



Security aspects of wireless personal area networks (PANs)

Petr Švenda <u>svenda@fi.muni.cz</u>
Faculty of Informatics, Masaryk University

Please insert any comments, hints or spotted inaccuracies here: <a href="https://drive.google.com/file/d/19iHgI93Srh-QuiW1ehbK1c6Z4UYmhM17/view?usp=sharing">https://drive.google.com/file/d/19iHgI93Srh-QuiW1ehbK1c6Z4UYmhM17/view?usp=sharing</a>



#### **Overview**

- Security considerations of wireless transmission
- Technology for Personal Area Networks (PANs)
  - Bluetooth, NFC, ZigBee
  - Design goals
  - Security vulnerabilities
  - Combination of technologies



# PERSONAL AREA NETWORKS

## Main design goals

- (Not necessary all at the same time)
- 1. Energy efficiency
  - Running long time only on batteries
- 2. Physical locality of communication (NFC)
  - Imposing restrictions on attacker
- 3. Quick establishment of temporary connections
  - Usable security
- 4. Ad-hoc networking
  - Temporary networks without pre-fixed structure

## **Basic steps of communication**

- Discover other device(s)
  - Public broadcast vs. private sharing
- 2. Authenticate and establish initial key(s) (pairing)
  - Usually once for new devices
- 3. Authenticate and refresh keys for paired devices
  - If long-term persistence is maintained (known devices)
- 4. Exchange packets between devices
- 5. Terminate connection



Wireless networks

# **WIRELESS MEDIUM - ATTACKS**

## Attack surface is large

- Wireless signal propagates more easily
  - Eavesdropping, message injection
  - Also more difficult to localize attacker
- Processing transmissions more complicated
  - Potential for bugs in implementation, network stack
- Potential for physical device compromise
  - Device not connected => easier to be lost/stolen...

#### Wireless medium – basic properties

- Eavesdropping on active transmission is easy
  - Omnidirectional vs. directional antenna
  - Active vs. passive communication mode
- Eavesdropping on passive device (RFID,ISO14443) more difficult (passive mode)
  - Tag/card does not emit signal on its own
  - Tag/card specifically distorts EM field measured by reader
- Multiple channels may require multi-channel eavesdropping
  - Frequency hopping based on secret sequence (PRNG)

## Generic attacks: Eavesdropping

- Active → active transmission
  - Directional antenna, e.g., Bluetooth 10<sup>2</sup> → 10<sup>4</sup> meters
- Active → passive transmission
  - Tens of meters for active signals (reader → tag), easy
  - Up to 1m for passive signals (tag  $\rightarrow$  reader), difficult
- Signals must be reliable enough for normal communication => stronger than necessary minimum
- Eavesdropping cannot be generally prevented
  - Possibly only significantly limited in distance (NFC)
- Solution: use secure channels (encryption, auth)

## Attack: record and compromise later

- Eavesdropped communication is encrypted
- Used key is later recovered by other means
  - End-node compromise, side-channel attack, bruteforce...
  - => Past communication can be decrypted (later)
- How to prevent?
  - (Perfect) forward secrecy protocols (e.g., ECDH)

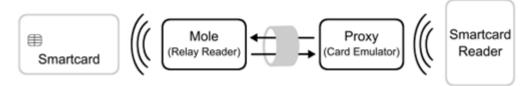
## (Perfect) forward secrecy protocols

- Long-term key compromise doesn't compromise past session keys
- 1. Fresh keypair generated for every new session
- 2. Ephemeral public key used to exchange session key
- 3. Ephemeral private key is destroyed after key exchange
  - Captured encrypted transmission cannot be decrypted
- Long-term key is used only to authenticate ephemeral public key to prevent MitM
- Where used? TLS, OTR/Signal, ePassports...
- Where NOT used? If only symmetric crypto based

