
Open Source Development Course

Lifecycle of open source contribution, project management

Vojtěch Trefný

vtrefny@redhat.com

16. 3. 2022

7 twitter.com/vojtechtrefny

� github.com/vojtechtrefny

ß gitlab.com/vtrefny

https://twitter.com/vojtechtrefny
https://github.com/vojtechtrefny
https://gitlab.com/vtrefny


Open source contribution lifecycle



Contribution lifecycle

1. Issue

Reporting your own bug or RFE or picking

an existing issue to work on.

2. Fork

Getting the code to work in your own

“workspace”.

3. Development

The easy part :-)

4. Tests

CI test results and/or manual testing.

5. Code review

Code review by the maintainer and making

changes.

6. Rebase & merge

Adjust to the current master and merging

the changes.

1 / 34



Disclaimer

• These topics are usually different for

each project, always check contributor

guidelines for specific use cases and

workflows.

• This part of the lecture is highly based

on GitHub workflow. It applies to

similar services like GitLab as well, but

projects that don’t use these

“advanced” code hosting services and

rely mostly on emails and mailing list

are very different.

https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md

2 / 34

https://github.com/tensorflow/tensorflow/blob/master/CONTRIBUTING.md


Issue trackers

• Code hosting services like GitHub and GitLab offer integrated issues trackers.

• Some projects use separate tools like Bugzilla or JIRA for tracking bugs and RFEs.

• Issues allow you to discuss the bug/feature with other developers and users.

• Starting with an issue or bug report is not necessary but not doing that increases

the risk of your contribution being ignored or rejected.

3 / 34



GitHub Issues

• GitHub helps first-time contributors to discover good first issues to help the

project with.

https://github.com/microsoft/vscode/contribute

4 / 34

https://github.com/microsoft/vscode/contribute


GitHub Issues

→

• Do not forget to assign the issue to yourself to let others know you are working on

it.

5 / 34



Fork

• A fork is your own “copy” of the upstream repository.

• On GitHub (and similar sites) having a fork is needed to be able to open a pull

request later.

→ →

6 / 34



Fork

• It’s a good practice to clone the upstream repository and add your fork as a

second remote.

• This will help you when rebasing to the latest upstream version.

$ git remote -v

origin git@github.com:rhinstaller/dasbus.git (fetch)

origin git@github.com:rhinstaller/dasbus.git (push)

vtrefny_GH git@github.com:vojtechtrefny/dasbus.git (fetch)

vtrefny_GH git@github.com:vojtechtrefny/dasbus.git (push)

7 / 34



Pull request

• After committing your changes, simply push them to your fork and open a pull

request (in GitLab terminology a merge request) using the link provided by the git

push hook.

$ git push vtrefny_GH master_my-feature

...

remote:

remote: Create a pull request for ’master_my-feature’ on GitHub by visiting:

remote: https://github.com/vojtechtrefny/dasbus/pull/new/master_my-feature

remote:

To github.com:vojtechtrefny/dasbus.git

* [new branch] master_my-feature -> master_my-feature

8 / 34



Pull request

9 / 34



Automated tests

• If the project has CI configured, automated tests will run on your PR.

• Multiple different tests and checks, including static analysis and builds, may be

applied.

• Some projects can reject or ignore PRs with failing tests.

• More about tests and CI next week.

10 / 34



Code review

• During code review, other project contributors and maintainers will review your

changes to either approve or reject them or request changes.

• When changes are requested you can either change the existing commits or add

fix commits that will be squashed later.

• At least one approve review from a project maintainer is usually needed for the

change to be merged.

• For more complicated changes, long back and forth reviews with multiple

discussions are not uncommon.

11 / 34



Code review

12 / 34



Rebase & merge

• If the CI and review phases take a long time, merge conflicts can occur, especially

in more active projects.

• git can solve some conflicts automatically, but you might need to resolve some

manually.

• Pull requests with conflicts cannot be merged.

13 / 34



Release

• After the contribution is merged, it should be included in the next release.

• Depending on project release schedule and development state, this might happen

immediately or take few weeks or months.

• At some stages, projects might not accept other contributions than bug fixes and

new features might be accepted only for development branches/releases or not at

all.

14 / 34



Release life cycle

1. Planning

Gathering use cases. Product and

objectives definition.

2. Pre-Alpha

Early development, usually not meant for

public.

3. Alpha/Beta

Pre-releases for testing purposes and early

adopters.

4. Release candidate (RC)

Candidate for the stable release.

5. Stable release

Stable release targeted for end-users.

