ JWS with JSON payload

JSON Web Token example
https://jwt.io/

https://jwt.io/

JWKS - JSON Web Key Set

● JSON-formatted web document containing
public parts of cryptographic keys

● its URL can be in JWT header in jku claim
● its URL can be in OIDC’s metadata at

/.well-known/openid-configuration in
jwks_uri claim

That’s it

Thank you for your attention