## DH based on elliptic curves used (ECDH)

Diffie-Hellman Key Exchange

| Step | Alice                                    | Bob                                                                                             |
|------|------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1    | Parameters: EC curve, G (base point)     |                                                                                                 |
| 2    | A = random()                             | $\operatorname{random}() = B$                                                                   |
|      | $a = A \times G$ (scalar multiplication) | $\mathbf{B} \mathbf{x} \mathbf{G} = b$                                                          |
| 3    | $a \longrightarrow$                      |                                                                                                 |
|      | $\longleftarrow b$                       |                                                                                                 |
| 4    | $K = A \times B \times G = A \times b$   | $\mathbf{B} \mathbf{x} \mathbf{a} = \mathbf{A} \mathbf{x} \mathbf{B} \mathbf{x} \mathbf{G} = K$ |
| 5    | $\leftarrow E_K(c)$                      | $\overline{data) \longrightarrow}$                                                              |


http://www.themccallums.org/nathaniel/2014/10/27/authenticated-key-exchange-with-speke-or-dh-eke/

#### Generic attacks: data corruption

- Attacker tries to corrupt data during transmission
  - Channel level: additional transmission → jamming
  - Link/tunnel level: sinkhole, dropper...
    - Form of denial-of-service
- Broad vs. selective jamming
  - Broad jamming requires higher power of transmission
  - Selective jamming corrupts only few bits in header / packets
- Solution: device detects and verifies signal strength, counts transmitted/dropped packets...
  - But signal naturally fluctuates => harder to detect attack

#### Generic attacks: Man-in-the-middle

- Third device acts as relay between two legitimate devices
  - Log/block/modify communication
  - Emulates perception of close presence (door lock, card payment)
- If mounted against active-active communication mode
  - Attacker can be farther away
  - Possibly needs to block legitimate traffic (to legitimate party)
- If mounted in active-passive mode
  - Attacker needs to be closer to victim (passive → active)
- May require low-latency relaying on attacker's side
- Potential defense: distance bounding protocols



## **Example: Passive wired relay**

- No amplifier or other active components required
- Coaxial cable between two antennas, 20 metres or more
- Very low delay (practically not detectable)
- Low cost



http://cdn.intechopen.com/pdfs-wm/44973.pdf

# Example: ePassport simulator Proxmark III (M. Korec) <a href="https://is.muni.cz/auth/th/396490/fi\_b/">https://is.muni.cz/auth/th/396490/fi\_b/</a>



## Distance bounding protocols

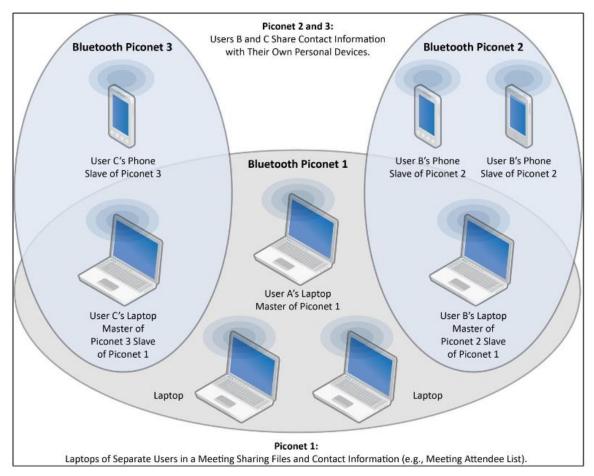
- Enable verifying device to establish upper bound on physical distance from connecting device
  - Time to receive response to challenge is measured
  - Multiplied by speed of light (~RF waves speed)
- Problem: transmission time may be significantly smaller than necessary processing time
  - Especially for high-frequency channels
  - Important to measure precisely 1 ns => 15cm error
- More likely to detect active MitM than passive relay
- http://cdn.intechopen.com/pdfs-wm/44973.pdf



Wireless networks - Bluetooth

# **BLUETOOTH**




#### Bluetooth - basic information

- Wireless standard for exchanging data over short distances
  - IEEE 802.15.1 standard (no longer maintained)
  - Specification maintained by Bluetooth Special Interest Group (SIG)
- UHF radio waves in the ISM band from 2.4 to 2.485 GHz (globally unlicensed band, scientific and medical)
  - Frequency-hopping spread spectrum (1600 hops/sec), Adaptive Frequency-Hopping (AFH, avoids crowded frequencies)
  - 79 designated Bluetooth 1MHz channels (40 for BT 4.x)
- Class 1/2/3 devices (max. power, distance ~100/10/1m)
- Speed 1Mbit 24Mbit / sec
- Bluetooth usage profiles (<a href="https://en.wikipedia.org/wiki/List\_of\_Bluetooth\_profiles">https://en.wikipedia.org/wiki/List\_of\_Bluetooth\_profiles</a>)