6. Mature project/Maintenance

Maintenance and bug fixing. EOL or

continuous development.

15 / 34



Fedora release cycle

Rawhide starts Fedora Linux 37 development 2022-02-08

Proposal submission deadline (System Wide Changes) 2022-06-28

Proposal submission deadline (Self Contained Changes) 2022-07-19

Completion deadline (testable) 2022-08-09

Branch Fedora Linux 37 from Rawhide 2022-08-09

Change Checkpoint: 100 % Code Complete Deadline 2022-08-23

Beta Release 2022-09-13

Final Freeze 2022-10-04

Final 2022-10-18

Rawhide starts Fedora Linux 38 development 2022-08-09

Fedora Linux 37 EOL 2023-11-14

https://fedorapeople.org/groups/schedule/f-37/f-37-key-tasks.html

16 / 34

https://fedorapeople.org/groups/schedule/f-37/f-37-key-tasks.html


Fedora release cycle

Planning

Rawhide starts Fedora Linux 37 development 2022-02-08

Proposal submission deadline (System Wide Changes) 2022-06-28

Proposal submission deadline (Self Contained Changes) 2022-07-19

Pre-alpha
Completion deadline (testable) 2022-08-09

Branch Fedora Linux 37 from Rawhide 2022-08-09

Alpha/Beta
Change Checkpoint: 100 % Code Complete Deadline 2022-08-23

Beta Release 2022-09-13

RC Final Freeze 2022-10-04

Stable release Final 2022-10-18

Maintenance
Rawhide starts Fedora Linux 38 development 2022-08-09

Fedora Linux 37 EOL 2023-11-14

17 / 34



Software dependencies



Software dependencies

• Using existing libraries and tools can save a lot of time when building a new

project.

• Managing third party dependencies can be tricky, but when done properly, it’s

better and safer than writing code from scratch.

• When working with dependencies it’s crucial to make sure your

• code is up to date,

• system is secure,

• service/project works as intended.

18 / 34



Types of dependencies

Direct dependencies

Libraries that your code directly depends

upon. These require some effort to control

but are sort of manageable.

Transitive dependencies

Dependencies of the dependencies.

Usually quite hard to control.

Third party dependencies

A special kind. These are the dependencies

that you don’t own and that are not part of

your organization.

19 / 34



Transitive dependencies

pocketlint

- polib [Any]

- pylint [Any]

- astroid [>=2.5.1,<2.6]

- lazy-object-proxy [>=1.4.0]

- wrapt [>=1.11,<1.13]

- isort [>=4.2.5,<6]

- mccabe [>=0.6,<0.7]

- toml [>=0.7.1]

20 / 34



Dependency management

• Dependencies are usually managed using a project or language-specific tool which

takes care of resolving and pulling in third-party dependencies, including transitive

dependencies.

• Dependencies can be downloaded during the build (for build and built-in

dependencies) or project or service installation or deployment.

• Dependencies can be available either in a public or project-specific repository.

• Some dependency management can also detect required dependencies from the

code.

21 / 34



Package repositories

• Different package repositories exist for
different programming languages or
frameworks:

• Python Package Index (PyPI) for

Python with pip tool.1

• Rust crate registry for Rust with

cargo tool.2

• Node Package Manager (NPM) with

npm tool.3

1
https://pypi.org

2
https://crates.io

3
https://www.npmjs.com

22 / 34

https://pypi.org
https://crates.io
https://www.npmjs.com


PyPI

setup(

name=’pocketlint’, version=’0.20’,

description=’Support for running ...

url=’https://github.com/...

install_requires=[’pylint’, ’polib’],

...

)

23 / 34



PyPI

$ pip install pocketlint

Collecting pocketlint

Using cached pocketlint-0.20-py3-none-any.whl (32 kB)

Collecting pylint

Using cached pylint-2.7.2-py3-none-any.whl (342 kB)

Collecting polib

Using cached polib-1.1.0-py2.py3-none-any.whl (25 kB)

...

Collecting astroid<2.6,>=2.5.1

Using cached astroid-2.5.1-py3-none-any.whl (222 kB)

Collecting wrapt<1.13,>=1.11

Using cached wrapt-1.12.1.tar.gz (27 kB)

Collecting lazy-object-proxy>=1.4.0

Using cached lazy_object_proxy-1.5.2-cp39-cp39-manylinux1_x86_64.whl (53 kB)

Installing collected packages: mccabe, isort, toml, wrapt, lazy-object-proxy,

astroid, pylint, polib, pocketlint 24 / 34



What could go wrong?



