
Open Source Development Course

Continuous integration and deployment (CI/CD)

Vojtěch Trefný

vtrefny@redhat.com

23. 3. 2022

7 twitter.com/vojtechtrefny

� github.com/vojtechtrefny

ß gitlab.com/vtrefny

https://twitter.com/vojtechtrefny
https://github.com/vojtechtrefny
https://gitlab.com/vtrefny


Pipeline



CI/CD Pipeline

• Steps that need to be performed to test and deliver a new version of the software.

• Defines what needs to be done: when, how and in what order.

• Steps can vary for every project.

• Multiple pipelines or steps can run in parallel.

1 / 30



CI/CD Pipeline

1. Testing environment

Preparation of the environment to run the

tests: deploying containers, starting VMs...

2. Static Analysis

Finding defects by analyzing the code

without running it.

3. Code style

Checking for violations of the language or

project style guides.

4. Build

Building the project from source.

5. Tests

Running project test suite or test suites.

6. Packaging and Deployment

Building source archives, packages or

container images.

2 / 30



Testing Environment



Testing Environment

1. Preparation of VMs/containers to

run the tests

We might want to run tests in different

environments on multiple different

distributions or architectures.

2. Installation of the test dependencies

Test dependencies are usually not covered

by the project dependencies.

3. Getting the code

Clone the PR or get the latest code from

the master branch.

3 / 30



Static Analysis



Static Analysis

• Tools that can identify potential bugs by analyzing the code without running it.

• Can detect problems not covered by the test suite – corner cases, error paths etc.

• Coverity (C/C++, Java, Python, Go. . . )1

• Cppcheck (C/C++)2

• Pylint (Python)3

• RuboCop (Ruby)4

1
https://scan.coverity.com

2
http://cppcheck.sourceforge.net/

3
https://www.pylint.org

4
https://docs.rubocop.org

4 / 30

https://scan.coverity.com
http://cppcheck.sourceforge.net/
https://www.pylint.org
https://docs.rubocop.org


Coverity

Error: USE AFTER FREE (CWE-825):

libblockdev-2.13/src/plugins/lvm-dbus.c:1163: freed_arg: "g_free"

frees "output".

libblockdev-2.13/src/plugins/lvm-dbus.c:1165: pass_freed_arg: Passing freed

pointer "output" as an argument to "g_set_error".

# 1163| g_free (output);

# 1164| if (ret == 0) {

# 1165|-> g_set_error (error, BD_LVM_ERROR, BD_LVM_ERROR_PARSE,

# 1166| "Failed to parse number from output: ’%s’",

# 1167| output);

5 / 30



LGTM

https://lgtm.com/projects/g/storaged-project/blivet-gui/

6 / 30

https://lgtm.com/projects/g/storaged-project/blivet-gui/


Runtime Analysis

• Tools that can identify bugs during runtime.

• Needs the code to actually run, either through manual testing or when running
the test suite.

• Valgrind – memory management and threading bugs5

• ASan – AddressSanitizer – memory management bugs (buffer overflow, dangling

pointers...). Part of the LLVM Analyzers project, integrated into gcc and clang6

5
https://valgrind.org/

6
https://github.com/google/sanitizers/wiki/AddressSanitizer

7 / 30

https://valgrind.org/
https://github.com/google/sanitizers/wiki/AddressSanitizer


Code Style



Code style and style guides

• Coding conventions – naming, code lay-out, comment style. . .

• Language specific (PEP 87), project specific (Linux kernel coding style8) or

library/toolkit specific (GTK coding style9).

• Automatic checks using specific tools (pycodestyle) or (partially) by the static

analysis tools.

7
https://www.python.org/dev/peps/pep-0008/

8
https://www.kernel.org/doc/html/v5.11/process/coding-style.html

9
https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en

8 / 30

https://www.python.org/dev/peps/pep-0008/
https://www.kernel.org/doc/html/v5.11/process/coding-style.html
https://developer.gnome.org/programming-guidelines/stable/c-coding-style.html.en


Linux kernel coding style

https://www.kernel.org/doc/html/v5.11/process/coding-style.html

9 / 30

https://www.kernel.org/doc/html/v5.11/process/coding-style.html


Python and PEP 8

• Automatic code style checking tools exist for the Python PEP 8 style code.

• pycodestyle10(formerly pep8) is used for checking/enforcing PEP 8 in many

Python applications.

• black11can be used to automatically format Python code in a PEP 8 compliant

way.

• Static analysis tools like pylint or pyflakes also check for some PEP 8 style

violations.

10
https://github.com/PyCQA/pycodestyle

11
https://github.com/psf/black

10 / 30

https://github.com/PyCQA/pycodestyle
https://github.com/psf/black


Python and PEP 8

$ pycodestyle-3 blivetgui/blivetgui.py

blivetgui/blivetgui.py:23:80: E501 line too long (80 > 79 characters)

blivetgui/blivetgui.py:30:1: E402 module level import not at top of file

11 / 30



Documentation style

• Documentation might be checked in the same way code is.

