
What is AppSec?
… in organization

Jan Masarik

Whoami

- FI MUNI graduate (2019)
- (ex) AppSec Lead @ Kiwi.com
- OWASP Czech Chapter Lead
- Co-founder of TunaSec.cz
- Fan of CTF/bug bounty

https://tunasec.com/

Disclaimer
- We will focus on web applications, and we’ll go broad.

- Most of the principles can be applied everywhere, but will be showcased on
the domain of web security.

- Doing this presentation because I missed such overview in my studies, so
had to learn it the hard way.

Role of an AppSec team?

Role of an AppSec team?

Keep the Application code Secure enough

How to achieve secure enough code?
Technical measures

- Secure design/code review
- Dependency management
- Secrets detection
- Static analysis (SAST)
- Dynamic analysis (DAST)
- Penetration tests
- Bug bounty

Soft measures

- Security champions
- Education (workshops, wikis)
- Security aware culture

https://www.owasp.org/index.php/Security_Champions

OWASP Top 10
- 8 are based on vulnerability data
- 2 based on survey sent to community to catch up with most recent trends

https://owasp.org/Top10/

https://owasp.org/Top10/

OWASP Top 10
- 40+ data submissions from AppSec companies (HackerOne, Veracode, …)
- Covering data from 500 000+ real-world applications and APIs
- Primary goal is education of developers or managers

- It’s just top list of 10 things with which you can avoid 80%* of problems
- Not trying to be an exhaustive list, but it’s the best place to start!

- New version every 4 years (most recent in 2021)
- Originally only for web applications, now also versions for:

- Serverless (2019)
- Mobile (2016)
- API (2019)

*80/20 rule, not actual data

OWASP Top 10
- When to use?

https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

https://owasp.org/Top10/A00_2021_How_to_use_the_OWASP_Top_10_as_a_standard/

Secure code review

Secure code review
- Essential skill for an AppSec engineer

- You should be able to write code in order to effectively read it

- Many different standards that can help with web coverage
- OWASP Top 10 - enough for low hanging fruit
- OWASP ASVS - comprehensive coverage with 3 levels based on org maturity

- In depth manual review of critical parts (e.g. authentication, payments)
- Find a methodology that works for you, but keep some freedom
- CTFs are a great way how to test and find one that suits you

- Wide review of the rest
- Grep can get you further than you would expect, don‘t use SAST just for the sake of it

https://owasp.org/Top10/A00_2021_Introduction/
https://github.com/OWASP/ASVS/tree/v4.0.3

(Web) Secure code review quiz

[Input validation] whitelist or blacklist?

Input validation
- Always prefer whitelist over blacklist

- Would you keep a blacklist of people that cannot enter your house?... Probably not :-)

- Cast user input to desried type and keep the character set low
- Use enums (no way to allow any unexpected input this way)
- Limit possible characters only to the minimum required (Do you really need < or “ in your

phone number?)
- Limit the maximum size of the input to something you won’t hit (DoS by sending a very long

password)
- The more special characters you allow, the more problems you might have in the future

- Beware: input validation is not a replacement for parametrized statements or
output escaping

https://www.acunetix.com/vulnerabilities/web/long-password-denial-of-service/

Input validation
- Outsource input validation to frameworks

- Some web frameworks (such as connexion) allows you to specify types/validation directly in
the API schema. This is the best you can get.

- Otherwise, use available framework-specific validation functions/modules:
- Python Flask - WTForms or webargs
- Python Django - Validators
- Golang go-playground/validator.v9

- Typing is good, use it! (even in python)
- Especially important for stability, but also security
- Basically all companies use typed python for big projects

https://github.com/zalando/connexion
https://flask.palletsprojects.com/en/1.1.x/patterns/wtforms/
https://github.com/marshmallow-code/webargs
https://docs.djangoproject.com/en/2.2/ref/validators/
https://medium.com/@apzuk3/input-validation-in-golang-bc24cdec1835
https://realpython.com/python-type-checking/

Input validation

https://github.com/spec-first/connexion

https://github.com/spec-first/connexion

[Injection] parameterized or format?

