What is AppSec”?

... In organization

Jan Masarik

Whoami

- FI MUNI graduate (2019)

- (ex) AppSec Lead @ Kiwi.com
- OWASP Czech Chapter Lead
- Co-founder of TunaSec.cz

- Fan of CTF/bug bounty

https://tunasec.com/

Disclaimer
- We will focus on web applications, and we’ll go broad.

- Most of the principles can be applied everywhere, but will be showcased on
the domain of web security.

- Doing this presentation because | missed such overview in my studies, so
had to learn it the hard way.

Role of an AppSec team?

Role of an AppSec team?

Keep the Application code Secure enough

How to achieve secure enough code”?

Technical measures Soft measures
- Secure design/code review - Security champions
- Dependency management - Education (workshops, wikis)
- Secrets detection - Security aware culture

- Static analysis (SAST)

- Dynamic analysis (DAST)
- Penetration tests

- Bug bounty

https://www.owasp.org/index.php/Security_Champions

OWASP Top 10

- 8 are based on vulnerability data
- 2 based on survey sent to community to catch up with most recent trends

2017 2021
A01:2021-Broken Access Control

A02:2021-Cryptographic Failures
A03:2021-Injection

(New) A04:2021-Insecure Design

A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components
A07:2017-Cross-Site Scripting (XSS) A07:2021-ldentification and Authentication Failures
A08:2017-Insecure Deserialization (New! A08:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities / A09:2021-Security Logging a
A10:2017-Insufficient Logging & Monitoring (New) A10:2021-Server-Side Reques

* From the Survey

https://owasp.org/Top10/

A01:2017-Injection
A02:2017-Broken Authentication
A03:2017-Sensitive Data Exposure
A04:2017-XML External Entities (XXE)
A05:2017-Broken Access Control
A06:2017-Security Misconfiguration

https://owasp.org/Top10/

OWASP Top 10

- 40+ data submissions from AppSec companies (HackerOne, Veracode, ...)
- Covering data from 500 000+ real-world applications and APIs

- Primary goal is education of developers or managers

- It'sjust top list of 10 things with which you can avoid 80%* of problems
- Not trying to be an exhaustive list, but it'’s the best place to start!

- New version every 4 years (most recent in 2021)

- Originally only for web applications, now also versions for:
- Serverless (2019)
- Mobile (2016)
- API (2019)

“80/20 rule, nc | N

Use Case OWASP Top 10 2021 OWASP Application Security Verification Standard

OWASP Top 10 ™ .

W h e n to u Se ? Training Entry level Comprehensive
.

Design and architecture Occasionally Yes
Coding standard Bare minimum Yes
Secure Code review Bare minimum Yes
Peer review checklist Bare minimum Yes
Unit testing Occasionally Yes
Integration testing Occasionally Yes
Penetration testing Bare minimum

Tool support Bare minimum

Secure Supply Chain Occasionally

https://owasp.org/Top10/A00 2021 How to use the OWASP Top 10 as

https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

Secure code review

Secure code review

- Essential skill for an AppSec engineer
- You should be able to write code in order to effectively read it

- Many different standards that can help with web coverage

- OWASP Top 10 - enough for low hanging fruit
- OWASP ASVS - comprehensive coverage with 3 levels based on org maturity

- In depth manual review of critical parts (e.g. authentication, payments)

- Find a methodology that works for you, but keep some freedom
- CTFs are a great way how to test and find one that suits you

- Wide review of the rest N
- Grep can get you further than you would expect, don‘t use SAST just for the s: J‘:\,’f |

https://owasp.org/Top10/A00_2021_Introduction/
https://github.com/OWASP/ASVS/tree/v4.0.3

(Web) Secure code review quiz

[Input validation] whitelist or blacklist??

top.py

input_validation » @ top.py » @ foo
status_whitelist = ["ok", "damaged", "ko"]

status = request.form["status"]
if status not in status_whitelist:
return "Invalid status provided!'"

return render_template_string(status)

bottom.py X

input_validation » @ bottom.py » ...
status = request.form["status"]
if " " in status:
return "Invalid status provided

return render_template_string(status)

Input validation

- Always prefer whitelist over blacklist
- Would you keep a blacklist of people that cannot enter your house?... Probably not :-)