• Similar style documents and tools for checking documentations exist (for example

PEP 25712and pydocstyle13for Python).

• In some cases wrong or missing documentation (docstrings in the code) can lead

to a broken build or missing features.

12
https://www.python.org/dev/peps/pep-0257/

13
http://www.pydocstyle.org

12 / 30

https://www.python.org/dev/peps/pep-0257/
http://www.pydocstyle.org


Build



Build

• Building the project, a preparation to run the test suite.

• Depends on language – mostly no-op for interpreted languages, more complicated

for compiled ones.

• Build in the CI environment can detect issues with dependencies.

• Builds on different architectures can help detect issues related to endianness or

data types sizes.

13 / 30



Tests



Tests

• Running tests that are part of the project.

• New tests should be part of every change to the codebase.

• New features require new unit and integration tests.

• Bug fixes should come with a regression test.

• For some project (like libraries) running test suites of their users might be an

option.

14 / 30



Coverage

• Code coverage (or Test coverage) represents how much of the code is covered by

the test suite.

• Usually percentual value that shows how many lines of the code were “visited” by

the test.

• Generally a check that all functions and branches are covered by the suite.

• Used as a measure of the test suite “quality”.

15 / 30



Coverage

Name Stmts Miss Branch BrPart Cover Missing

--------------------------------------------------------------------------------

a.py 487 9 178 11 97% 206, 268, 377->376, 393->392, 418,

448, 452, 460, 660, 729, 746,

889->891, 891->894

b.py 220 8 74 8 95% 81, 173, 193->197, 279, 340, 342, 346

c.py 19 9 8 2 44% 35-36, 50->48, 53, 60-70

d.py 5 0 6 1 91% 31->exit

e.py 46 0 4 0 100%

...

--------------------------------------------------------------------------------

TOTAL 3600 1477 1381 100 56%

16 / 30



Coverage

• Automated coverage tests might be part of the CI.

• Decrease in coverage can be viewed as a reason to reject contribution to the

project.

17 / 30



Delivery and Deployment



Packaging and publishing

• Delivery – releasing new changes quickly and regularly (daily, weekly...).

• Deployment – delivery with automated push to production, without human

interaction.

• Usually after merging the changes, not for the PRs.

• Building packages, container images, ISO images. . .

• Built packages can be used for further testing (manually by the Quality Assurance

or in another CI infrastructure) or directly pushed to production or included in

testing/nightly builds of the project.

18 / 30



CI Tools

Demo



GitHub Actions

• Automation framework integrated into GitHub.

• Does not cover only CI but also CD (publishing

packages on various services and deploying on

many public clouds) and project and issue

management.

• Free for all public repositories, limited and paid

options for private projects.

• https://github.com/features/actions

19 / 30

https://github.com/features/actions


GitHub Actions

20 / 30



GitHub Actions

21 / 30



GitLab CI

• CI/CD automation integrated into GitLab.

• Configuration is done with a YAML file in the

repository.

• Pipleines/tests can run either on infastructure

provided by GitLab or on custom runners.

• https://docs.gitlab.com/ee/ci/

22 / 30

https://docs.gitlab.com/ee/ci/


GitLab CI

23 / 30



Jenkins

• Automation system, not a “true” CI/CD tool.

• Can automatically run given tasks on a node or

set of nodes.

• Tasks can be started on time basis or triggered

by an external event (like a new commit or PR

on GitHub).

• https://jenkins.io/

24 / 30

https://jenkins.io/


Fedora CI

• Complex CI system with the task to deliver an

“Always Ready Operating System”.

• Packages are tested after every change and

gated if the CI pipeline fails.

• The goal is to prevent breaking the

distribution. CI will stop the broken package

before it can affect the distribution.

25 / 30



Fedora CI

26 / 30



Packit

• Tool for integrating upstream projects to

Fedora.

• RPM packages are automatically built on every

pull request.

• New releases can be automatically built and

pushed to Fedora.

27 / 30



Packit

28 / 30



Travis CI

• Used to be the most popular CI service for

open source products.

• Can be integrated into your projects on GitHub

and GitLab.

• Configured using .travis.yml file in the

project

• Unfortunately Travis drastically limited free

plans for open source projects in 202014.

• https://travis-ci.com

12
https://blog.travis-ci.com/2020-11-02-travis-ci-new-billing

29 / 30

https://travis-ci.com
https://blog.travis-ci.com/2020-11-02-travis-ci-new-billing


Questions



Questions

Thank you for your attention.

https://github.com/crocs-muni/open-source-development-course

30 / 30

https://github.com/crocs-muni/open-source-development-course

	Pipeline
	Testing Environment
	Static Analysis
	Code Style
	Build
	Tests
	Delivery and Deployment
	CI Tools   Demo
	Questions