## **Bluetooth - networking**

- Each BT device has unique 48-bit device address
- Discoverable vs. hidden mode
  - On demand response (device name, class, services, info)
  - If discoverable then always respond
  - If hidden then respond only if other device address is already known
- Packet-based protocol with master-slave order
  - One master → up to 7 slaves (forms piconet)
  - Even and odd medium slots for master/slave transmission
- Multiple piconets form scatternet
  - Some devices both master in piconet X and slave in piconet Y
  - Extends device range via multi-hop communication
  - (Not really used in practice so far)

## Bluetooth – piconets, scatternet

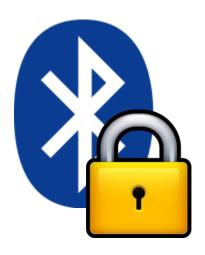


http://csrc.nist.gov/publications/nistpubs/800-121-rev1/sp800-121\_rev1.pdf

#### Bluetooth vs. WiFi






- AP-based WiFi is asymmetric (infrastructure)
  - BT is master slave, but usually ad-hoc
- BT generally requires less configuration
- BT is more power efficient, especially BT 4.x LE
- AP-based WiFi is generally more suitable for infrastructural placement, BT for ad-hoc networking
- Cooperation of technologies
  - Initial pairing setup via BT, fast transmission via WiFi

PA197 - PANs, Bluetooth





Wireless networks - Bluetooth



# **BLUETOOTH SECURITY**

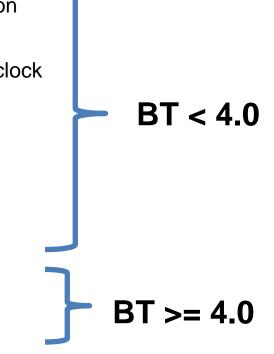
## **Security requirements**

What would you like to have? ©

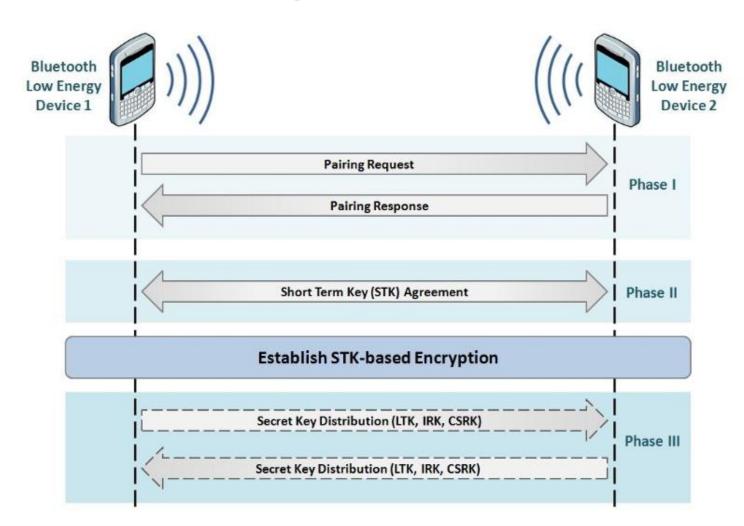


- NIST guidelines to Bluetooth security
  - https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
     SP.800-121r2.pdf

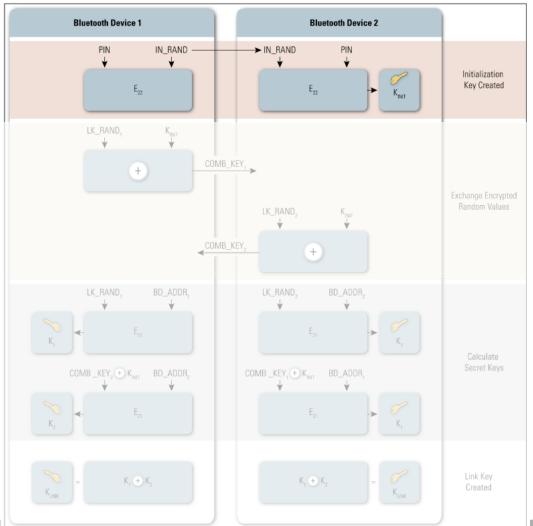
#### Bluetooth – versions, security features