- Cast user input to desried type and keep the character set low
- Use enums (no way to allow any unexpected input this way)
- Limit possible characters only to the minimum required (Do you really need < or “ in your
phone number?)
- Limit the maximum size of the input to something you won'’t hit (DoS by sending a very long

password)

- The more special characters you allow, the more problems you might have in the future

- Beware: input validation is not a replacement for parametrized st
output escaping

https://www.acunetix.com/vulnerabilities/web/long-password-denial-of-service/

Input validation

- Outsource input validation to frameworks
- Some web frameworks (such as connexion) allows you to specify types/validation directly in
the APl schema. This is the best you can get.
- Otherwise, use available framework-specific validation functions/modules:
- Python Flask - WTForms or webargs
- Python Django - Validators
- Golang go-playground/validator.v9

- Typing is good, use it! (even in python)
- Especially important for stability, but also security
- Basically all companies use typed python for big projects

https://github.com/zalando/connexion
https://flask.palletsprojects.com/en/1.1.x/patterns/wtforms/
https://github.com/marshmallow-code/webargs
https://docs.djangoproject.com/en/2.2/ref/validators/
https://medium.com/@apzuk3/input-validation-in-golang-bc24cdec1835
https://realpython.com/python-type-checking/

InpUt Val|dat|0n # api.py file

def foo_get(user_id):
Do something
This won't lead to XSS as it's integer

paths: return 'Your user id is: {}'.format(user_id), 200
/foo:
get:
operationId: api.foo_get
parameters:
- name: user_id
in: query

type: integer
required: true

https://qithub.com/spec-first/connexion

https://github.com/spec-first/connexion

[Injection] parameterized or format?

@ top.py

sqli » @ top.py » ..

with connection.cursor() as cursor:
cursor.execute(
"SELECT * FROM users WHERE user=" + request.form["user"] \
+ " AND password=" + request.form["password"]
)

result = cursor.fetchone()
10

@ bottom.py X

sqli » @ bottom.py b ...

with connection.cursor() as cursor:
cursor.execute(
"SELECT x FROM users WHERE user=%(user)s AND password=%(passwc
{"user": request.form["user"], "password": request.form["passw
)

result = cursor.fetchone()

Injection
- #1 flaw in OWASP Top 10 for 9 years

- Not limited only to SQL (NoSQL, LDAP, command injection)

- Force people to use prepared statements or ORMs

- First, hardcoded query gets prepared and compiled by DB server
- Only afterwards, the user-defined values are inserted. This guarantees that user input isn‘t
interpreted as SQL query -> no injection.

$preparedStatement = $db—>prepare('INSERT INTO table (column) VALUES (:c

$preparedStatement—>execute(['column' => $unsafeValue]);

https://stackoverflow.com/questions/60174/how-can-i-prevent-sqgl-injection-in-php

https://stackoverflow.com/questions/60174/how-can-i-prevent-sql-injection-in-php

[Framework gotchas - React] dangerous or not?

JS top.Js

xss b JS top.js » @ HelloWorld
function HelloWorld(user_input) {
return (

body
h1>Goodbye world!</hl
D“ dangerouslySetInnerHTML={{ __html: user_input }) D

JS bottom.js X

Xss b JS bottom.js b ...
function HelloWorld(user_input) {
return (
body
hl>Hello world!</hl
p>{user_input}

[Framework gotchas - Flask] auto-escaping

- Safe

@app.route("/blogs")
def blogs():
username = request.args.get("u")
return render_template("blogs.html", username=username)

- Unsafe (XSS if username is reflected back on page)

@app.route("/blogs")
def blogs():
username = request.args.get("u")
return render_template("blogs.tpl", username=username)

https://qgithub.com/kiwicc ’

https://github.com/kiwicom/xssable/

Framework gotchas

- Framework have evolved and lots of them are secure by default
- All options on how to introduce vulnerability should be clearly marked as dangerous

- You should read the docs of your frameworks and look for any pitfalls
- Obvious ones such as React’s dangerous functions
- Orless obvious ones, such as Flask’s auto-escaping enabled only for some extensions
- SAST rulesets or lists of sinks are a great place to start

Jinja Setup

Unless customized, Jinja2 is configured by Flask as follows:

« autoescaping is enabled for all templates ending in . html, .htm, .xm1 as well as . xhtm1 whe
render_template().

https://reactjs.org/docs/dom-elements.html
https://flask.palletsprojects.com/en/1.1.x/templating/
https://github.com/wisec/domxsswiki/wiki/Sinks

[Deserialization] pickle or json?

