
PA193 Secure coding
principles and practices

Seminar 5: Usability and usable security
for cryptographic APIs
15. 3. 2022

Martin Ukrop, mukrop@mail.muni.cz
Ph.D. research cooperation
CRoCS, Faculty of Informatics, Masaryk University

mailto:mukrop@mail.muni.cz

Seminar overview
• 10” Usable security intro

• 25” Usable security for developers (5 examples)

• 30” Designing unusable APIs

• 30” Generalizing the principles

2

Security vs. usability vs. usable security

3

Security vs. usability vs. usable security
Combination padlock

Security focus:
• How sturdy is the lock?

• How many times does
the attacker need
to break the lock loop?

• How many padlock
combinations are there?

4

Security vs. usability vs. usable security
Combination padlock

Usability focus:
• How easy is it to

move/read the dials?

• Are alphanumeric
combinations
easier to remember?

5

Security vs. usability vs. usable security
Combination padlock

Usable security focus:
• What happens if you

forget the combination?

• Do people choose more
secure passwords if alphanumeric?

• Can you change the combination?

• What is the default combination?
6

Usable security
Looks into:
• Usability issues with security consequences
• Specifics of the human in the process

– What would happen if no human was involved?
– Borders on behavioral sciences, psychology, sociology,

pedagogy and others.

• Context is very important!
– Who is the intended user? What do they know? Where is it?

7

Usable security: The impact pyramid

8

OS developers

Library developers

Software developers

Administrators/IT support

End users(amount)

(impact)

Usability is even
more important

for IT professionals!

Where is usability for IT professional?

9

Everywhere!
• Command line interaction

– Commands, errors messages, attention management, ...
• File structure & location

– Logs, configuration files, certificates location, ...
• Interfaces

– Security APIs, cryptographic operations, ...
• Documentation

– For security configuration, cryptographic libraries, ...

• What is the risk?
• What happens after (not) agreeing?

• How can you undo adding a known host?
• Why is last login displayed?
• How much “unwanted” information is appropriate?

1: Command line interface

10

1: Command line interface

11

2: Configuring product security
• Empirical test of HTTPS deployment usability

– 28 knowledgeable university students
– Asked to deploy TLS on Apache to pass security audit
– What are the challenges?

• Only 4 deployed A-grade TLS
– Challenges: Find the right information, generate CSR, choose

appropriate cipher-suites, strict HTTPS, multiple config files,
security/compatibility ballance

Research from “I Have No Idea What I’m Doing” – On the Usability of Deploying HTTPS, by K.
Krombholz, W. Mayer, M. Schmiedecker and E. Weippl, 2017.

12

3: Software library configuration
• Libcurl

– the multiprotocol file
transfer library

• Two main directives for SSL validation
– CURL_SSL_VERIFYPEER (checking certificate)

– CURL_SSL_VERIFYHOST (checking hostname)

13

3: Software library configuration
• PayPal SDK: version from 27th April 2012

curl_setopt($ch, CURL_SSL_VERIFYPEER, TRUE)
curl_setopt($ch, CURL_SSL_VERIFYHOST, TRUE)

• Bool CURL_SSL_VERIFYPEER
• Int CURL_SSL_VERIFYHOST

– 0: no host verification
– 1: debug (nearly no verification)
– 2: verify hostname

CURL example from The Most DangerousCode in the World:
Validating SSL Certificates in Non-Browser Software, 2012.

14

4: APIs of cryptographic libraries
• How to get authenticated encryption?

– that is, confidentiality + integrity

• Composition of encryption and MAC
– MAC-plaintext-then-encrypt?
– MAC-ciphertext-after-encrypt?
– Encrypt-and-MAC-plaintext?

• Hide this in by the library interface (NaCl/libsodium)
– c = crypto_box(m, n, pk, sk);
– m = crypto_box_open(c, n, pk, sk);
– What may be the problem here?

15

Do you remember which
is the most secure?

https://nacl.cr.yp.to/
https://libsodium.gitbook.io/doc/

5: APIs of randomness generators
OpenSSL functions for random bytes
int RAND_bytes(unsigned char *buf, int num);

• Should always be cryptographically strong

int RAND_pseudo_bytes(unsigned char *buf, int num);

• Pseudorandom, can be strong (see later)

Working as interfaces
• I.e. multiple implementations
• I.e. multiple callers

16

5: APIs of randomness generators
Documentation: Return values
• RAND_bytes() returns 1 on success, 0 otherwise. The error code

can be obtained by ERR_get_error(3).

• RAND_pseudo_bytes() returns 1 if the bytes generated are
cryptographically strong, 0 otherwise.

• Both functions return -1 if they are not supported by the current
RAND method.

Can you spot the unusable bit?

17

5: APIs of randomness generators
Implementations: Often the same for both...