- BT 1.0 [1994?] Initial version, mandatory encryption
- BT 1.1 [2002] Possibility for non-encrypted channels
- BT 2.1 [2007] Secure simple pairing (SSP)
- BT 3.0 [2009] Negotiation of high speed over 802.11 link
- BT 4.0 [2010] BT low energy (Wibree), coin cell power, Bluetooth Smart Ready, SSP not available
- BT 4.2 [2014] Introduces important features for IoT, LE Secure Connections, Link Layer Privacy, ECDH-based SPP
- BT 5 [2016] Larger range and transmission speed
- BT 5.1 [2019] Angle of Arrival/Departure (tracking devices), broadcast data without full connection (e.g., thermometer)

#### **Bluetooth security modes**


- Mode 1 provides no security
  - Any device can connect, no encryption
  - Up to Bluetooth 2.0 + Enhanced Data Rate (EDR) and NOT beyond
- Mode 2 provides security at the service level
  - After a communication channel is established
  - Centralized security manager controls
- Mode 3 provides security at the link level
  - Before a logical channel is established
  - Authentication and encryption of all connections
  - Decreases attack surface, but requires key predistribution
- Mode 4 provides Secure Simple Pairing
  - Connects two previously unpaired devices (DH, ECDH)

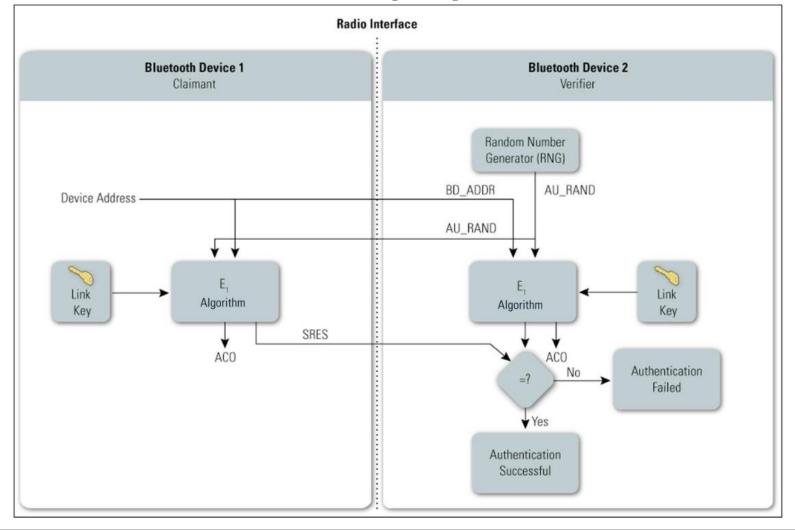
## Bluetooth – crypto algorithms used


- SAFER+ block cipher
  - used as building block for key derivation, authentication
- E0 stream cipher for encryption
  - Encryption key, master device BT address, real-time clock
- E22 key derivation algorithm
  - Derive initial key from address, rand and PIN
- E21 session key derivation algorithm
  - Link key generation from initial key
- E1 authentication algorithm
  - Authenticate devices after pairing
- AES cipher in Counter mode (AES-CCM)
  - Introduced for Bluetooth LE (BT 4.0)
- General trend: used to be custom crypto (earlier, < 4.0), move towards standard primitives (now, >= 4.0)

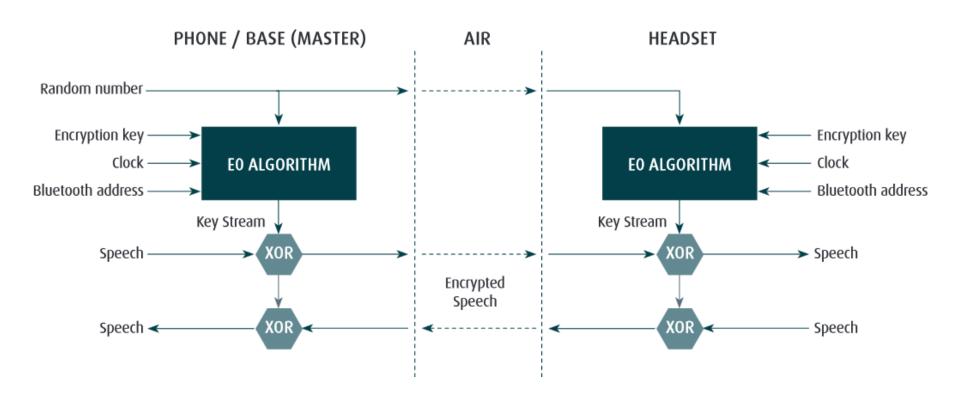


## **Bluetooth pairing**




## BT Initial key → link key (E22 and E21)




## BT Pairing – Legacy pairing

- BT 2.0 and before
- Initial key exchange (K<sub>INIT</sub>) over unencrypted link
  - What attacks are possible?
- Passkey/PIN → initialization key → link key
  - Short passkey problem (passive attack ~ms)
  - http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/index.html