Missing package that “broke” the Internet

In 2016 Azer Koçulu unpublished more than 250 of his packages from NPM, including

a very popular left-pad package which many big JavaScript projects (including

React) depended on.4 5

4
https://www.theregister.com/2016/03/23/npm_left_pad_chaos/

5
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm

25 / 34

https://www.theregister.com/2016/03/23/npm_left_pad_chaos/
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm


What could go wrong?

Security vulnerabilities (CVE)

Old versions of dependencies with unfixed

vulnerabilities.

Version conflicts

Circular dependencies and dependency hell.

Missing/removed dependency

Packages removed from repositories.

API/ABI changes

New versions with backwards-incompatible

changes.

Broken third-party dependencies

Bugs in code that is not under your control.

License conflicts

Incompatible open source licenses.

26 / 34



Version conflicts

• Two or more packages depending on

the same package but a different

version.

• Unsolvable if multiple versions of the

same package cannot be installed

together.

• Sometimes referred to as “dependency

hell” (especially in relation to

distributions and solving of

dependencies during package

installation or upgrade).

https://research.swtch.com/version-sat 27 / 34

https://research.swtch.com/version-sat


API/ABI stability

• Backward incompatible changes

should happen only in major versions.

• Keeping compatibility with multiple

API versions require additional code

and tests.

• For compiled languages with dynamic

libraries, ABI stability is also crucial.

Rebuilding the entire project because

of a single dependency ABI change

might not be possible.

https://abi-laboratory.pro/?view=timeline&l=cryptsetup

28 / 34

https://abi-laboratory.pro/?view=timeline&l=cryptsetup


CVEs

• Both security vulnerabilities and “normal” bugs

in dependencies can easily compromise your

application.

• Recent bugs like Heartbleed6in OpenSSL

showed that many essential opensource

libraries are understaffed and have many

unfixed vulnerabilities.

• Bundled dependencies needs to be closely

monitored for CVEs and quickly updated.

6
https://heartbleed.com/

29 / 34

https://heartbleed.com/


Log4Shell

• Security vulnerability (remote code execution) in

Log4j, Java logging framework, discovered in

November 2021 (disclosed in December). 7 8

• Affected many projects including AWS, Cloudflare and iCloud. Up to 93 % of

cloud environments were affected.

• Similarly to Heartbleed, Log4Shell again draw attention to open source projects

that are heavily depended on but not properly staffed and financed.9

• Log4Shell being a way smaller project than OpenSSL and often being bundled in

biggers project also showed how hard is to track and manage dependencies.

7
https://www.nukib.cz/cs/infoservis/hrozby/1781-upozorneni-na-zranitelnost-apache-log4j-log4shell/

8
https://www.nukib.cz/cs/infoservis/hrozby/1785-nukib-vydava-reaktivni-opatreni-v-souvislosti-se-zranitelnosti-log4shell/

9
https://gizmodo.com/after-log4j-open-source-software-is-now-a-national-sec-1848356403

30 / 34

https://www.nukib.cz/cs/infoservis/hrozby/1781-upozorneni-na-zranitelnost-apache-log4j-log4shell/
https://www.nukib.cz/cs/infoservis/hrozby/1785-nukib-vydava-reaktivni-opatreni-v-souvislosti-se-zranitelnosti-log4shell/
https://gizmodo.com/after-log4j-open-source-software-is-now-a-national-sec-1848356403


Dead and abandoned projects

• Especially smaller projects can very quickly

become unmaintained or abandoned.

• Upstream source can be even completely

lost after service or domain expiration.

• Upstream can move to a different fork or

cease to exist without replacement.

• For actively maintained projects, older

stable versions can be abandoned long

before your product EOL.

https://www.open-fcoe.org/git

31 / 34

https://www.open-fcoe.org/git


License compatibility

• Not all free and/or opensource licenses are compatible.

• Some licenses require the result to be released under the “stronger” license.

• Different rules might apply for different types of dependencies – copying code vs.

linking vs. calling.

• More about licenses in the Open source licenses lecture.

32 / 34



License compatibility

https://www.gnu.org/licenses/gpl-faq.html#AllCompatibility 33 / 34

https://www.gnu.org/licenses/gpl-faq.html#AllCompatibility


Questions



Questions

Thank you for your attention.

https://github.com/crocs-muni/open-source-development-course

34 / 34

https://github.com/crocs-muni/open-source-development-course

	Open source contribution lifecycle
	Software dependencies
	Dependency management

	What could go wrong?
	Questions