Callers: Standard C error scheme incorrect:
if (!RAND_bytes(...)) /* handle error ... */

– Debian code search: OpenSSL, Ruby, net-snmp, ZNC, DACS,
dnsval/dnssec-tools, ...

– GitHub code search: 1 456 results

RAND example by Joseph Birr-Pixton (http://jbp.io)

18

https://jbp.io/2014/01/16/openssl-rand-api.html

“Developer-resistant
cryptography!”

K. Cairns and G. Steel, 2014

19

Developer-resistant cryptography!
“To decrease the number of security holes caused by
developers, we should not only do everything possible to
educate developers, but also make APIs easier to use. By
examining errors commonly found in today’s applications
we can find the weaknesses of today’s APIs. Using what
we learn, we can design APIs that are more intuitive
and easier to use correctly, decreasing the overall
chance of human error.”

20

K. Cairns and G. Steel: Developer-Resistant Cryptography. STRINT Workshop, 2014.

https://www.w3.org/2014/strint/papers/48.pdf

Summary: Interface/API issues
• Usability issues

– E.g. counterintuitive structure/names/arguments

• Performance issues
– E.g. making copy of structures in arguments

• Security issues
– Due to bad technical design

• E.g. possible compromise by unexpected call order

– Due to bad usability
• E.g. prone to accidentally disable certificate verification

21

Task: Intentional bad design
Design a C (or C-like) API for encryption/decryption
routines with security issues due to bad usability.

• Work in groups of 2-3 people

• Get inspiration from existing API structure
– OpenSSL AES header, OpenSSL enc/dec Wiki
– GnuTLS encryption, API reference
– NaCl encryption
– mbedTLS encryption module

22

https://github.com/openssl/openssl/blob/master/include/openssl/aes.h
https://wiki.openssl.org/index.php/EVP_Symmetric_Encryption_and_Decryption
https://www.gnutls.org/manual/html_node/Cryptographic-API.html
https://gnutls.org/reference/gnutls-crypto.html
https://nacl.cr.yp.to/stream.html
https://tls.mbed.org/api/group__encdec__module.html

Share the design
Where is the unusability?
Format: Round-Robin

23

How to make usable APIs?
How can we generalize?
Format: Think-Pair-Share

24

Bonus: Usable design in security
1. You are not your user

– Don’t forget user testing!

2. Prefer system usability over user training
– The best training is no training!

3. The user is not your enemy
– Cooperate with them to have security

4. Think of usability on all levels
– Should the question be asked in the first place?

5. Have secure defaults
– Security is usually not a primary goal

25

1. You are not your user
• Preferences are subjective

– The same thing may be differently usable for different people
– You (IT pro, dev, admin) may have a very different view

than “the common Johnny”

• User testing is crucial
– User studies, surveys, focus groups, interviews
– Beware: self-reported data vs. objective measures

26

2. System usability over user training
• Training users to behave more securely

– E.g. check sender email address for phishing attacks
– Training costs, variable adherence

• Improving the system usability
– E.g.

– Higher development cost, user studies necessary

• Ideally: Combine usability & training
27

Gmail warning, same name
as one in the domain, 2019.

3. The user is not your enemy
• The user is your partner

– They have knowledge you don’t
– You have knowledge they don’t

 -> collaborate!

• Examples:
– SSO sign-out of other services
– After password leak, ask

the user to change the same
password on other sites

28

Unified MU logout, 2020

3. The user is not your enemy
• Possible collaboration in browser warnings

29

J. Sunshine et al.: Crying Wolf: An Empirical Study of SSL Warning Effectiveness. USENIX 2009.

https://www.usenix.org/legacy/event/sec09/tech/full_papers/sunshine.pdf

3. The user is not your enemy
• But don’t be alibistic!

– Ask only what the user
will understand.

– Use proper language!

30

Joke adapted from Johnatan Nightingale

4. Think of usability on all levels
• Usable warning message

– Wording, explanation,
icon, nudging to
secure behaviour, ...

• Take a step back
– It may be more usable

to not ask at all!
– Revoked certificates does not

issue a warning (it refuses the connection right away!).

31

Google Chrome (v87),
self-signed certificate, 2020

5. Have secure defaults
• Security is a secondary goal

– Help them do it securely, but don’t prevent them from doing it!

– Thus, the default way should be the most secure way.

32

Di
lb

er
t 2

00
7-

11
-1

6

https://dilbert.com/strip/2007-11-16

Dancing pigs
“Given a choice between dancing pigs and security,
 users will pick dancing pigs every time.”
 (Edward Felten, Princeton University, 1999)

33

Message text from
Secrets & Lies

by Bruce Schneier
(John Wiley & Sons, 2000).

https://www.schneier.com/books/secrets-and-lies/

