
Binary Exploitation 1
Buffer Overflows

Milan Patnaik

Indian Institute of Technology Madras

Agenda : Class
• Buffer Overflow.

• Executable Stack Attacks.

• Executable Stack Attack Prevention.

• Canaries, W^X.

• Non-Executable Stack Attacks.

• Return-to-Libc attack.

• Return Oriented Programming.

• Non-Executable Stack Attack Prevention.

• ASLR.

• Heap Exploits.

2

Agenda : Labs

• Lab1a.

• Executable Stack Attacks.

• Lab1b.

• Return-to-Libc attack.

• Lab2a.

• Return Oriented Programming.

• Lab2b.

• Exploiting Large Binaries.

3

4

Executable Stack Attacks

https://www.cvedetails.com/

Buffer Overflows

Buffer Overflows : Stack

5

Executable Stack Attacks

https://www.mitre.org/

Buffer Overflows : Stack

6

Executable Stack Attacks

https://www.mitre.org/

Executable Stack Attacks

7

Parts of Binary Exploits

• Two parts

Subvert execution:

 change the normal execution behavior of the
program.

Payload:

 the code which the attacker wants to execute.

8

Executable Stack Attacks

Subvert Execution

• In application software.
– SQL Injection.

• In system software.
– Buffers overflows and overreads.
– Heap: double free, use after free.
– Integer overflows.
– Format string.
– Control Flow.

• In peripherials.
– USB drives in Printers.

• In Hardware.
– Hardware Trojans.

• Covert Channels.
– Can exist in hardware or software.

9

These do not really subvert execution,
but can lead to confidentiality attacks.

Executable Stack Attacks

Buffer Overflows in the Stack

• We need to first know how a stack is managed.

10
[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

Executable Stack Attacks

Buffer Overflows in the Stack

• Executable stacks.

11
[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

Executable Stack Attacks

Stack in a Program
(when function is executing)

EBP

Parameters
for function

return Address

Locals of
function

prev frame
pointer

push $3

push $2

push $1

Stack

call function

push %ebp
movl %esp, %ebp

sub $20, %esp

%ebp: Frame Pointer

In main In function

ESP

ESP

ESP

ESP

ESP

ESP

%esp : Stack Pointer
12

Executable Stack Attacks

Stack Usage (example)

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 return address

984 to 981 %ebp (stored

frame pointer)

(%ebp)980 to 976 buffer1

975 to 966 buffer2

(%esp) 965

Parameters
for function

Return Address

Locals of function

prev frame pointer

13

Executable Stack Attacks

Stack Usage Contd.

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985 return address

984 to 981 %ebp (stored

frame pointer)

(%ebp)980 to 976 buffer1

975 to 966 buffer2

(%esp) 965

What is the output of the

following?

printf(“%x”, buffer2) : 966

printf(“%x”, &buffer2*10+)

 976 buffer1[0]

Thus buffer2[10] = buffer1[0]

 A BUFFER OVERFLOW

14

Executable Stack Attacks

Modifying the Return Address

buffer2[19] =

 &arbitrary memory location

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985

984 to 981 %ebp (stored

frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%esp) 965

Return Address

19

15

Executable Stack Attacks

Modifying the Return Address

buffer2[19] =

 &arbitrary memory location

Stack (top to bottom):

address stored data

1000 to 997 3

996 to 993 2

992 to 989 1

988 to 985

984 to 981 %ebp (stored

frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2

(%esp) 965

Return Address

19

Payload Location

16

Executable Stack Attacks

Big Picture of the exploit
Fill the stack as follows.

(where BA is buffer address)

stack pointer

Parameters
for function

Return Address

buffer

prev frame pointer
frame pointer

Exploit code

BA

BA

buffer Address BA

BA

BA

BA

BA

BA

BA

17

Executable Stack Attacks

Find location of return address

- Fill the stack with random values and run the program.

- Check the address in fault.

- Find the offset from values.

stack pointer

Parameters
for function

Return Address

buffer

prev frame pointer
frame pointer

R3

R4

R5

R6

R7

R8

R9

R10

18

R2

R1

Segmentation

Fault
R6 ??

Executable Stack Attacks

Payload

• Lets say the attacker wants to spawn a shell

• ie. do as follows:

19

Executable Stack Attacks

Step 1 : Get machine codes

objdump –disassemble-all shellcode.o

Get machine code : “eb 1e 5e 89 76 08 c6
46 07 00 c7 46 0c 00 00 00 00 b8 0b 00 00
00 89 f3 8d 4e 08 8d 56 0c cd 80 cd 80”

If there are 00s replace it with other
instructions

20

Executable Stack Attacks

Step 2: Find Buffer overflow in an
application

O

O

O

O

o

Defined on stack

21

Executable Stack Attacks

Step 3 :
Put Machine Code in Large String

shellcode

large_string

22

Executable Stack Attacks

Step 3 (contd) :
Fill up Large String with BA

shellcode BA BA BA BA BA BA BA BA

large_string

Address of buffer is BA

23

Executable Stack Attacks

Final state of Stack

• Copy large string into buffer.

• When strcpy returns the exploit code

would be executed.

shellcode BA BA BA BA BA BA BA BA

large_string

shellcode

BA

BA

buffer Address

BA

BA

BA

BA

BA

BA

BA

buffer

BA

24

Executable Stack Attacks

Putting it all together

bash$ gcc overflow1.c

bash$./a.out

$sh

25

Executable Stack Attacks

An Alternate

Fill the stack as follows.