Injection
- #1 flaw in OWASP Top 10 for 9 years

- Not limited only to SQL (NoSQL, LDAP, command injection)

- Force people to use prepared statements or ORMs
- First, hardcoded query gets prepared and compiled by DB server
- Only afterwards, the user-defined values are inserted. This guarantees that user input isn‘t

interpreted as SQL query -> no injection.

https://stackoverflow.com/questions/60174/how-can-i-prevent-sql-injection-in-php

https://stackoverflow.com/questions/60174/how-can-i-prevent-sql-injection-in-php

[Framework gotchas - React] dangerous or not?

[Framework gotchas - Flask] auto-escaping
- Safe

- Unsafe (XSS if username is reflected back on page)

https://github.com/kiwicom/xssable/

https://github.com/kiwicom/xssable/

Framework gotchas
- Framework have evolved and lots of them are secure by default

- All options on how to introduce vulnerability should be clearly marked as dangerous

- You should read the docs of your frameworks and look for any pitfalls
- Obvious ones such as React’s dangerous functions
- Or less obvious ones, such as Flask’s auto-escaping enabled only for some extensions
- SAST rulesets or lists of sinks are a great place to start

https://reactjs.org/docs/dom-elements.html
https://flask.palletsprojects.com/en/1.1.x/templating/
https://github.com/wisec/domxsswiki/wiki/Sinks

[Deserialization] pickle or json?

Deserialization (language gotchas)
- Read the docs

- Know the language you review code for and be aware of its specifics

- CTFs are great learning resource of similar language/framework specific
pitfalls

https://www.youtube.com/watch?v=rfjV8XukxO8&t=5s

Static Application Security Testing
(SAST)

SAST
- Principles discussed quite exhaustively in previous lecture

- Today, we’ll focus on:
- Web-specific tooling
- Some best practices for a rollout of SAST in a big organization
- Secrets detection in code

SAST - tooling
- GitHub/GitLab have both great SASTs

- Github CodeQL - get bounties for writing SAST rules
- GitLab’s SAST (merged open-source tools into 1 image)
- The closer it is to devs, the better.

- Language specific SAST tools (awesome-static-analysis)
- Recommended multi-language SAST: semgrep.dev
- Some language specific tools (e.g. Pysa for python) if you need to cover complex cases
- Rulesets of this tools are great learning resource of vulnerable language-specific gotchas that

can be independently used e.g. in code reviews.

- Build easily extensible alerting on regexes/keywords appearing in your code
- You might want to be aware that import cryptography newly appeared somewhere, so you can

talk to the developer trying to implement some potentially risky feature before he does it.

https://github.com/github/codeql
https://securitylab.github.com/bounties/
https://docs.gitlab.com/ee/user/application_security/sast/
https://github.com/mre/awesome-static-analysis
https://semgrep.dev/
http://www.youtube.com/watch?v=Hmu21p9ybWs

SAST – semgrep.dev

SAST - implementation best practices
- Triage issues effectively

- Prioritize issues based on the business risk.
- Don’t bother devs with false positives / low severity findings

- Start slowly
- Easy to get overwhelmed by the amount of findings
- Choose few high-impact vulnerability classes and focus on them - repeat once done

- Define a clear process for the issue triage, e.g.
- High signal, mid+severity – alert devs in CI/CD before commit lands
- Low signal, high severity OR Mid signal, mid severity – alert SecEng
- The rest – backlog

Secrets in code detection
- Technically still part of SAST, as you analyze the source code

- Easy detection and easy direct exploitation
- API keys of cloud providers can be exploited for crypto mining
- SaaS providers such as PayPal, GitHub or Twitter
- Private RSA keys, database dumps, …

- How bad can it git?
- Research scanning all GitHub commits for secrets over 6 months.
- Thousands new, valid and unique secrets leaked every day
- Still huge space for improvement in detection (they scanned secrets only for 11 platforms)

- Low effort & High impact (rewards up to $15,000 for a single GitHub token)

https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_04B-3_Meli_paper.pdf
https://hackerone.com/reports/396467

Secrets in code detection - tooling
- GitHub's token scanning - low false positives, auto-revocation (e.g. AWS), by

default present on github.com
- GitLab’s SAST - gitleaks and TruffleHog with the default config

- gitleaks - can combine entropy and regexes
- TruffleHog - “the original” scanner, now inferior
- shhgit - real time monitoring of GitHub commits
- semgrep.dev – yup, they also can do this!