-

@ top.py

insecure_deserialization » @ top.py b ...
import json
11
1l session = json.loads(request.cookies["serializedSession"])
13 if not check_hmac(session['signature'], session['data'], "password123"):
' raise AuthenticationFailed

@ bottom.py X%

insecure_deserialization » @ bottom.py > ...
1 import pickle

session = pickle.loads(request.cookies["serializedSession"])
if not check_hmac(session['signature'], session['data'], '"pass
raise AuthenticationFailed

Deserialization (language gotchas)

- Read the docs Warning: The pickle module is not secure. Only unpickle data you trust.

It is possible to construct malicious pickle data which will execute arbitrary code during unpick-
ling. Never unpickle data that could have come from an untrusted source, or that could have been
tampered with.

Consider signing data with hmac if you need to ensure that it has not been tampered with.

Safer serialization formats such as json may be more appropriate if you are processing untrusted
data. See Comparison with json.

- Know the language you review code for and be aware of its specifics

- CTFs are great learning resource of similar language/framework
pitfalls

https://www.youtube.com/watch?v=rfjV8XukxO8&t=5s

Static Application Security Testing
(SAST)

SAST

- Principles discussed quite exhaustively in previous lecture

- Today, we’ll focus on:
- Web-specific tooling
- Some best practices for a rollout of SAST in a big organization
- Secrets detection in code

SAST - tooling

- GitHub/GitLab have both great SASTs
- Github CodeQL - get bounties for writing SAST rules
- GitLab’s SAST (merged open-source tools into 1 image)
- The closer it is to devs, the better.

- Language specific SAST tools (awesome-static-analysis)
- Recommended multi-language SAST: semgrep.dev
- Some language specific tools (e.g. Pysa for python) if you need to cover complex cases
- Rulesets of this tools are great learning resource of vulnerable language-specific gotchas that
can be independently used e.g. in code reviews.

- Build easily extensible alerting on regexes/keywords appearing ir

- You might want to be aware that import cryptography newly appeared somewl ’ 3
talk to the developer trying to implement some potentially risky feature before |

https://github.com/github/codeql
https://securitylab.github.com/bounties/
https://docs.gitlab.com/ee/user/application_security/sast/
https://github.com/mre/awesome-static-analysis
https://semgrep.dev/
http://www.youtube.com/watch?v=Hmu21p9ybWs

SAST — semgrep.dev |jgies

- id: python-no-prints-in-prod
pattern: old_print($X)
message: Use logging.debug() instead of old_print()
severity: INFO
fix: logging.debug($X)
languages:
- python

import old_print as oldp

def hello_world():
skynet.init()
TODO Change this to logging framework before prod
oldp(
'--> debug, skynet init vector\\

oldp('don't detect this, it\'s cq

SAST - implementation best practices

- Triage issues effectively
- Prioritize issues based on the business risk.
- Don’t bother devs with false positives / low severity findings

- Start slowly

- Easy to get overwhelmed by the amount of findings
- Choose few high-impact vulnerability classes and focus on them - repeat once done

- Define a clear process for the issue triage, e.g.
- High signal, mid+severity — alert devs in CI/CD before commit lands
- Low signal, high severity OR Mid signal, mid severity — alert SecEng
- The rest — backlog

Secrets in code detection

- Technically still part of SAST, as you analyze the source code

- Easy detection and easy direct exploitation
- APl keys of cloud providers can be exploited for crypto mining
- SaaS providers such as PayPal, GitHub or Twitter
- Private RSA keys, database dumps, ...

- How bad can it git?
- Research scanning all GitHub commits for secrets over 6 months.
- Thousands new, valid and unique secrets leaked every day
- Still huge space for improvement in detection (they scanned secrets only for 1

- Low effort & High impact (rewards up to $15,000 for a single Gitk |

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_Meli_paper.pdf
https://hackerone.com/reports/396467

Secrets in code detection - tooling

- GitHub's token scanning - low false positives, auto-revocation (e.g. AWS), by
default present on github.com
- GitLab’s SAST - gitleaks and TruffleHog with the default config

- qitleaks - can combine entropy and regexes

- TruffleHog - “the original” scanner, now inferior
- shhqit - real time monitoring of GitHub commits
- semgrep.dev — yup, they also can do this!

