
Semestral Project

PA193 – Secure Coding Principles and Practices

Spring 2022

Introduction

• Team of three people

• Programming language of your choice

• Four phases (~3 weeks each)

• Up to 30 points awarded

– Bonus points possible for exceptional contribution

• Questions

– Anytime by email: xdufka1@fi.muni.cz

– Consultation possible upon request

mailto:xdufka1@fi.muni.cz

Project phases

• Phase I – deadline 2nd week

– Form teams of 3 people

– Setup GitHub repository and prepare a project with test vectors

• Phase II – deadline 5th week

– Setup automatic testing and commit signing

– Start implementation

– Report (3-4 A4)

• Phase III – deadline 9th week

– Finalize the implementation and release the final build

– Recording and live presentation of your project (5-7 minutes)

• Phase IV – deadline 13th week

– Analyze project of another group

– Final presentation at the last lecture (10 minutes)

Bech32m encoding

• Encoding using only 32 alphanumeric characters with efficient error

detection and correction

– Letters can be in upper or lower case, but lower case is preferred

– Similar letters avoided (e.g., i and j)

– Easy to read out loud

– Easy to implement

– Alphabet size of prime power is suitable for error-detecting codes

– Error correction is possible

– Efficiently encodable in QR codes in “alphanumeric mode”

• Bech32m has been designed as a replacement of base58 encoding,

previously used in Bitcoin

Bech32m encoding tool

• Implement tool for bech32m encoding and decoding
– https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki

– https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki

• Provide command-line interface for:
– Encoding of arbitrary input to bech32m

– Decoding of bech32m

– Choosing of input/output format (base64/hex/binary)

– Selecting input from cli-argument, file, or stdin (default)

– Selecting output to file, or stdout (default)

• In case of erroneous decoding suggest the closest valid input
– (Bech32m supports error correction)

• Focus on security of your implementation
– Proper error handling

– Secure handling of user-provided input

https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0350.mediawiki

Phase I

• Form teams of 3 people

• Agree on your programming language:

– C, Python, Rust, C++, Haskell, Go, …

– The language must be unique per seminar group

• Prepare your project on GitHub

– Create a GitHub repository

– Agree on a unique name

– Prepare an empty project with test vectors from bech32m specification

• Write an email to xdufka1@fi.muni.cz containing:

– Team member names

– Selected programming language

– Link to GitHub repository (add dufkan as reader if it is a private repository)

• Deadline Monday 21. 2. 2022 16:00

mailto:xdufka1@fi.muni.cz

Phase II

• Configure Github Actions to run tests automatically

• Start digitally signing your commits

• Start the implementation

– You can use only standard library

– By the end of this phase, you should have:

• Basic encoding/decoding functionality passing test vectors.

• No need to provide user interface yet.

• Prepare 3-4 A4 report

– Project design

– Current progress

– Encountered obstacles

• Deadline Monday 14. 3. 2022 16:00

https://docs.github.com/en/authentication/managing-commit-signature-verification/signing-commits

Phase III

• Finalize the implementation

– Try to identify any vulnerabilities with analysis tools

– Release the final binary build with a digital signature (GPG)

• Prepare and record a presentation of your project (5-7 minutes)

– Structure of the project

– Encountered obstacles and solutions

– Used analysis tools

– How can the tool be used

• (Quick guide for the other team in Phase IV)

• Discussion of the presentation

• Assignment of other team projects for the next phase

• Deadline Monday 11. 4. 2022 16:00

Phase IV – Review setup

Create review branch without code

git checkout -b review

git rm -r --cached .

git commit -m "Create review branch"

git push --set-upstream origin review

Create branch for pull request into the review branch

git checkout -b review_code

git add .

git commit -m "Add review code"

git push --set-upstream origin review_code

Phase IV – Review setup

• Create pull request from review_code to review branch

• Review team will comment in the pull request (give them access)

Phase IV

• Analyze implementation of other team (assigned on seminars)

– Static analysis (at least 1 tool)

– Dynamic analysis (at least 1 tool)

– Fuzzing (at least 1 tool)

– Dependency checking, … (use at least 5 tools in total)

• Provide comments on code in GitHub review branch

– Use conventional comments: https://conventionalcomments.org/

• Prepare pull request with a fix of at least 1 discovered issue

• Prepare presentation for the last lecture (10 minutes)

– Used analysis tools

– Discovered issues, code quality

– Fixes (+ screenshot of pull request)

• Deadline Monday 9. 5. 2022 16:00

https://conventionalcomments.org/