(where BA is buffer address)

stack pointer

Parameters
for function

Return Address

buffer

prev frame pointer
frame pointer

BA

BA

buffer Address

BA

BA

BA

BA

BA

BA

BA

26

Exploit code

BA

BA

Executable Stack Attacks

Accuracy

27
[1] Chris Anley, Felix Lindner, and John Heasman, “The Shellcoder's Handbook “

Increase accuracy by NOP Sledge.

Executable Stack Attacks

Defenses

• Eliminate program flaws that could lead to subverting of execution.

 Safer programming languages, Safer libraries, hardware enhancements, static analysis .

• If can’t eliminate, make it more difficult for malware to subvert

execution.
 W^X , ASLR, canaries.

• If payload still manages to execute, try to detect its execution at

runtime.

 payload run-time detection techniques using learning techniques, ANN and payload

 signatures.

• If can’t detect at runtime, try to restrict what the malware can do.

– Sandbox system.
 so that payload affects only part of the system, access control, virtualization, trustzone,

 SGX.

– Track information flow.
 DIFT, ensure payload does not steal sensitive information.

28

Executable Stack Attacks

Preventing Buffer Overflows
with Canaries and W^X

29

Canaries

Stack (top to bottom):

stored data

3

2

1

ret addr

sfp (%ebp)

Insert canary here

buffer1

buffer2

Insert a canary here

check if the canary value

has got modified

Known (pseudo random) values placed
on stack to monitor buffer overflows.

A change in the value of the canary
indicates a buffer overflow.

Will cause a ‘stack smashing’ to be
detected.

30

Executable Stack Attack Prevention

Canaries and gcc

31

As on gcc 4.4.5, canaries are not added to functions by default.

o Could cause overheads as they are executed for every function
that gets executed.

• Canaries can be added into the code by –fstack-protector option.

o If -fstack-protector is specified, canaries will get added based on
a gcc heuristic.

• For example, buffer of size at-least 8 bytes is allocated.

• Use of string operations such as strcpy, scanf, etc.

o Canaries can be evaded quite easily by not altering the contents of
the canary.

Executable Stack Attack Prevention

Canaries Example

32

Without canaries, the return address on stack gets overwritten resulting in a
segmentation fault. With canaries, the program gets aborted due to stack smashing.

Executable Stack Attack Prevention

Canaries Example

33

Without canaries, the return address on stack gets overwritten resulting in a
segmentation fault. With canaries, the program gets aborted due to stack smashing.

Executable Stack Attack Prevention

Canary Internals

34

Store canary onto stack

Verify if the canary has
changed

Without canaries

With canaries

gs is a segment that shows thread local data; in this case it is used
for picking out canaries

Executable Stack Attack Prevention

Non Executable Stacks (W^X)

• In Intel/AMD processors, ND/NX bit present to mark non code

regions as non-executable.

– Exception raised when code in a page marked W^X executes.

• Works for most programs.

– Supported by Linux kernel from 2004.

– Supported by Windows XP service pack 1 and Windows Server 2003.
• Called DEP – Data Execution Prevention

• Does not work for some programs that NEED to execute from the

stack.

– Eg. JIT Compiler, constructs assembly code from external data and then

executes it.

(Need to disable the W^X bit, to get this to work)

35 35

Executable Stack Attack Prevention

Will non executable stack
prevent buffer overflow

attacks ?

Return – to – LibC Attacks

36 36

Return to Libc
(big picture)

Exploit code

BA

BA

BA

BA

BA

BA

BA

BA

buffer

This will not work if ND bit is set
Return Address

37 37

Non Executable Stack Attacks

Return to Libc
(replace return address to point to a function within libc)

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

buffer

Return Address

38

F1 Addr

Stack

Heap

Data

Text

Bypasses W^X since F1 is in the code segment,
And can be legally executed.

38

Non Executable Stack Attacks

F1 = system()
• One option is function system present in libc
 system(“/bin/bash”)

 would create a bash shell

 (there could be other options as well)

So we need to :-

1. Find the address of system in the program.
(does not have to be a user specified function, could be a function
present in one of the linked libraries)

2. Supply an address that points to the string /bin/sh.

39 39

Non Executable Stack Attacks

The return-to-libc attack

F1ptr

F1ptr

F1ptr

F1ptr

F1ptr

Shell ptr

F1 ptr

F1ptr

buffer
F1ptr

Return Address

system()
In libc

/bin/bash

40 40

Non Executable Stack Attacks

Find address of system in the
executable

41 41

Non Executable Stack Attacks

Find address of /bin/sh

• Every process stores the enviroment variables at

the bottom of the stack.

• We need to find this and extract the string

/bin/sh from it.

42 42

Non Executable Stack Attacks

Finding the address of the string
/bin/sh

43

Non Executable Stack Attacks

The final Exploit Stack

xxx

xxx

xxx

0x28085260

dead

0xbfbffe25

xxx

xxx

buffer
xxx

Return Address

system()
In libc

/bin/sh

44

Non Executable Stack Attacks

A clean exit

xxx

xxx

xxx

0x28085260

0x281130d0

0xbfbffe25

xxx

xxx

buffer
xxx

Return Address

system()
In libc

/bin/bash

exit()
In libc

45

Non Executable Stack Attacks

Limitation of ret2libc

Limitation on what the attacker can do.

(only restricted to certain functions in the library)

These functions could be removed from the library.

46 46

Non Executable Stack Attacks

The Attacker’s Plan
• Find the bug in the source code (for eg. Kernel) that can be

exploited.
– Eyeballing.

– Noticing something in the patches.

– Following CVE.

• Use that bug to insert malicious code to perform something
nefarious.
– Such as getting root privileges in the kernel.

Attacker depends upon knowning where these functions reside in
memory. Assumes that many systems use the same address mapping.
Therefore one exploit may spread easily.

47

Non Executable Stack Attack Prevention

That’s for the day

