
Week 08 - JSON, Designing the API, REST API, OpenAPI
Lukáš Grolig et al.

PB13 8 - Mo de rn Markup Language s and The ir A pp licatio ns

Outline
JSON
What is a Web API
Rest ful API
API Design (Resources, Act ions)
API Documentat ion (OpenAPI)
Filtering, Sort ing, Batching

JSON (JavaScript object notation)
Not a markup language
Used mainly for data exchange
Can be compressed as the whitespaces are ignored
Mimetype is application/json
More compact than XML
Based on subset of JavaScript (object notat ion)

JSON structure
Two basic st ructures:

1 . key-value pairs {"name": "John"}
Values can be: booleans, ints, st rings, objects, arrays and null
Usually implemented as: object, dictionary, hash-table

2. Ordered lists of value {"people": [{"name": "John"}, {"name": "Jane"}]
Usually implemented as: array, l ist, vector, sequence

Comments are not allowed

{ // object

"squadName": "Super hero squad", // string

"formed": 2016, // int

"active": true, // boolean

"disbanded": null, // null

"powerLevel": 9.6, // float

"nicknames": ["incredibles", "saviors", "a-team"], // array

"members": [// array

{

"name": "Molecule Man",

"age": 29,

"powers": ["Radiation resistance", "Radiation blast"]

},

{

"name": "Madame Uppercut",

"age": 39,

"powers": ["Million tonne punch"]

}

]

}

JSON Schema
It ’s often necessary for applicat ions to validate JSON objects, to ensure that required propert ies are present
and that addit ional constraints (such as a price never being less than one dollar) are met . Validat ion is
typically performed in the context of JSON Schema.

JSON Schema is expressed by a schema, which is just a JSON object
JSON Schema is maintained at http://json-schema.org
It describes your exist ing data format
It offers clear, human-readable, and machine-readable documentat ion
It provides complete structural validat ion, which is useful for automated test ing and validat ing client-
submitted data

http://json-schema.org/

It is recommended to use a generator
Results need to be further inspected

{

"$schema": "http://json-schema.org/draft-04/schema#",

"type": "object",

"properties": {

"squadName": {

"type": "string"

},

"powerLevel": {

"type": "number"

},

"nicknames": {

"type": "array",

"items": [

{

"type": "string"

}

]

...

https://json-schema.org/implementations.html#schema-generators

What is Web API?
Service that provides an interface such as REST API to other services,

which alters the service state or retrieves informat ion from the service.

API stands for the Applicat ion programming interface
Two main types of API's: Private, Partner and Public
Implemented in mult iple ways:

RPC
SOAP
REST
gRPC
GraphQL

Restful API
HTTP methods, URN's and Responses in JSON form the REST API.
REST is used to perform CRUD operat ions on data.
We use URI to specify a resource: /posts/1

We use HTTP verbs to specify what should happen to data VERB /posts/1

POST - Create - non-idempotent - repeated calls will create new resources
GET - Retrieve - safe, idempotent - repeated calls with same input produce the same result and don' t
modify DB
PUT - Update - idempotent - repeated calls with same input produce same result
DELETE - Delete - idempotent

Addit ional processing is specif ied by query parameters and handled by the server.

This includes sort ing, f iltering or limit ing the number of results.

/posts/1?sort=asc&limit=10

After processing the request , the server returns a response code and (opt ionally) data - response body.

The following list contains examples of using response codes in REST API:

200 - OK - General request success code
201 - CREATED - Generally used as a response to POST request - indicates successful creat ion of resource
400 - BAD REQUEST - Validat ion of request failed, i.e. unparsable data format , invalid range of parameters
404 - NOT FOUND - Resource at URI does not exist
500 - SERVER ERROR - Any unexpected runt ime error (Failed DB Connect ion, NullPointerExcept ion)

This should cover basic backend needs use-cases in this course.

For full list visit documentat ion.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

200 (OK)
Response should include a response body. The informat ion returned with the response is dependent on the
method used in the request , for example:

GET an ent ity corresponding to the requested resource is sent in the response;
HEAD the ent ity-header f ields corresponding to the requested resource are sent in the response without
any message-body;
POST an ent ity describing or containing the result of the act ion;
TRACE an ent ity containing the request message as received by the end server.

201 (Created)
A REST API responds with the 201 status code whenever a resource is created inside a collect ion or as a result
of a controller.

In response there is URI of the new resourse. Resourse MUST be created before sending response. If cannot be
created immediately proper resonse is 202 (Accepted).

202 (Accepted)
A 202 response is typically used for act ions that take a long while to process.