## BT – authentication (E1)



## **Bluetooth – E0 encryption**



http://www.jabra.com/~/media/Documentation/Whitepapers/WP\_Bluetooth\_50004\_V01\_1204.pdf

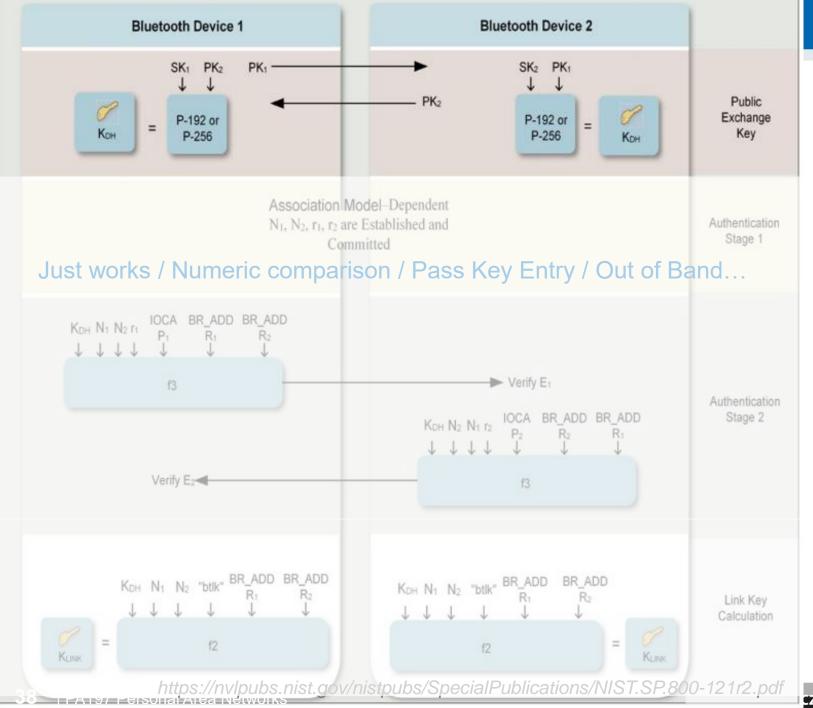
#### **Bluetooth attacks**

- Bluesnarfing, Bluebugging
  - Unauthorized extraction of data from device (discoverable mode)
- Guessing device address via brute-force attack
  - 48bit MAC address, but first 24 as manufacture's id
- Limited key-usage period (< BT 2.1)</li>
  - Around 23.5 hours before simple XOR attack (E0 stream cipher)
- Encryption can be forced to be turned off (< BT 2.1)</li>
- L2CAP level attacks
  - Parts of data packet not protected by integrity
  - Fuzzing used to find flaws in device's firmware

## BT Pairing – Legacy pairing

- BT 2.0 and before
- Initial key exchange (K<sub>INIT</sub>) over unencrypted link
  - What attacks are possible?
- Passkey/PIN → initialization key → link key
  - Short passkey problem (passive attack ~ms)
  - http://www.eng.tau.ac.il/~yash/shaked-wool-mobisys05/index.html
- Is attack prevented by perfect forward secrecy?
  - No, but force attacker to be active (MitM)
- How to use Passkey/PIN to prevent MitM?
  - Escalation protocols (fresh DH + PIN for authentication)