- Everything is about having a good config file to balance the signa
negatives / false positives)

https://help.github.com/en/github/administering-a-repository/about-token-scanning
https://docs.gitlab.com/ee/user/application_security/sast/
https://github.com/zricethezav/gitleaks
https://github.com/dxa4481/truffleHog
https://github.com/eth0izzle/shhgit
https://r2c.dev/blog/2021/dont-leak-your-secrets/

GitHub's token scanning
O

Pullrequests Issues Codespaces Marketplace Explore

& Anthophila / Satellite-2020 Private

® Watch~v 2 % Star 0 YFork 0

<> Code D) Issues I’} Pull requests 2 © Actions I Projects EE Wiki @) Security 8 il Insights £} Settings

Overview Strl pe API Key

Beta) Give us feedback
Security policy @ GitHub detected now
Security advisories 0 Details Files 1
Depandsncy alerts g GitHub detected now
Code scanning alerts 1 We noticed that a Stripe API Key was committed to this repository.
If this secret is valid, we recommend that you rotate it and then revoke it. Committed secrets can be discovered by anyone with read access
Detected secrets 7 to your code, potentially resulting in unauthorized access to the services you use.
.creds

Line 1in dcdc143

STRIPE_API_KEY="sk_live_devboxacct1DfwS2C1CIK1jX"

e Firstinstance of secret detected

o aUpdate .creds

e Resolve this alert

Once you've revoked this secret, resolve it as revoked here. You can also report it as a false positive ¢
low-risk/testing secret, or just ignore it.

https://help.github.com/en/github/administering-a-repository/about-token-scanning

Dynamic Application Security Testing
(DAST)

DAST - tooling (web)

- Web security vulnerability scanner

Focused on web apps, spiders the website deeply

Great for automated discovery of several vulnerability classes or security headers checks
Burp Suite (paid, superior), OWASP ZAP (open-source, used in GitLab’s DAST)

- Asset discovery

“Bug bounty” like monitoring tools, most of them originally made for bug bounty

Many companies don’t have a list of their assets => cannot specify scope for the scanner
Searching for assets and monitoring all of them lightly (picking up the low-hanging fruit)
Might use Web security vulnerability scanners to scan some more appealing targets

E.g. Assetnote (great paid product), projectdiscovery.io (open-source), BugSh

-))

https://docs.gitlab.com/ee/user/application_security/dast/
https://assetnote.io/
https://projectdiscovery.io/
https://is.muni.cz/th/de05t/master_thesis_final.pdf

Web security vulnerability scanner

- Security scanner running on live web application
- Crawls the website as a human would, fuzzing different “malicious” inputs

- Might be quite intrusive => should be used on staging or well known production environment
- Sometimes problems with login to apps (especially complicated flows like SAML/OAuth2),
which can be solved by using a “browser” like Selenium for login and then passing session to

scanner.
- Similar to fuzzers/dynamic analysis for programs described in previous

lecture, just specific for web

Asset Discovery - Bugshop

2. Process

1. Trigger
Gittabcl Ly = :'
— I —
Argo Events
HTTP Gateway
Slack
g Kubernetes API
Argo CLI

..........

Docker

- ——— - =,

o

S

—

Argo

3. Store

Y Workflows, -

Kubernetes
Cluster

Figure 5.1: High level overview of the Bugshop.

v

GitLab

—

j
Email »

S_Iack

4. Ale

Root domain

Asset Discovery - Bugshop \)

¢ 1 Y A e ¢ a

- Start by subdomain enumeration workflow Subfinder Amass assONS
with a wildcard domain (e.g. *.muni.cz) and - J
end with a list of hundreds subdomains Yy Yy
(assets). — Resolvable [« parse MassDNS
- Then run vulnerability and discovery checks - Y N \

on all newly found assets, find vulnerabilities AHDNS » MassDNS
(e.g. by Web security vulnerability scanner),) 70 T g
and find more assets recursively. (1)
—>» Resolvable [€ parse MassDNS

- Further automation of workflows commonly
used in bug bounty (git secret detection, 1
bucket enumeration or subdomain takeovers)

y

Sudomains

Dependency management

Software package registries

- Easy distribution of packaged code for use by other developers
Node.js - npm
Java - Maven Central
Python - PyPI
Ruby - RubyGems
Docker - DockerHub (distribution of docker images, not code)

- Heavy growth in the past years (especially Maven/npm) ma veéen
- Convenient (1 command and code is ready to use)

LRIl A

How many of you have seen this warning?

