
Week 09 — React - components, local state and list processing
Lukáš Grolig et al.

Outline
Motivat ion
SPA
React conceptually
React basics
Some basic example
React nat ive
Next .js and SSR
Other frameworks

Motivation

Most of the t ime, there is a need to update the content of a website dynamically
Stat ic HTML pages are unusable here, as you would need to manually update the pages
To create a dynamic website, you could use a library like jQuery
Nowadays, jQuery is st ill used on legacy systems but has most ly been replaced

What is SPA?

SPA = Single Page Applicat ion
The app is running on the client .
Applicat ions are react ive and responsive to changes on the server.
Applicat ions are communicat ing with the server to show the latest informat ion or perform some state
change.
The same app can be used anywhere.
Takes more t ime to develop.

Single Page Applicat ion Server Side Applicat ion

can be writ ten in JS or language target ing JS or WASM

low consumption of server resources

more performance on client required

PWA is possible = apps can work without connect ion

no requirement for refresh upon change

can be writ ten in any lang

client receives only HTML

server resources heavy

not many requirements on client

applicat ion is fast to develop

no off line applicat ion (PWA)

every act ion needs reload

React.js

JavaScript library for building user interfaces.
Created to handle large-scale applicat ions like Facebook, Messenger, Instagram, Airbnb, Netf lix, and
others. Even Microsoft is using it .
They do a really good job delivering backward compat ibility.
React is only concerned with state management and rendering that state to the DOM, most of the t ime
addit ional libraries must be used
Uses Client Side Rendering - rendering pages direct ly in the browser using JavaScript
All logic, data fetching, templat ing and rout ing are handled on the client rather than the server.

UI = f(state)

Javascript syntax extension (JSX) / (TSX)

const element = <p>You clicked 0 times</p>

JSX is also called Javascript XML and is used to create React elements
Any JS expression can be put into JSX and is an expression itself
Using class is not permitted inside JSX, instead className is must be used

const element = <p className="clicksNumber">You clicked {count} times</p>

JSX is nothing more than syntact ic sugar for the React .createElement() funct ion.

<MyButton color="blue" shadowSize={2}>

Click Me

</MyButton>

React.createElement(

MyButton,

 {color: 'blue', shadowSize: 2},

'Click Me'

)

Components

Components let you split the UI into independent , reusable pieces, and think about each piece in
isolat ion.
Components are not limited to React , pure JS, and every other framework that uses them.
For example, implementat ion of Components in pure JS can be done using Web Components
Conceptually, components are like JavaScript funct ions. They accept arbit rary inputs (called “props”)
and return elements describing what should appear on the screen.

https://developer.mozilla.org/en-US/docs/Web/Web_Components

export const Counter = (props) => {

<div className="counter">

<p>You clicked {props.count} times</p>

</div>

}

// Rendering our component

<Counter count=5 />

This is the funct ional way of creat ing components in React , you could also use an ES6 class to define a
component

Components in React

The f irst let ter of React component must be capitalized, otherwise React will recognize it as an HTML tag
When React sees an element represent ing a user-defined component , it passes JSX att ributes and
children to this component as a single object . We call this object “props”.
Props are Read-Only, therefore a component must never modify its props.
While using TypeScript it is best pract ice to define an interface containing props

interface CounterProps {

count: number;

}

export function Counter(props: CounterProps) {}

Components in React

Methods can also be created inside a React component

export const Counter = () => {

const incrementCount = () => {

// method which increases count by 1

 }

return (

 div className="counter">

<p>You clicked {count} times</p>

<button onClick={incrementCount}>

 Increment count

</button>

 </div>

);

}

Component Lifecycle

Every component has a life cycle, which consists of 3 phases
First is mount ing, which is when the component is rendered for the t ime
Second is updat ing, which is every subsequent render
Third and last is unmount ing, which is when we remove the component from the DOM

The Effect hook is called in all 3 phases, but we will talk about it later in the lecture

Conditional render

export const Counter = ({count}) => {

if (count > 0) {

return <p>You clicked {count} times<p/>;

 }

return <p>You didn't click yet.<p/>;

}

How to prevent component render

export const WarningBanner = (props) => {

if (!props.warn) {

return null;

 }

return (

<div className="warning">

 Warning!

</div>

);

}

React hooks

Hooks let you use more of React ’s features without classes.
It allows you to use state and other React features without writ ing a class. Hooks are the funct ions that
"hook into" React state and lifecycle features from funct ion components.
Calling Hooks inside loops, condit ions, or nested funct ions is not permitted.
Instead, call hooks only from React funct ion components or from custom hooks

For example:

State Hook
Effect Hook
Context Hook
Reducer Hook
Layout effect hook

State hook

const [state, setState] = useState(initialState);

Init ially, the value of the state is set to init ialState
Value of the state is changed with setState
setState not only changes the value but tells each component that uses the given state to rerender

For example: Creates a button and a counter which increments with each click
If normal variables were used, the value would change, but the component wouldn' t rerender

function Counter() {

const [count, setCount] = useState(0);

return (

<div>

<p>You clicked {count} times</p>

<button onClick={() => setCount(count + 1)}>

 Click me

</button>

</div>

);