## DH based on elliptic curves used (ECDH)


Diffie-Hellman Key Exchange

| Step | Alice                                    | Bob                                                                                             |
|------|------------------------------------------|-------------------------------------------------------------------------------------------------|
| 1    | Parameters: EC curve, G (base point)     |                                                                                                 |
| 2    | A = random()                             | $\operatorname{random}() = B$                                                                   |
|      | $a = A \times G$ (scalar multiplication) | $\mathbf{B} \mathbf{x} \mathbf{G} = b$                                                          |
| 3    | $a \longrightarrow$                      |                                                                                                 |
|      | $\longleftarrow b$                       |                                                                                                 |
| 4    | $K = A \times B \times G = A \times b$   | $\mathbf{B} \mathbf{x} \mathbf{a} = \mathbf{A} \mathbf{x} \mathbf{B} \mathbf{x} \mathbf{G} = K$ |
| 5    | $\leftarrow E_K(c)$                      | $data) \longrightarrow$                                                                         |

http://www.themccallums.org/nathaniel/2014/10/27/authenticated-key-exchange-with-speke-or-dh-eke/

# BT Pairing – Secure Simple Pairing (SSP)

- Secure Simple Pairing (SSP, from BT 2.1)
  - Public-key crypto based (ECDH from BT 4.2) for key agreement
- How to authenticate ECDH public part?
  - Just works mode: no authentication
  - Numeric comparison mode: display challenge and confirm
  - Passkey Entry mode: insert passphrase
  - Out Of Band mode: use other channel to establish auth. key
- 128 bit random link key for encryption (at maximum)
  - Length negotiated by devices



cz/crocs

### Bluetooth LE/Smart (BT 4.x) (2010)

- For low-energy, storage/computation restricted devices
- Simplified protocol for link key establishment
  - LE pairing protocol establish long-term key (LTK)
  - Key transport instead of key agreement is used
  - One device generates LTK and transports during pairing
    - What are the security implications?
- Support for out-of-band for pairing
  - E.g., NFC-based exchange of Temporary Key (TK)
- AES-CCM introduced (relevant for FIPS 140-2)
- Introduction of private device address
  - Public device address from encrypted (changing) private address
  - Eavesdropper will not learn public address => no address tracking

### **Bluetooth LE/Smart (BT 4.0)**

- BT Secure Simple Pairing uses Diffie-Hellman
  - To prevent passive eavesdropping and forward secrecy
  - But asymmetric crypto is slow(er) + energy consuming
- Design decision for 4.0 no SSP at the time
  - BT 4.0 LE/Smart pairing is symmetric-cryptography based
  - Passive eavesdropping + delayed key compromise possible
- BT LE pairing with ECDH keys added in BT 4.2
  - Authenticated ECDH exchange of link key

### **Bluetooth – Tracking privacy**

- Each BT device has unique 48-bit device address
  - BT 1.0 required mandatory transmission, later dropped
- Discoverable / non-discoverable mode
  - Once discoverable, device's address is trackable
  - Address space (48b, manufacturer) can be brute-forced
- BT 4.0 (BT LE) allows for private device address
  - Public device address (used in key establishment)
     broadcasted only in encrypted form
  - Eavesdropper cannot track target device based on MAC