® 3 commits 1 branch T 0 packages © 0O releases 42 1 contributor sfs MIT

A\ We found potential security vulnerabilities in your dependencies. View security alerts

You can see this message because you have been granted access to security alerts for this repository.

Branch: master v New pull request Create new file = Upload files = Find file Clone or download v

Dependency tree

@ engine.io

@ ws

@ accepts

@ basebddid

@ debug

@ engine.io-parser

Direct dependencies:
Total dependencies (tree size):

Tree depth:

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c’

@ uitron
@ options

@ negotiator

@ mime-types @ mime-db

®nms

@ arraybuffer.slice

@ biob

@ has-binary @ isarray

@ after

@ baseb4-arraybuffer

@ utfs

[k
I

|

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d

@ uitron

Dependency tree @ optons

negotiator
Qs @ neg
mime-types @ mime-db
@ accepts ® P
‘ engine.lo @ basebdid
@ debug ®ms

) @ arraybuffer.slice
@ engine.io-parser

@ blob
- Direct dependencies: 5 | |
- Total dependencies (tree size): 18 @ has-binary @ isarray
- Tree depth: 3 @ after

@ baseb4-arraybuffer

@ utfs

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c- /

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d

Quiz time

1-Quiz

How many packages were on npm in April 2019 (Node.js package registry)?

a 959,567

42,517

370,426

681,476

1-Quiz

How many packages were on npm in April 2019 (Node.js package registry)?

a 959,567 v

42,517 X

370,426

681,476

2 - Quiz

How many packages on npm could be considered abandoned (no release in past 12 months)?

a 57,000 (7%)

122,000 (15%)

224,000 (27%)

496,000 (61%)

2 - Quiz

How many packages on npm could be considered abandoned (no release in past 12 months)?

a 57,000 (7%) X
122,000 (15%) X

224,000 (27%)

496,000 (61%)

3 - Quiz

What is average depth of a package dependency chain on npm?

3 - Quiz

What is average depth of a package dependency chain on npm?

4 - Quiz

What is average depth of a package dependency chain on PyPI?

=

4 - Quiz

What is average depth of a package dependency chain on PyPI?

=

5 - Quiz

What is the avg number of dependencies for an npm package?

87

5 - Quiz

What is the avg number of dependencies for an npm package?

87 v

6 - True or false

Should you update your dependencies automatically, right after the release comes out?

6 - True or false

Should you update your dependencies automatically, right after the release comes out?

Table 3: Characterization of package dependency graphs
(without disconnected nodes)

npm PyPI
#Nodes 577943 84188
Avg node outdegree 4.27 2.95

Avg dependency tree size 86.55 7.33
Avg dependency tree depth 4.39 1.71

https://www.researchgate.net/publication/331587729 Security Issues in Lanquage-based Sofware Ec

https://www.researchgate.net/publication/331587729_Security_Issues_in_Language-based_Sofware_Ecosystems

New vulnerabilities each year by ecosystem

2000

1500 / @ PHP Packagist

Maven Central

o
/ . .
1000 /. / . o
, ® ° |
./. ©) Golang
500 ° © pryp

/_——.

7~
%.

2014 2015 2016 2017 2018

/
/

https://res.cloudinary.com/snyk/image/upload/v1551172581/The-State-Of-Open-Source-Security-Report-2019-

https://res.cloudinary.com/snyk/image/upload/v1551172581/The-State-Of-Open-Source-Security-Report-2019-Snyk.pdf

[non-malicious] Risks of package registries

- Packages with known vulnerabilities (outdated/abandoned
dependencies)

- 88% growth in (reported) packages vulnerabilities over the past two
years

- Growing dependency chains increase the chance of compromising your
dependencies indirectly

WHAT IF 1 TOLD)YOU

it \
,THAT YOU SHOULD NOT -
AUTO-UPDATE YOUR SOFTWARES/ ©.