- Everything is about having a good config file to balance the signal (false
negatives / false positives)

https://help.github.com/en/github/administering-a-repository/about-token-scanning
https://docs.gitlab.com/ee/user/application_security/sast/
https://github.com/zricethezav/gitleaks
https://github.com/dxa4481/truffleHog
https://github.com/eth0izzle/shhgit
https://r2c.dev/blog/2021/dont-leak-your-secrets/

GitHub's token scanning

https://help.github.com/en/github/administering-a-repository/about-token-scanning

Dynamic Application Security Testing
(DAST)

DAST - tooling (web)
- Web security vulnerability scanner

- Focused on web apps, spiders the website deeply
- Great for automated discovery of several vulnerability classes or security headers checks
- Burp Suite (paid, superior), OWASP ZAP (open-source, used in GitLab’s DAST)

- Asset discovery
- “Bug bounty” like monitoring tools, most of them originally made for bug bounty
- Many companies don’t have a list of their assets => cannot specify scope for the scanner
- Searching for assets and monitoring all of them lightly (picking up the low-hanging fruit)
- Might use Web security vulnerability scanners to scan some more appealing targets
- E.g. Assetnote (great paid product), projectdiscovery.io (open-source), BugShop (made by me

:-))

https://docs.gitlab.com/ee/user/application_security/dast/
https://assetnote.io/
https://projectdiscovery.io/
https://is.muni.cz/th/de05t/master_thesis_final.pdf

Web security vulnerability scanner
- Security scanner running on live web application
- Crawls the website as a human would, fuzzing different “malicious” inputs

- Might be quite intrusive => should be used on staging or well known production environment
- Sometimes problems with login to apps (especially complicated flows like SAML/OAuth2),

which can be solved by using a “browser” like Selenium for login and then passing session to
scanner.

- Similar to fuzzers/dynamic analysis for programs described in previous
lecture, just specific for web

Asset Discovery - Bugshop

Asset Discovery - Bugshop
- Start by subdomain enumeration workflow

with a wildcard domain (e.g. *.muni.cz) and
end with a list of hundreds subdomains
(assets).

- Then run vulnerability and discovery checks
on all newly found assets, find vulnerabilities
(e.g. by Web security vulnerability scanner),
and find more assets recursively.

- Further automation of workflows commonly
used in bug bounty (git secret detection,
bucket enumeration or subdomain takeovers)

Dependency management

Software package registries
- Easy distribution of packaged code for use by other developers

- Node.js - npm
- Java - Maven Central
- Python - PyPI
- Ruby - RubyGems
- Docker - DockerHub (distribution of docker images, not code)

- Heavy growth in the past years (especially Maven/npm)
- Convenient (1 command and code is ready to use)

How many of you have seen this warning?

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d

- Direct dependencies:
- Total dependencies (tree size):
- Tree depth:

Dependency tree

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d

- Direct dependencies: 5
- Total dependencies (tree size): 18
- Tree depth: 3

Dependency tree

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d

Quiz time

https://www.researchgate.net/publication/331587729_Security_Issues_in_Language-based_Sofware_Ecosystems

https://www.researchgate.net/publication/331587729_Security_Issues_in_Language-based_Sofware_Ecosystems

https://res.cloudinary.com/snyk/image/upload/v1551172581/The-State-Of-Open-Source-Security-Report-2019-Snyk.pdf

https://res.cloudinary.com/snyk/image/upload/v1551172581/The-State-Of-Open-Source-Security-Report-2019-Snyk.pdf

[non-malicious] Risks of package registries
- Packages with known vulnerabilities (outdated/abandoned

dependencies)

- 88% growth in (reported) packages vulnerabilities over the past two
years

- Growing dependency chains increase the chance of compromising your
dependencies indirectly

