
WINDOWS FORMS 
Ondřej Pavlica 

PV178 

Spring 2022 



Coming up 

• Theory 
• General info 
• History lesson 
• Alternatives 

• Practical use 
• Setting up Visual Studio 
• Standard controls 
• Application logic 
• Dialogs 
• Custom controls 
• Scaling 
• Asynchronous code 

• Q&A + Bonuses (if time permits) 



General information 

• Windows only 

• Event-based 

• Very beginner-friendly 
• Drag & Drop 

• It Just Works™ 

• Very senior-unfriendly 
• Limited UI scaling 

• No adaptive font sizes 

• Very low-level for advanced scenarios 

• Esoteric bugs 

 



WinForms don‘t need to be ugly 

MetroFramework MaterialSkin 



History lesson 

• Oldest C# UI library (2002, in beta since 2000 - .NET 1.0) 
• Therefore has a lot of skeletons in its closet (to maintain backwards-compatibility) 

• Internally uses a lot of Win32 API calls 
• Rendering native form controls (checkboxes, radio buttons, etc.) 

• Window management (e.g., moving to foreground) 

• Uses GDI / GDI+ for rendering 
• Not maintained anymore by MS 

• A lot of known bugs 

• CPU rendering only – no HW acceleration, performance hit 



History lesson 

• Open-source rewrite in .NET Core starting in 2018 
• More-or-less feature-complete by .NET Core 3.1 

• DPI scaling 

• Modern dialog windows 

• Still Windows-only 

• API compatibility with the .NET 3 version of WinForms (still pretty bad) 

• Still rendered by the ancient GDI+ library 

• No multiplatform port planned (as of yet) 
• This use case will be (most probably) be covered by MAUI (former Xamarin.Forms) 

 



Real use cases 

• Quick&Dirty UIs 
• Prototypes 

• Internal tools 

• Software where a UI is an afterthought 

• Legacy support 
• Yes, a lot of companies still support Windows XP or even older systems 

• Student projects  



Alternatives - 
Windows 
WPF (Windows Presentation Foundation) 

• Declarative approach (XML files) 

• HW acceleration (DirectX) 

 

WinUI (UWP) 

• Windows 10+ 

• Prettier, but more limited WPF (access to 
low-level system APIs) 

• Look up „XAML Controls Gallery“ in 
Windows Store 



Alternatives - 
Unix 
Mono WinForms 

• A port of .NET 4 WinForms 

• Not feature-complete 

• In maintenance mode 

• Can often run existing WinForms code 
without modifications 



Alternatives - 
Multiplatform 
Avalonia 

• Open-source multi-platform WPF 

• Mobile platforms in beta 

 

UNO Platform 

• Multi-platform UWP 

• Can run in a web browser 
(WebAssembly) 

 

MAUI 

• UNO Platform, but from Microsoft 

• Faster, less mature 



WINFORMS IN PRACTICE 



Setting up Visual Studio (Installer) 



Visual Studio Tour 

• Creating a WinForms project 

• Toolbox 

• Document outline 

• Form editor 

• Control properties & events 



VS Tour + Standard Controls 



Application Logic 

• Based on handling events 

• Switching between UI and code-behind: (Shift +) F7 

• Don‘t touch the generated code (*.Designer.cs) if you are not sure about what 
you‘re doing 

 

• Don‘t put business logic in the code-behind, interact with business logic 
classes instead! 
• This is a common bad practice even in software companies 

• The code becomes unmaintainable very quickly 

• There is a high potential of (even unintentionally) storing business data in the UI controls 



Application Logic 



Dialogs 



Custom Controls 

• Composition 
• Creating a new UserControl and then drag&dropping existing controls onto it 

• Quite easy to create, reduces repetition of common UI groupings 

• Progress bar with status text 

• Listbox with button controls 

• Creating an entirely new control 
• Quite low-level 

• Extending an existing control 

• Differently styled button (e.g., material design) 

• Creating a new control from scratch 

• OnPaint event + drawing basic shapes (points, lines, rectangles, …) 



Creating an Entirely New Control 

• Out of scope of this lecture 

• Taught in PB069 



Custom Controls - Composition 



Scaling 

• Smart usage of different types of panels combined with: 
• Docking 

• Anchoring 

• Major disadvantage – no sane out-of-the-box font scaling 
• Has to be implemented at a pretty low level – using Graphics.MeasureString 



Panel 
• A container for a group of controls 

• Primarily used to scale or move this 
group of controls together 



FlowLayoutPanel 
• Used for stacking controls after each 

other in a certain direction 



TableLayoutPanel 
• More fine-tuned control of placements 

• Columns and rows sized by: 
• Number of pixels 

• Percentage of available space 

• Contents of the given cell 



Anchor 

• Controls‘ position is computed relative 
to the parent‘s position 

• This property defines the sides of 
parent from which the position is 
computed 

• Behavior when resizing: 
• Zero sides – relative position to all sides 

stays the same (great for centering) 

• 1-2 adjacent sides – the distances (in px) 
to the chosen sides stay the same 

• 2 non-adjacent, any 3+ sides – the 
control is stretched, if possible (e.g., 
AutoSize = true) 



Dock 
• Dock property - „Sticking“ and 

stretching a control to fit one of the 
parent container‘s sides 

• Does not play nice with non-docked 
controls in the same container 

• Docking priority is set by the order of 
controls in the document tree 



Scaling 



Asynchronous Code 

• Problem 1 – You can access UI only from the UI thread 
• Writing to the UI elements gets more complicated 

• Solution: control.Invoke() and BeginInvoke() 

• BeginInvoke() is fire&forget – less deadlock-prone 

• Problem 2: Events have only synchronous delegates 
• Therefore async/await parallelism can only be done by void-returning methods 

• No completion signaling 

• Exceptions get ignored 

• Solution: Side channels in the event handler code 

• Beware using ConfigureAwait(false) -> after awaiting, you must use Invoke() to access UI 



Asynchronous Code 



Further study 

• PB069 course 

• Microsoft docs 

• CodeProject.com – best resource for obscure parts of WinForms 

• Experimenting  



Q&A 



THANK YOU FOR 
ATTENDING 