1

Intentionally Malicious Modules

39
I

4

I 2

2017-Q3

2017-Q4 2018-Q1 2018-Q2 2018-Q3 2018-Q4 2019-Q1 2019

NPM B Other Pypi B Rubygems

Stripe Sessions 2019 | When data contradicts security best practices

https://www.youtube.com/watch?v=SOQgABDSYZE

[malicious] Risks of package registries

Malicious releases
- npm event-stream” compromised via its dependency

- Protestware
- npm node-ipc wiping Russian/Belarus machines with WITH-LOVE-FROM-AMERICA.txt
message to show support of Ukraine
- Not the greatest idea as it also wiped a ton of pro-Ukraine companies

- Version number might not be an immutable identifier in many registries
- Private registries can have unexpected default behaviour, whichgallowed
one researcher to hack into Apple or Microsoft.

https://www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/
https://portswigger.net/daily-swig/npm-maintainer-targets-russian-users-with-data-wiping-protestware
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

[malicious] Risks of package registries

- Typosquatting of package names

- pip install request (instead of requests)
- as pip executes code during the installation => 1 typo == RCE
- SK-CSIRT identified malicious packages on PyPI

- Most (>50%) malicious packages mimic existing packages via typosquatting

1 Compromised Repository Credentials =~ [—] Social Engineering [Typosquatting
[Infect Existing Package 3 Trojan Horse

npm | 3| 33

92

RubyGems| 11 | 8

PyPI

overall | 4 | 22 | 61

Injection technique used to introduce the malicious package into a package
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_ 2 /figures/8

https://www.nbu.gov.sk/skcsirt-sa-20170909-pypi/
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2/figures/8

Risks of package registries

- Nobody is reviewing the code before

installing on production servers
- Inideal world, you would hold a list of
approved reviewed packages with versions.
- In reality, the whole package ecosystem is
super fragile
- E.g. Hacking 20 high-profile dev accounts
could compromise half of the npm ecosystem

ALL MODERN DIGITAL
INFRASTRUCTURE

TR

[

%ﬂ@
—

=

L

A PROTECT SOME.
RANDOM PERSON
IN NEBRASKA HAS
BEEN THANKLESSLY
MAINTAINING
SINCE 2003

https://xkecd.com/2347/

https://medium.com/hackernoon/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5
https://www.zdnet.com/article/hacking-20-high-profile-dev-accounts-could-compromise-half-of-the-npm-ecosystem/
https://xkcd.com/2347/

Dependency management - tooling

- Dependency monitoring
- GitHub
- GitLab
- Built-in in the package manager (npm audit / pipenv - safety)
- Commercial (Snyk)
- OWASP Dependency Check

- Automatically open pull request with dependency update
- GitHub
- Renovatebot
- Commercial (Snyk). Sad part is that all commercial tools use their own private
licensed database of vulnerabilities. ¢ °c°y ~1+—L-

https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/
https://docs.npmjs.com/cli/audit
https://github.com/pyupio/safety
https://snyk.io
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://renovatebot.com
https://snyk.io

Dependency management - best practices

- Automatically monitor dependencies for known vulnerabilities
- Both GitHub and GitLab have built-in dependency scanning available. Neither of
them is perfect, but it's something and it's easy to start with.

- Don’t auto-update right after the release (update != security patch)

- Wait few days/weeks for community to spot bugs or hijacked/malicious packages.
- Naturally, continue to apply security patches immediately.

- Use immutable identifiers for packages
- Version number is a mutable identifier in Docker, Maven or PyPI.
- Hash digests are preferable and protect you even from a compromise of the re
- Auto-update tools such as renovatebot can help with this.

https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/
https://renovatebot.com/blog/docker-mutable-tags
https://stackoverflow.com/questions/6461152/how-can-i-prevent-previously-deployed-artifacts-from-being-overwritten
https://lil.law.harvard.edu/blog/2019/05/20/improving-pip-compile-generate-hashes/
https://renovatebot.com

Penetration tests

Penetration tests - who does it?

- Internal
- Done internally, e.g. by members of the AppSec team
- Good for deep tests that require some internal knowledge of the application

- External

Outsource to an external company

Usually done this way so security team can focus on other issues

Compliance requirement in some cases (e.g. you cannot pentest yourself in PCI DSS)
Good way to earn public reputation (pentested by Cureb53 / XYZ)

Penetration tests - types

- Black box

- The same conditions as an attacker (no access to docs or code)
- Not really effective in value/money ratio as pentester spends more time on app discovery

- Grey box

- Access to app documentation or small chunks of code
- Possible cooperation/chat between pentester and company

- White box

- Source code available to the pentester (can run SAST tools on it)
- Great for any deep pentest (business logic, auth)
- Essentially required for pentesting iOS apps or similar