Stripe Sessions 2019 | When data contradicts security best practices

Intentionally

https://www.youtube.com/watch?v=SOQgABDSYZE

[malicious] Risks of package registries
- Malicious releases

- npm `event-stream` compromised via its dependency

- Protestware
- npm node-ipc wiping Russian/Belarus machines with WITH-LOVE-FROM-AMERICA.txt

message to show support of Ukraine
- Not the greatest idea as it also wiped a ton of pro-Ukraine companies

- Version number might not be an immutable identifier in many registries
- Private registries can have unexpected default behaviour, which allowed

one researcher to hack into Apple or Microsoft.

https://www.theregister.co.uk/2018/11/26/npm_repo_bitcoin_stealer/
https://portswigger.net/daily-swig/npm-maintainer-targets-russian-users-with-data-wiping-protestware
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

[malicious] Risks of package registries
- Typosquatting of package names

- pip install request (instead of requests)
- as pip executes code during the installation => 1 typo == RCE
- SK-CSIRT identified malicious packages on PyPI

- Most (>50%) malicious packages mimic existing packages via typosquatting

Injection technique used to introduce the malicious package into a package
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2/figures/8

https://www.nbu.gov.sk/skcsirt-sa-20170909-pypi/
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_2/figures/8

Risks of package registries

- Nobody is reviewing the code before
installing on production servers

- In ideal world, you would hold a list of
approved reviewed packages with versions.

- In reality, the whole package ecosystem is
super fragile

- E.g. Hacking 20 high-profile dev accounts
could compromise half of the npm ecosystem

https://xkcd.com/2347/

https://medium.com/hackernoon/im-harvesting-credit-card-numbers-and-passwords-from-your-site-here-s-how-9a8cb347c5b5
https://www.zdnet.com/article/hacking-20-high-profile-dev-accounts-could-compromise-half-of-the-npm-ecosystem/
https://xkcd.com/2347/

Dependency management - tooling
- Dependency monitoring

- GitHub
- GitLab
- Built-in in the package manager (npm audit / pipenv - safety)
- Commercial (Snyk)
- OWASP Dependency Check

- Automatically open pull request with dependency update
- GitHub
- Renovatebot
- Commercial (Snyk). Sad part is that all commercial tools use their own private and

licensed database of vulnerabilities. (╯°□°)╯︵┻━┻

https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/
https://docs.npmjs.com/cli/audit
https://github.com/pyupio/safety
https://snyk.io
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://renovatebot.com
https://snyk.io

Dependency management - best practices
- Automatically monitor dependencies for known vulnerabilities

- Both GitHub and GitLab have built-in dependency scanning available. Neither of
them is perfect, but it’s something and it’s easy to start with.

- Don’t auto-update right after the release (update != security patch)
- Wait few days/weeks for community to spot bugs or hijacked/malicious packages.
- Naturally, continue to apply security patches immediately.

- Use immutable identifiers for packages
- Version number is a mutable identifier in Docker, Maven or PyPI.
- Hash digests are preferable and protect you even from a compromise of the registry.
- Auto-update tools such as renovatebot can help with this.

https://help.github.com/en/github/managing-security-vulnerabilities/about-security-alerts-for-vulnerable-dependencies
https://docs.gitlab.com/ee/user/application_security/dependency_scanning/
https://renovatebot.com/blog/docker-mutable-tags
https://stackoverflow.com/questions/6461152/how-can-i-prevent-previously-deployed-artifacts-from-being-overwritten
https://lil.law.harvard.edu/blog/2019/05/20/improving-pip-compile-generate-hashes/
https://renovatebot.com

Penetration tests

Penetration tests - who does it?
- Internal

- Done internally, e.g. by members of the AppSec team
- Good for deep tests that require some internal knowledge of the application

- External
- Outsource to an external company
- Usually done this way so security team can focus on other issues
- Compliance requirement in some cases (e.g. you cannot pentest yourself in PCI DSS)
- Good way to earn public reputation (pentested by Cure53 / XYZ)

Penetration tests - types
- Black box

- The same conditions as an attacker (no access to docs or code)
- Not really effective in value/money ratio as pentester spends more time on app discovery

- Grey box
- Access to app documentation or small chunks of code
- Possible cooperation/chat between pentester and company

