
Open Source Introduction
Contribution, Management, People …

(and how it changed in the last years)

PB173, Milan Broz <xbroz@fi.muni.cz>

Licensed under
Creative Commons Attribution-ShareAlike 4.0 International

(CC BY-SA 4.0)

Open Source / Free Software
It's free as in freedom – think free speech, not free beer.

Open source is "Culture by choice"

• GNU definition: www.gnu.org/philosophy/free-sw.html

• OSI definition: opensource.org/osd

Open? Free? It means ...

• Zero-cost software?

• Right to use, modify or even fork source code?

Without releasing changed source code?

Even in commercial or proprietary projects?

It depends => Choosing appropriate License

History: E.S.Raymond – The Cathedral and the Bazaar
Recent: K.Fogel – Producing Open Source Software, producingoss.com
… and many others texts like opensource.guide

https://www.gnu.org/philosophy/free-sw.html
https://opensource.org/osd
https://duckduckgo.com/?q=The+Cathedral+and+the+Bazaar
https://producingoss.com/
https://opensource.guide/

Licenses
 License examples (code / documentation)

GNU GPL, GNU FDL, CC, MIT license, BSD, Apache, ...
www.gnu.org/licenses/license-list.html

 Early decision

Change later (often impossible) – all contributors must agree

 CLA – Contributor License Agreement

Required in some projects

Example: OpenSSL, www.openssl.org/policies/cla.html

 Transfer of Copyright

Example: FSF – Free Software Foundation projects
www.gnu.org/prep/maintain/html_node/Copyright-Papers.html

… more info in “Open source licenses” talk later.

https://www.gnu.org/licenses/license-list.html
https://www.openssl.org/policies/cla.html
https://www.gnu.org/prep/maintain/html_node/Copyright-Papers.html

Copyright, Trademarks, Patents
 NDA – Non-Disclosure Agreement

 Protect confidential, proprietary or trade secret information
 Improper use of copyrighted code, trademarks

 Can be fixed by removal, rewrite or rename of the project
 Patent encumbered ideas (US patents)

 Cannot be fixed
Use defensive thinking to avoid this problem in the first place

 Expensive lawsuit is usually not the option
 Neither the license for a patent use

… more info in “Open source licenses” talk later.

Proprietary vs Open Source
Open source projects (OSS), usually:

• Release (code) early, release it often
... in reality, it depends on project authors attitude (and business)

• If there's no reason for it to be private, it should be public
... in reality, sometimes decision in private discussions

• Cannot manage developers directly
compare: employee in a company versus independent contributor

• (Git) forks
Anyone can fork code and start own derived project
The problem is the loss of users and developers, not the fork itself

• Benevolent dictator model (final decision = one person)

• Consensus based decision (voting, discussion)

• Community
... in reality, who forms the community?

Proprietary vs Open Source
Close source and proprietary software

• Common for "mainstream" companies and corporations

• Open source is taken seriously internally

• But often just as a threat (to revenues)

• Rigorous project planning and management

• deadlines (promises to customer => money)

• Market share, competition

• Intellectual property protection

• Decision behind closed doors

• Medical, aerospace, military, …
How to develop critical systems?

Could [project] work for us for free?
How to monetize "free" users?

… versus ...
Sponsoring projects, conferences.

Contributing to project directly (code)
or indirectly (access to hw, cloud time).

Project management,
people and roles

 Upstream -> downstream: distributions, releases (own maintainers)

 Small project – one person + few contributing members

 Large projects, more roles (... in theory), usually combined

 Project lead (or committee)

 Developers, commiters

 Code reviewers

 QA & Test developers

 Bug triage

 Mailing list, wiki, IRC, social network administrators

 Release handling

 Documentation and translation

Infrastructure & Tools
Have no fear of perfection, you’ll never reach it. – Salvador Dali

 SCM – Source Code Management
 Use git today, even for local and small projects

 History, branches, merge of contributions

 Tags (generated releases), bisection (bug hunting), …

 Bug / Issue tracker (JIRA, GitHub, GitLab, Bitbucket, ...)

 Allow easy bug reports (no complicated registration)

 Active use by both users and developers

 Mailing list, social networks
 Announces, discussions, bug reports

 All-in-one solution
 GitHub and GitLab are popular today

Infrastructure & Tools
In anything at all, perfection is finally attained not when

there is no longer anything to add, but when there is no longer
anything to take away. – Antoine de Saint-Exupery

 Instant messaging, social networks
 Nice to have but require active maintenance

 CI: Continuous integration (GitHub actions, GitLab piplines, Jenkins)

 Also CI/CD – Continuous Integration & Delivery (= Deployment)

 Build farms, regression testing, test frameworks

 Without good testsuite it is waste of effort (actively maintain tests)

… for more info, see talks later
 External code quality tools

 Static analysis (Coverity, LGTM, and similar)

 Review tools
 patch review, API/ABI stability

Documentation
• Release documentation
 FAQ – Frequently Asked Questions

 Useful in discussion – direct link to an answer

 API documentation
 Can be generated (Doxygen or similar tool)

 API use examples

 Manual pages, online manuals

 Contribution guidelines
 code style, how to participate and report issues)

 Security policy
 How to report security issue, CVEs, coordinated disclosure

Communication (& Politics)
Have You Tried Turning It Off And On Again? – The IT Crowd