Penetration tests - methodology

- Best effort test

- Give pentester a free hand on techniques used in testing
- Usually lasts 3-10 days

- Detailed test following an official testing guide

- OWASP Testing Guide v4 (OTG4), NIST 800-115 or OSSTMM
- Test following an established methodology might be required by compliance (PCI DSS)
- Usually lasts 2-4 weeks depending on size of the application

Penetration tests - best practices

Rotate at least two pentesting companies
- Each company uses different scanners or might check unique techniques
- They can catch mistakes of each other => higher motivation

Pentest before release & (ideally) regularly
- Pentest can save you quite some money that you would spend on bug bounties later

Scope pentests smartly
- Let pentesters know which part of application is your priority and share all relevant docs/code

Have a healthy bug bounty program :-)

- Scoped pentests will never cover your whole external attack surface
- Some companies keep pentests only for compliance

Bug bounty

Bug bounty

- “Please come, hack our apps, report it to us and get paid.”
...and without lawsuits :-)

- Great part time income for students - you can learn a lot during it ;)

- Experiencing huge boom in the past few years

A Self-Managed HackerOne Bug Bounty Program

Use your abundant resources and past experience to run your own bug bounty program.

“m

Hacker searches for

°a

Hacker submits it to

vulnerabilities

your organization

O -

%
Your team works
closely with hackers to
receive allrelevant data Your security staff
validates all

vulnerability reports

Your security team
triages all submissions

and fixes all valid

Bug bounty - types

- Self-hosted program

Company publishes website with the policy (scope, rewards, rules, contact)

[Pros] No 3rd party involved, hackers communicate directly with the company

[Cons] Company needs to handle payments, web platform and has to get interest of hackers
Examples include Medium, Google, Microsoft or Facebook

- Bug bounty platforms

Company makes contract with another company (bug bounty platform)
[Pros] Convenient web app for triage, payments handled by platform, hundreds of registered
hackers ready to hack

[Cons] 3rd party has access to your bugs, cost ($XX XXX/year)

Example platforms are HackerOne, Bugcrowd, Synack, Intigriti or Hacktrophy

https://help.medium.com/hc/en-us/articles/213481308-Bug-Bounty-Disclosure-Program
https://www.google.com/about/appsecurity/reward-program/
https://www.microsoft.com/en-us/msrc/bounty
https://www.facebook.com/whitehat

Pentest vs bug bounty vs DAST

High coverage
A

Bug bounty >

Low frequency High frequency

DAST

OWASP AppSec USA, Zane Lackey - "Practical tips for web application security in the age

Low coverage

and DevOps", 2016. www.youtube.com/watch?v=Hmu21p9ybWs

http://www.youtube.com/watch?v=Hmu21p9ybWs

Some general best practices

- Make the right thing easy to do!

- Show devs the cool side of security
- Talk about the impact of bugs found, encourage and reward active people
- Don’t underestimate soft measures mentioned in the beginning

- Outsource as much as possible to secure by default frameworks.
- Force validation of input.

- Stop reinventing the wheel with auth, sessions, CSRF protection or output escaping.
- Great examples are React, Django or Connexion.

- Have secure, yet easy to use/manage secrets storage (e.g. Vault)
- Integrate most of the security checks to CI/CD pipelines

- Continuous feedback to developers
- Don’t forget to run checks also on schedule (unmaintained production code als

- Good example of AppSec at scale is Netflix’s concept of paved rc

|
!

)

https://medium.com/@NetflixTechBlog/scaling-appsec-at-netflix-6a13d7ab6043

... reality

- Impossible to do all of the above mentioned in a short amount of time
- Resources (money/people) are usually very limited
- Prioritization is the key (decide based on risk)
- Do you really need DAST in CI/CD if you don’t even have SAST or dependency scanning?
- Go for quick wins - bottoms-up approach works better in agile companies
- Build a vision where are you heading
- You can copy it from more mature companies, but don’t forget to adjust it based on company
culture, maturity and your resources.
- Automation is the key, but tools alone won’t save you
- Manual findings will be the impactful ones
- You need to filter out the low priority issues

Thanks for your attention!

Prepare your questions ©

Seminar

Intro (10min)

Dependency scanning (40min)
python safety (docker/pip required)

SAST (40min)
python bandit hands-on (docker/pip required)

HW setup (5min)

To prepare:

- Docker or pip
- Registered HackerOne account