204 (No Content)
The 204 status code is usually sent out in response to a PUT, POST, or DELETE. It does not contain any body.

400 (Bad Request)
400 is the generic client-side error status, used when no other 4xx error code is appropriate. Errors can be
like malformed request syntax, invalid request message parameters, or decept ive request rout ing etc.
The client SHOULD NOT repeat the request without modif icat ions.

401 (Unauthorized)
A 401 error response indicates that the client t ried to operate on a protected resource without providing the
proper authorizat ion.

The response must include a WWW-Authent icate header f ield containing a challenge applicable to the
requested resource.

The client MAY repeat the request with a suitable Authorizat ion header f ield. If the request already included
Authorizat ion credent ials, then the 401 response indicates that authorizat ion has been refused for those
credent ials.

403 (Forbidden)
A 403 error response indicates that the client ’s request is formed correct ly, but the REST API refuses to honor
it , i.e. the user does not have the necessary permissions for the resource.

404 (Not Found)
The 404 error status code indicates that the REST API can’t map the client ’s URI to a resource but may be
available in the future. Subsequent requests by the client are permissible.

500 (Internal Server Error)
500 is the generic REST API error response. Most web frameworks automatically respond with this response
status code whenever they execute some request handler code that raises an except ion.

A 500 error is never the client ’s fault , and therefore, it is reasonable for the client to retry the same request
that t riggered this response and hope to get a different response.

API response is the generic error message, given when an unexpected condit ion was encountered and no
more specif ic message is suitable. It is not recommended to provide concrete informat ion to the client . You
can log an except ion and show some kind of ID to the user. This ID can be used when communicat ing with
app support .

Example

https://jsonplaceholder.typicode.com/posts/{id}/comments?sort=asc&limit=10

Let 's dissect the example
1 . https://jsonplaceholder.typicode.com -- HOST
2. /users -- A noun specifying the resource. Always use nouns, never verbs such as getAllUsers .
3. {id} -- Ident if ier. A real request should be subst ituted by an ident if ier such as 1 . If ommitted the

request should return all ent it ies from the resource.
4 . /comments -- Nested ent ity. In this case, request ing comments made by user with {id} .
5. ?sort=asc -- Asking for results to be sorted in ascending fashion.
6. &limit=10 -- Addit ional parameters are separated by & . limit=10 means to retrieve at most 10

results.

REST API Design
1 . nouns, not verbs
2. statelessness

See: https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md

https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md

REST API Design
Here are some examples of DO's and DONT's.

DO # DONT

GET /storage/1/files GET /get_files/1

GET /phone-devices/1 GET /phone_devices or GET /phoneDevices

POST /subscription POST /subscribe

GET /files/ GET /files

Communicating with REST API
Not ice a header of the request specifying how the server should interpret the body
Some libraries (such as got) handle this automatically
The code below is compat ible with browser runt ime, in node install node-fetch or got

fetch(

'https://jsonplaceholder.typicode.com/posts',

 {

method: 'POST',

body: JSON.stringify({

title: 'foo',

body: 'bar',

userId: 1,

 }),

headers: {

'Content-type': 'application/json; charset=UTF-8',

 },

 })

 .then((response) => response.json())

 .then((json) => console.log(json));

Communicating with REST API
To avoid "callback hell"

try {

const request = await fetch(

'https://jsonplaceholder.typicode.com/posts',

 {

method: 'POST',

body: JSON.stringify({

title: 'foo',

body: 'bar',

userId: 1,

 }),

headers: {

'Content-type': 'application/json; charset=UTF-8',

 },

 });

const data = await request.json();

} catch (e) {}

REST Responses
There are many standards for the response structure of REST API.

JSON:API
JSend
HAL
rfc7807

GET /posts/2

{

"status" : "success",

"data" : { "post" : { "id" : 2, "title" : "Another blog post", "body" : "More content" }}

}

https://jsonapi.org/
https://github.com/omniti-labs/jsend
https://stateless.group/hal_specification.html
https://datatracker.ietf.org/doc/html/rfc7807

REST API using Express

app.get('/user/:id', function (req, res) {

 res.send('user ' + req.params.id)

})

REST API using Express

var express = require('express')

var app = express()

app.use(express.json()) // for parsing application/json

app.use(express.urlencoded({ extended: true })) // for parsing application/x-www-form-urlencod

app.post('/profile', function (req, res, next) {

console.log(req.body)

 res.json(req.body)

})

Asynchronous REST API
Does NOT provide data immediately.
Returns 201 Created with Locat ion header of a new resource
Client performs pooling on the new resource
It SHOULD containt a progress status
Alternat ively there can be temporary resourse returning 303 (See other) when f inished

GET /api/v1/report/523

{

 "reportDate": "2021-01-01",

 "reportType": "COFFEE_SALES"

 "completed": true,

 "pdfUri": "https://s3.eu-central-1.amazonaws.com/.../report-123.pdf"

}

CORS
One more thing before writ ing your very own REST APIs

CORS was invented to facilitate serving REST API to different origins while preserving control and security.
The server can specify it in response headers, which origins are allowed to make requests.