}

Effect hook

useEffect(func);

Adds an ability to perform side effects from a funct ion component
Calls passed funct ion after every render
Mult iple effect hooks can be placed inside one component

useEffect(func, [state]);

Alternat ively, the Effect hook can have a second parameter, which is a list of states
In this case, the funct ion is called every t ime a component using given states change
For example: The given funct ion will be called only after the state 'count ' changes

useEffect(() => {

document.title = `You clicked ${count} times`;

}, [count]);

Lists

In React t ransforming arrays into lists of elements is nearly ident ical.
You can build collect ions of elements and include them in JSX using curly braces {}.

const numbers = [1, 2, 3, 4, 5];

const listItems = numbers.map((number) =>

{number}

);

// later in the code

{listItems}

This example is bad because it doesn' t use key , more on the next slide
You can also put this code into a component and pass the numbers as props

Keys

In React , list keys help to ident ify which items have changed, are added, or are removed
The best way to pick a key is to use a string that uniquely ident if ies a list item among its siblings. For
example ID from data.
Item index can be also used as a key, but only as a last resort
Use index as a key only if these condit ions are met , otherwise your applicat ion may break your
applicat ion and display the wrong data

the list and items are stat ic
the items in the list have no ids
the list is never reordered or f iltered

Virtual DOM (VDOM)

It is based on assumption that virtual is faster than regular DOM.
The virtual DOM is a programming concept where an ideal, or “virtual”, representat ion of a UI is kept in
memory and synced with the “real” DOM by a library such as ReactDOM. This process is called
reconciliat ion.
When using React , at a single point in t ime you can think of the render() funct ion as creat ing a t ree of
React elements.
On the next state or props update, that render() funct ion will return a different t ree of React elements.
To eff icient ly update the UI to match the most recent t ree, React implements a heurist ic O(n) algorithm
based on two assumptions:

Two elements of different types will produce different t rees.
The developer can hint at which child elements may be stable across different renders with a key
prop.

Hooks and objects

Sometimes we need to store an object as a state instead of primit ive type
Changing objects propert ies does not t rigger rerender
Use the spread operator ... to "recreate" the object

Shipping the react app

Compile, minify typescript
Process, bundle css
Copy assets
Now your app can be served by any convent ional f ile server (nginx, caddy, apache)

Css in React

There are many ways to use CSS in React
Inline css

<p style={{ color: 'red'}}>You clicked {count} times</p>

Style object

const countColor = {

color: 'red'

};

<p style={countColor}>You clicked {count} times</p>

Import ing a CSS stylesheet

import './Styles.css';

Css modules - create a special css f ile with .module.css extension

import * as styles from "./counter.module.css"

<p className={styles.count}>You clicked {count} times</p>

All modules are locally scoped, therefore you don' t have to worry about name collision

React native

Cross-platform mobile framework that uses React js for building apps and websites that run on different
plat forms
Apps developed with React render HTML in UI while React Nat ive uses JSX for rendering UI, which is nothing
but javascript .
Hot Reloading - Making a few changes in the code of your app will be immediately visible during
development .
Takes more t ime to init ialize

Next.js and Remix

Framework built on top of React , which enables it to use server-side rendering and to generate stat ic
websites
Data Fetching allows you to render your content in different ways
ReactDomServer.renderToString(<div>p</div>);

Remix is another frontend based od React
It provides APIs and convent ions for server rendering, data loading, rout ing and more.
Bundling is the process of following imported f iles and merging them into a single f ile (bundle)

Resources
https://slides.com/lukasgrolig/pb138-introduct ion-to-react-72d059
https://react js.org/docs/faq-internals.html
https://react js.org/docs/reconciliat ion.html
https://react js.org/docs/introducing-jsx.html
https://react js.org/docs/jsx-in-depth.html
https://react js.org/docs/components-and-props.html
https://twit ter.com/dan_abramov/status/981712092611989509

https://slides.com/lukasgrolig/pb138-introduction-to-react-72d059
https://reactjs.org/docs/faq-internals.html
https://reactjs.org/docs/reconciliation.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/jsx-in-depth.html
https://reactjs.org/docs/components-and-props.html
https://twitter.com/dan_abramov/status/981712092611989509

Resources cont.
https://react js.org/docs/hooks-overview.html
https://react js.org/docs/hooks-effect .html
https://react js.org/docs/lists-and-keys.html
https://robinpokorny.medium.com/index-as-a-key-is-an-ant i-pattern-e0349aece318
https://www.javatpoint .com/react js-vs-reactnat ive
https://www.gatsbyjs.com/docs/how-to/styling/css-modules/
https://developers.google.com/web/updates/2019/02/rendering-on-the-web#csr

https://reactjs.org/docs/hooks-overview.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/lists-and-keys.html
https://robinpokorny.medium.com/index-as-a-key-is-an-anti-pattern-e0349aece318
https://www.javatpoint.com/reactjs-vs-reactnative
https://www.gatsbyjs.com/docs/how-to/styling/css-modules/
https://developers.google.com/web/updates/2019/02/rendering-on-the-web#csr