- White box
- Source code available to the pentester (can run SAST tools on it)
- Great for any deep pentest (business logic, auth)
- Essentially required for pentesting iOS apps or similar

Penetration tests - methodology
- Best effort test

- Give pentester a free hand on techniques used in testing
- Usually lasts 3-10 days

- Detailed test following an official testing guide
- OWASP Testing Guide v4 (OTG4), NIST 800-115 or OSSTMM
- Test following an established methodology might be required by compliance (PCI DSS)
- Usually lasts 2-4 weeks depending on size of the application

Penetration tests - best practices
- Rotate at least two pentesting companies

- Each company uses different scanners or might check unique techniques
- They can catch mistakes of each other => higher motivation

- Pentest before release & (ideally) regularly
- Pentest can save you quite some money that you would spend on bug bounties later

- Scope pentests smartly
- Let pentesters know which part of application is your priority and share all relevant docs/code

- Have a healthy bug bounty program :-)
- Scoped pentests will never cover your whole external attack surface
- Some companies keep pentests only for compliance

Bug bounty

Bug bounty
- “Please come, hack our apps, report it to us and get paid.”

…and without lawsuits :-)

- Great part time income for students - you can learn a lot during it :)

- Experiencing huge boom in the past few years

Bug bounty - types
- Self-hosted program

- Company publishes website with the policy (scope, rewards, rules, contact)
- [Pros] No 3rd party involved, hackers communicate directly with the company
- [Cons] Company needs to handle payments, web platform and has to get interest of hackers
- Examples include Medium, Google, Microsoft or Facebook

- Bug bounty platforms
- Company makes contract with another company (bug bounty platform)
- [Pros] Convenient web app for triage, payments handled by platform, hundreds of registered

hackers ready to hack
- [Cons] 3rd party has access to your bugs, cost ($XX XXX/year)
- Example platforms are HackerOne, Bugcrowd, Synack, Intigriti or Hacktrophy (CZ/SK)

https://help.medium.com/hc/en-us/articles/213481308-Bug-Bounty-Disclosure-Program
https://www.google.com/about/appsecurity/reward-program/
https://www.microsoft.com/en-us/msrc/bounty
https://www.facebook.com/whitehat

OWASP AppSec USA, Zane Lackey - "Practical tips for web application security in the age of agile
and DevOps", 2016. www.youtube.com/watch?v=Hmu21p9ybWs

Pentest vs bug bounty vs DAST

http://www.youtube.com/watch?v=Hmu21p9ybWs

Some general best practices
- Make the right thing easy to do!
- Show devs the cool side of security

- Talk about the impact of bugs found, encourage and reward active people
- Don’t underestimate soft measures mentioned in the beginning

- Outsource as much as possible to secure by default frameworks.
- Force validation of input.
- Stop reinventing the wheel with auth, sessions, CSRF protection or output escaping.
- Great examples are React, Django or Connexion.

- Have secure, yet easy to use/manage secrets storage (e.g. Vault)
- Integrate most of the security checks to CI/CD pipelines

- Continuous feedback to developers
- Don’t forget to run checks also on schedule (unmaintained production code also needs care)

- Good example of AppSec at scale is Netflix’s concept of paved road

https://medium.com/@NetflixTechBlog/scaling-appsec-at-netflix-6a13d7ab6043

… reality
- Impossible to do all of the above mentioned in a short amount of time

- Resources (money/people) are usually very limited

- Prioritization is the key (decide based on risk)
- Do you really need DAST in CI/CD if you don’t even have SAST or dependency scanning?
- Go for quick wins - bottoms-up approach works better in agile companies

- Build a vision where are you heading
- You can copy it from more mature companies, but don’t forget to adjust it based on company

culture, maturity and your resources.

- Automation is the key, but tools alone won’t save you
- Manual findings will be the impactful ones
- You need to filter out the low priority issues

Thanks for your attention!
Prepare your questions J

Seminar
- Intro (10min)
- Dependency scanning (40min)

- python safety (docker/pip required)

- SAST (40min)
- python bandit hands-on (docker/pip required)

- HW setup (5min)

To prepare:

- Docker or pip
- Registered HackerOne account