If the browser detects that the server has not responded with the correct headers, it will cancel the request .

origin - The part of the URL from which the request originated e.g app.example.com (scheme, hostname,
port)

CORS is used as a substitution to JSONP (JSON wrapped with callback)

CORS - how it works
1 . The origin introduces itself with the OPTIONS method called pre-flight request .

Introduct ion includes what the client code intends to request (method and URI)
Browser does this automatically
Client is not even aware of this check (Unt il it stops working)

2. Server responds to OPTIONS request - informing the browser whether it will allow such request
3. Browser checks the response if method and origin are allowed
4. If the opt ion checks pass, then the actual request is made

Checks are also repeated on the actual request
A well-behaved server will only respond yes if it allows the subsequent request
Many servers allow any OPTIONS request and then refuse the actual one

CORS - a schematic

CORS - Implementation
There are many nuances to CORS which are not listed here.

The following will configure the express to use the correct headers and everything should work smoothly.

import express from 'express'

import cors from 'cors'

import app = express()

app.use(cors())

Body parser

const express = require('express')

const bodyParser = require('body-parser');

const cors = require('cors');

const app = express();

const port = 3000;

// Where we will keep books

let books = [];

app.use(cors());

// Configuring body parser middleware

app.use(bodyParser.urlencoded({ extended: false }));

app.use(bodyParser.json());

app.post('/book', (req, res) => {

console.log(req.body.title);

});

app.listen(port, () => console.log(`Hello world app listening on port ${port}!`));

Testing
For API development , where quick test ing and
prototyping following clients are useful:

Checkout Postman or Insomnia

https://www.postman.com/
https://insomnia.rest/

API Documentation
The OpenAPI Specification (OAS) defines a
standard, language-agnostic interface to RESTful
APIs which allows both humans and computers to
discover and understand the capabilities of the
service without access to source code,
documentation, or through network traffic
inspection.

Can be writ ten as YAML or JSON.

Can be used to generate API Documentat ion in
form of applicat ion Swagger.

Info Object
The object provides metadata about the API. The metadata MAY be used by the clients if needed, and MAY
be presented in edit ing or documentat ion generat ion tools for convenience.

title: Sample Pet Store App

description: This is a sample server for a pet store.

termsOfService: http://example.com/terms/

contact:

name: API Support

url: http://www.example.com/support

email: support@example.com

license:

name: Apache 2.0

url: https://www.apache.org/licenses/LICENSE-2.0.html

version: 1.0.1

Component Object - Schema
Holds a set of reusable objects for different aspects of the OAS. All objects defined within the components
object will have no effect on the API unless they are explicit ly referenced from propert ies outside the
components object .

components:

schemas:

GeneralError:

type: object

properties:

code:

type: integer

format: int32

message:

type: string

Category:

type: object

properties:

id:

type: integer

format: int64

name:

type: string

Server Object

servers:

- url: https://development.gigantic-server.com/v1

description: Development server

- url: https://staging.gigantic-server.com/v1

description: Staging server

- url: https://api.gigantic-server.com/v1

description: Production server

Path object

/pets:

get:

description: Returns all pets from the system that the user has access to

responses:

'200':

description: A list of pets.

content:

application/json:

schema:

type: array

items:

$ref: '#/components/schemas/pet

Path item object
Describes the operat ions available on a single path.

get:

description: Returns pets based on ID

summary: Find pets by ID

operationId: getPetsById

responses:

'200':

description: pet response

content:

'*/*' :

schema:

type: array

items:

$ref: '#/components/schemas/Pet'

default:

description: error payload

content:

'text/html':

schema:

$ref: '#/components/schemas/ErrorModel'

parameters:

That 's it .

Resources
https://en.wikipedia.org/wiki/URL
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://www.w3.org/2001/sw/wiki/REST
very recommended reading if you are serious about REST

https://en.wikipedia.org/wiki/URL
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers
https://www.w3.org/2001/sw/wiki/REST
https://martinfowler.com/articles/richardsonMaturityModel.html