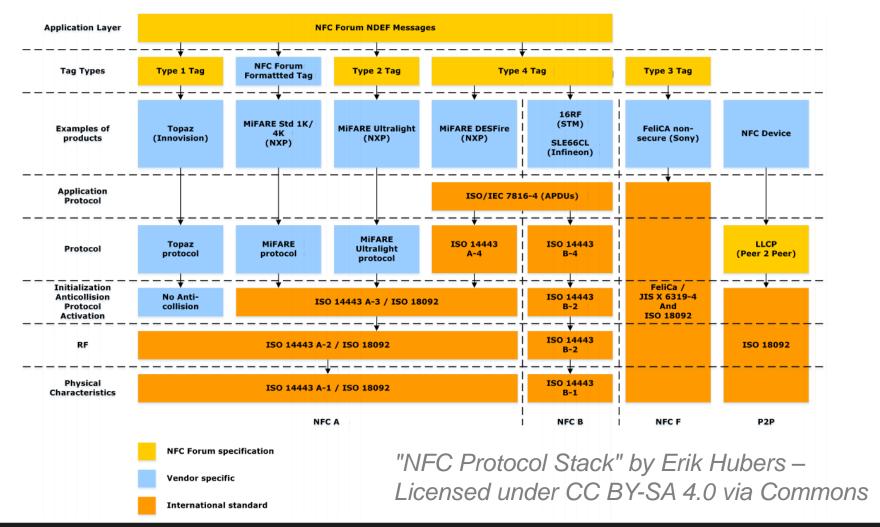
### **Bluetooth security tools**

- BlueSpam sends file via OBEX to active devices
- BlueHell <a href="http://sourceforge.net/projects/bluehell/">http://sourceforge.net/projects/bluehell/</a>
- Bluelog <a href="http://tools.kali.org/wireless-attacks/bluelog">http://tools.kali.org/wireless-attacks/bluelog</a>
  - Discover and log discoverable devices
- BlueMaho <a href="https://wiki.thc.org/BlueMaho">https://wiki.thc.org/BlueMaho</a>
  - Monitor devices, test known attacks
- Bluepot <u>https://github.com/andrewmichaelsmith/bluepot/</u>
  - Bluetooth Honeypot

### Bluetooth – (moral) summary

- One of early protocols intended for battery-powered "limited" devices (BT 1.x)
  - Cell phones that time, wireless headsets...
  - Vulnerabilities due to insecure defaults, proprietary crypto etc.
  - Typical for the period of its introduction (recall also WiFi's WEP...)
- More security features introduced (BT 2.x)
  - But also usability, adoption and intellectual property dispute issues
- Cooperation with other technologies, speed (BT 3.x)
  - Initial exchange and configuration, then faster WiFi transmissions
- Added focus on extra low energy devices (BT 4.x)
  - Secure by default, standardized crypto algorithms
  - Renewed interest and support, wider adoption




Wireless networks - Near Field Communication

# **NFC**

## **Near Field Communication (NFC)**

- Low-power, low-bandwidth communication
  - Initially for reader to tag communication
  - Possibility for tag emulation by device (=>device to device)
- Be aware of potential confusion of "NFC" term
  - 1. As general term (short distance communication)
  - 2. As NFC as specific implementation (NFC A, ISO18092)

### **NFC** standards



## **Security goals of NFC**

- 1. Physical presence proof
  - Only short distance communication possible
  - Locality of eavesdropping
- 2. Simplify key management for other protocols (OOB)
  - Uses physical presence proof
  - NFC → initial key → BT SSP → BT/WiFi transmission
  - NFC → IP, MAC, key → WiFi-Direct
- 3. Utilize secure hardware via NFC reader
  - Physical tag, token, cryptographic smart card...
- 4. Turn mobile phone into security token
  - Card emulation

### **NFC** communication modes

#### 1. Reader/writer mode

- Read (and/or write) NFC tags and stickers
- No security except physical presence bounding
- Usually only tag's/sticker's ID transmitted

#### 2. P2P mode

- exchange data with other NFC peer
- used by Android Beam between two NFC-enabled phones

#### 3. Card emulation

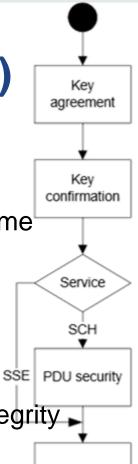
NFC device emulates tag/cryptographic smart card



### **NFC** mode: Card emulation

- NFC device emulates tag/cryptographic smart card
- 1. Card emulation mode
  - NFC device acts as NFC card
  - Emulated by separate chip in device secure element
    - Commands are relayed to real card
- 2. Host-based card emulation
  - Emulation without physical secure element
  - Phone provides functionality of smart card
    - Software "smart card"
  - Apple Pay, Google Pay...




### NFC as bootstrapping technology

- Out Of Band (OOB) exchange of initial secrets
  - Utilizes "physical" presence property of NFC
  - Simplifies initial key exchange
    - dependency on difficulty of eavesdropping/MitM
- Android Beam
  - Uses NFC to exchange 6-digits passcode for Bluetooth
- Samsung S-Beam
  - IP,MAC via NFC for WiFi-Direct
- •



### NFC security (NFC-SEC, NFC-SEC-01)

- "Shared Secret Service" (SSE)
  - Results in confirmed shared key between devices
  - Based on Elliptic Curve Diffie-Hellman key exchange scheme (ECDH-192b)
  - Not authenticated (MiTM possible, but physical location)
- "Secure Channel Service" (SCH)
  - Results in link key for secure channel derived from SSE
  - Uses AES and AES-CRT for key derivation, encryption, integrity
- Application-level security possible
  - Use NFC to exchange keys for Bluetooth/WiFi
  - Implement custom protocol between devices (if needed)
- http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-386.pdf
- http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-385.pdf