 Your project must appear alive, communication is a must
 Building trust takes long time
 You are what you write

 Mailing list archives, chat logs, commit messages are public

 Many people will search information about you

 No need to respond to everything
 Successful project has users (= Community) handling a lot of questions

 Avoid ad hominem arguments
 It is almost always ad hominem fallacy

 Use emotions with care
 Make apologies if needed (nobody is perfect)

Communication
(& Psychology)

 Parkinson's law of triviality
 Unproductive discussions

 Bikeshedding, bikeshed.com

 Trolling
 Upsetting people by using extraneous or off-topic arguments

 Be honest
 Even the most boring question can uncover very interesting problem

 If abusing lists, link to FAQ helps (... students & easy lab solutions ;-)

 Different point of view prevents tunnel vision

 Multicultural environment
 Sarcasm, irony and humor can be understood differently

 But it is your project, your work and your fun :-)

Parkinson shows how you can go in to the board
of directors and get approval for building

a multi-million or even billion dollar atomic power
plant, but if you want to build a bike shed

you will be tangled up in endless discussions.

https://bikeshed.com/

Communication
(& Psychology)

 Happy users are usually quiet
 But bug reports is excellent metric for project success

 Difficult people
 They can be excellent developers with poor social skills

(or even personality disorders)

 You will lose many excellent ideas if you just ignore them

 In extreme cases remember Dunning-Kruger effect
/rationalwiki.org/wiki/Dunning-Kruger_effect

http://rationalwiki.org/wiki/Dunning-Kruger_effect

Bad Communication ...

Following examples from recent history are kind of thought-provoking.

They are lift out of context intentionally. Compare it with today.

Note recent focus on viable communities, diversity & inclusion.

Bad Communication ...
excellent contribution to code vs ad hominem arguments

> Have you read it? Once again, it is about IPv6. [...]
Everything, but really everything, you say is complete garbage.
People like you are the reason I try my hardest to avoid having anything to do
with Fedora development.
Go, dig a hole and sit in it. It's a more worthwhile use of your time.

–
Ulrich Drepper, 2007
[lead contributor and maintainer of glibc (GNU C library)]

www.redhat.com/archives/rhl-devel-list/2007-October/msg01073.html

http://www.redhat.com/archives/rhl-devel-list/2007-October/msg01073.html

Communication ...
Linux kernel list (in the past)

There are a number of very good Linux kernel developers,
but they tend to get outshouted by a large crowd of arrogant fools.
Trying to communicate user requirements to these people is a waste of time.
They are much too 'intelligent' to listen to lesser mortals.

– Jack O'Quin, Linux audio developer

lwn.net/Articles/131776/

Note
• Most of the communication is very friendly.
• Volume of the kernel list is extreme high (hundreds of posts per day).

https://lwn.net/Articles/131776/

Communication ...
”Old” Linus' style (sometimes)

Dmitry Kakurin wrote:
> When I first looked at Git source code two things struck me as odd:
> 1. Pure C as opposed to C++. No idea why.
> Please don't talk about portability, it's BS.
YOU are full of bullshit.
C++ is a horrible language. It's made more horrible by the fact that a lot of
substandard programmers use it, to the point where it's much much easier to
generate total and utter crap with it. Quite frankly, even if the choice of C were to
do *nothing* but keep the C++ programmers out, that in itself would be a huge
reason to use C.
...
Linus Torvalds, 2007
harmful.cat-v.org/software/c++/linus

 Surprisingly, strong words help to find a quick way to fix problems.
But there are better ways!

 Also a nice example starting a flame unrelated to the git project.

https://harmful.cat-v.org/software/c++/linus

>> "Mauro, SHUT THE FUCK UP!"
>
> This one crosses the line. There's no non-offensive way to tell a geek
> "you are wrong", but this isn't even trying. Bad Linus!

You know what? Not my proudest moment. I was really upset.
...
Neil Brown here somewhere earlier said
 "So my personal perspective on what it means to be responsible is:
 Don't flame: include the facts, exclude the emotion."
and I can't overstate how much I disagree. You do need the factual
part too, but "exclude the emotion" is not good either.
...
Linus Torvalds, 2013
lwn.net/Articles/559178/, also read lwn.net/Articles/559061/

Since 2018, Linux kernel code of conduct to improve contributions culture:
www.kernel.org/doc/html/latest/process/code-of-conduct.html

Communication ...

https://lwn.net/Articles/559178/
https://lwn.net/Articles/559061/
https://www.kernel.org/doc/html/latest/process/code-of-conduct.html

OSS project examples
(projects of various scopes from small to large)

 Util-linux – github.com/karelzak/util-linux
 Large set of utilities for Linux

 Many contributors, one maintainer

 OpenSSL – www.openssl.org
 Widely used cryptographic library

 Many contributors, small group of maintainers, CLA required

 Ceph – ceph.io
 Distributed storage platform based on object store

 Chief architect, maintainers, The Ceph foundation (industry members)

 Linux kernel – www.kernel.org
 One of the biggest OSS projects

 One maintainer, several sub-tree maintainers, many contributors

https://github.com/karelzak/util-linux
https://www.openssl.org/
https://ceph.io/
https://www.kernel.org/

Q/A

