
PA193 - Semminar on concurrency

Miroslav Jaroš

1st March 2022

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 1 / 20

Quick quiz

What is concurrency?
Thread x Process difference
Who provides threads?

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 2 / 20

Quick quiz

What is concurrency?
Concurrency is the decomposability property of a program, algorithm, or
problem into order-independent or partially-ordered components or units.

Thread x Process difference
Thread is minimal runnable unit for OS that can be deployed on
processor, unlike process it does not own virtual memory, but uses
virtual memory of parent process.
Every process has at least one thread, which is main for execution.

Who provides threads?
Threads are provided by OS, although many languages have their own
implementation due to optimization.

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 3 / 20

Concurrency and security

Modern processors are built as pipelined and superscalar and multicore
Pipelined processors have instruction execution split into different stages

e.g. Instruction Fetch (IF), Instruction Decode (ID), Execution (EX),
Memory access (MEM), Write Back (WB)

Superscalar processors scales individual stages to execute multiple
instructions at a same time
This leads to effects like speculative execution, when processor enables
instructions to be executed out of order.
And then, Specter and Meltdown happened:
https://meltdownattack.com/

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 4 / 20

Concurrency and security 2.

But not only hardware is problematic. The idea of operating system
stands on concurrency:

Operating system is responsible for process cration and planning even on
single core processors.
But operating system is responsible for access control.

Then there are high level applications.
Programmers typically rely on some properties of other dependencies -
like transactions in databases.
But in large scale applications the execution of actions more resembles
some process.
Are we sure that the side effects of the process are secured enough.

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 5 / 20

Race condition

Imagine we want to increase variable up to a certain number and we
decide to use threads.
The process is simple, unless the number is x we do x++ and we do
this in several threads.
How would this code look in the assbembly language?

volatile int shared_var = 0;
void increase()
{

while (shared_var < 10000) {
shared_var++;

}
}

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 6 / 20

Deadlock

The dining philosophers problem
Five philosophers are sitting around table each with one plate.
Between each plate is one chopstick
Each philosopher needs two chopsticks to eat.
The philosophers don’t communicate between each other and they can
either dine or think.
What if all of them will be extremely hungry and since all are right
handed will take the right chopstick as a first every time.
Will they eat or die of hunger?

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 7 / 20

Threads

UNIX
Pthread library part of POSIX
#include <pthread.h>

WINDOWS
Defined in WIN32 API
#include <windows.h>

MULTI PLATFORM
Since C11 and C++11
standards are threads part of
standard library
Qt Framework
Boost library

LANGUAGES
GO: gorutines
ERLANG: processes
ADA: tasks
Java: java.lang.Thread
Python: thread and threading
module

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 8 / 20

Pthread library

Part of POSIX library
Provides basic interface for Thread management and mutual exclusion
techniques
All types and functions are prefixed with pthread string
Needs to be compiled with -pthread argument, to link pthread library
into binary
All types and functions are descirbed in pthread.h header file

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 9 / 20

Pthread library
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine) (void *), void *arg);

Creates new thread, which will start execution in start_routine function
thread in/out attribute, after pthread_create is called, it’s set to
threads identifier
attr thread attributes, typically passed NULL
start_routine entry point of newly created thread
arg arguments passed to start_routine
man 3 pthread_create

int pthread_join(pthread_t thread, void **retval);

Waits for thread to end execution and collect return value
thread thread identifier, set by pthread_create
retval if not set to NULL pthread_join will store start_routine return
value in it.
man 3 pthread_join

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 10 / 20

Helgrind

Part of valgrind tool for dynamic analysis
Designed to find bugs in threaded code
Executed similarly to memcheck
valgrind --tool=helgrind ./your_code
Your code should be compiled with debugging symbols “gcc -g”
http://valgrind.org/docs/manual/hg-manual.html

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 11 / 20

CRITICAL SECTION

Point of code where shared resource is manipulated.
Must be executed exclusively - only one thread at time
Even read operations must be exclusive

Context switch can happen in the middle of read operation
Then data can be inconsistent

Goal is to make critical section as small as possible
Use mutual exclusion to achieve exclusivity

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 12 / 20

Mutual exclusions

Posix defines several methods of mutual exclusion
Mutex - Mutual Exclusion
Condition variable
Semaphore

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 13 / 20

Mutex

Object which can be in two states, locked and unlocked
When thread wants to enter critical section, it locks mutex
When other thread tries to lock mutex, the execution will be stopped
and will wait until mutex is unlocked by blocking thread
When thread is leaving critical section, it unlocks the mutex
man 3 pthread_mutex_lock

#include <pthread.h>
int pthread_mutex_destroy(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *restrict mutex,

const pthread_mutexattr_t *restrict attr);
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 14 / 20

Condition Variable
Critical section can be entered after condition is met
Typically in producer-consumer applications, where consumer needs to
wait for producer
Consumer locks mutex, but finds, that it cannot enter critical section
It calls pthread_cond_wait and sleeps, mutex is unlocked
When producer creates new resource, it calls pthread_cond_signal
All threads waiting for condition are waked and tries to obtain lock,
check condition and if its met, they enter critical section with locked
mutex
man 3 pthread_cond_init

#include <pthread.h>
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_init(pthread_cond_t *restrict cond,

const pthread_condattr_t *restrict attr);
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *restrict cond,

pthread_mutex_t *restrict mutex);
Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 15 / 20

Semaphores

Integer value that identifies how many resources are consumable
Every time the new resource is created, or released the counter is
increased
Every time resource is consumed the counter is decreased.
Thread that tries to use resource sleeps until resource is allocated
This allows multiple threads enter critical section when there are
enough resources
Sometimes it needs to be used with mutex, due to possible
inconsistencies.
man 3 sem_init

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_destroy(sem_t *sem);
int sem_post(sem_t *sem);
int sem_wait(sem_t *sem);

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 16 / 20

Tasks

Work on any UNIX computer
1 Create program which will increase one variable to 10000 from 3

different threads
2 Increase number of threads to 100 and wait for problems to appear
3 Try to find problems with helgrind
4 Add locking to your program
5 Try helgrind to find possible race conditions
6 Modify your code to create deadlock
7 Test it with helgrind
8 Fix your code, so deadlock won’t happen.

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 17 / 20

Tasks II.

1 Create a program, where one thread is putting random numbers into
the array and several others are verifying if those numbers are primes.

2 The time needed to produce the numbers should be unpredictable (use
random numbers again) so the worker threads will need to wait for new
elements to appear

3 Use an appropriate technique for mutual exclusion to avoid busy
waiting.

4 Try helgrind to navigate you through the “hell” of the problems.

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 18 / 20

Conclusion

Don’t be afraid of threads
Use threads in your applications
You should keep in mind dangers that concurrency can create in your
code
Always try to make critical sections as minimal as possible
Use mutexes, semaphores and other tools to avoid race conditions,
deadlocks and other possible issues
Check your code with helgrind, it can save you many hours of
debugging

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 19 / 20

Conclusion

Write your code with concurrency in mind, you might not want to
write concurrent library, but someone will eventually try to use it with
threads
Many frameworks and libraries uses threads, even though you don’t
know it
Last but not least: Test your code!

Multi threaded applications are hard to debug, you need to be sure, that
particular function/method is doing what it should do!

Miroslav Jaroš PA193 - Semminar on concurrency 1st March 2022 20 / 20