Termination

## **Fuzzing NFC stack**

- Direct emulation of one side
  - Card emulation mode
- MITM between reader and card (proxy)
  - Data modified in transport
  - No need to implement NFC stack fully
- Compromise of NFC stack allows for BT open
  - Android, BLUETOOTH\_ADMIN
- R. Miller, Exploring the NFC Attack Surface (2012)
  - http://media.blackhat.com/bh-us-12/Briefings/C\_Miller/BH\_US\_12\_Miller\_NFC\_attack\_surf ace WP.pdf

### NFC vs. Bluetooth

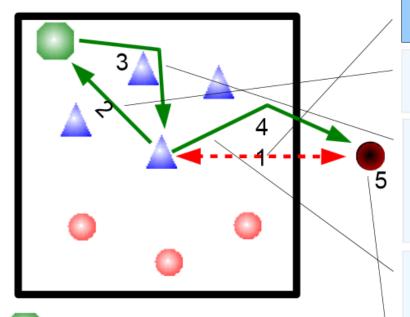
- NFC consumes significantly less energy
- NFC has significantly shorter maximum distance
  - Active→passive mode, advantage of physical bounding
- NFC is compatible with existing standards/devices
  - Passive RFID
- Bluetooth LE moved more towards energy-efficiency
  - But still only active-active mode



Wireless networks – Moving towards more networking

**ZIGBEE (IEEE 802.15.4)** 

### **ZigBee – characteristics**


- Standardized as IEEE 802.15.4
  - ZigBee Alliance maintains current version
  - Niche between Bluetooth and WiFi
- Low cost, low power, mesh networking
  - Low power transmissions, smaller bitrate (250 kbit/s)
  - 10-100 meters (active-active communication mode)
  - Focus on sensors and control automation
- Various radio bands (2.4GHz), routing specifications
- Supports star, tree and mesh network topology
  - E.g., wireless sensor networks, up to 65000 nodes



## ZigBee network

- ZigBee Coordinator (ZC) / PAN coordinator
  - One coordinator per network
  - Responsible for establishment of network
  - Serve as repository for security keys
- ZigBee Router (ZR) / Coordinator
  - Pass data from one node to another (routing scheme)
  - Intermediate node in network
- ZigBee End Device (ZED) / Network device
  - Cheaper to produce, end (sensor) node
  - Cannot relay communication => can sleep => battery life

### Joining ZigBee network



Trust Center



**End Device** 



End device star link

→ APSME commands

1: Device does unsecured join

2: Router sends device update to TC for authorization

3: TC prepares network key transport for joining device secured with pre-configured TC link key shared between TC and joining device and tunnels it to router

4: Router unpacks tunneled network key transport and sends to device unsecured at network layer

5: Device retrieves network key from network key transport using pre-configured TC link key

Source: https://docs.zigbee.org/zigbee-docs/dcn/09-5378.pdf

## ZigBee keys

- 1. Pre-installation of master keys
  - Network key (shared by all), Link key (between 2 devices)
- 2. Transport of link keys
  - Trust center (ZC) sends link key to both nodes
- 3. Certificate-based key establishment
  - Trust center (ZC) facilitate establishment, no keys send between device and ZC
  - Elliptic Curve MQV key agreement scheme

# ZigBee cryptography

- Mostly based on symmetric cryptography
  - AES with 128b keys, master key, link key, network key(s)
  - Uses AES-CCM\* mode for link layer encryption
    - encryption/integrity-only mode possible, MAC 4 bytes
- Certificate-based key establishment
  - Elliptic Curve MQV key agreement scheme
  - Requires certification authority



# SUMMARY

## Comparison: BT/NFC/ZigBee

- BT initially not for low-energy, but adapted (BT 4.x)
- NFC uses active-passive mode (locality)
- Pre-distributed keys vs. user interaction vs. locality
- ZigBee towards mesh networks
- Bluetooth LE also in direction of mesh networks

(Next lecture will focus more on WSNs)

## Similarity between protocols (security)

- Easy eavesdropping
- Usage of proprietary (weak) ciphers (at beginning)
- Incorrect implementations of (complicated) standard
- Reuse of key stream ("never" need 2<sup>20</sup> packets?)
- Problem of initial pairing (how to authenticate?)
- Brute-forcing usable/memorable/short PINs
- Problem of device tracking (unique device ID)
- Security generally getting better over time