WINDOWS FORMS

Ondrej Pavlica

PV178
Spring 2022

Coming up

e Theory
e General info

« History lesson
« Alternatives

e Practical use

« Setting up Visual Studio _ Microsoft®
- Standard controls | ' N ET
Application logic e

Dialogs Windows Forms

Custom controls
Scaling
Asynchronous code

« Q&A + Bonuses (if time permits)

General information

« Windows only
« Event-based

« Very beginner-friendly
e Drag & Drop
e It Just Works™

« Very senior-unfriendly
e Limited Ul scaling

« No adaptive font sizes

« Very low-level for advanced scenarios
« Esoteric bugs

It just works.

WinForms don't need to be ugly

MetroFramework MaterialSkin

MaterialSkin Demo

metro framework O

GE1 TABPAGEZ MATERIALTABP
Tiles & Butions Scroll & Progress Labels & Text

LISTVIEW
Options MessageBox Legacy

materialCheckbox1

MetroTile MetroBution MetroLink

materialCheckbox2
Normal Button Blorrmal [k

materialCheckbox3

Styled Link .

R D materialCheckbox4
: I Highlighted Button

Switch Th... |

Disabled Button

SECONDARY PRIMARY

History lesson

 Oldest C# Ul library (2002, in beta since 2000 - .NET 1.0)
« Therefore has a lot of skeletons in its closet (to maintain backwards-compatibility)

» Internally uses a lot of Win32 API calls
« Rendering native form controls (checkboxes, radio buttons, etc.)

« Window management (e.g., moving to foreground)

« Uses GDI /GDI+ for rendering
« Not maintained anymore by MS

« A lot of known bugs
« CPU rendering only —no HW acceleration, performance hit

History lesson

e Open-source rewrite in .NET Core starting in 2018
« More-or-less feature-complete by .NET Core 3.1

e DPlscaling

« Modern dialog windows

o Still Windows-only

« APl compatibility with the .NET 3 version of WinForms (still pretty bad)
« Still rendered by the ancient GDI+ library

« No multiplatform port planned (as of yet)
» This use case will be (most probably) be covered by MAUI (former Xamarin.Forms)

Real use cases

» Quick&Dirty Uls
e Prototypes

e Internal tools
 Software where a Ul is an afterthought

e Legacy support
* Yes, a lot of companies still support Windows XP or even older systems

e Student projects ©

Alternatives -
Windows

WPF (Windows Presentation Foundation)

Declarative approach (XML files)
HW acceleration (DirectX)

WinUl (UWP)

Windows 10+

Prettier, but more limited WPF (access to
low-level system APIs)

Look up ,XAML Controls Gallery" in
Windows Store

WinUl

The modern native Ul platform of
Windows.

Alternatives -
Unix

Mono WinForms

A port of .NET 4 WinForms
Not feature-complete

In maintenance mode

Can often run existing WinForms code
without modifications

Alternatives -
Multiplatform

Avalonia

Open-source multi-platform WPF

Mobile platforms in beta

UNO Platform
Multi-platform UWP

Canrunin a web browser
(WebAssembly)

MAUI
UNO Platform, but from Microsoft

Faster, less mature

WINFORMS IN PRACTICE

Setting up Visual Studio (Installer)

Madifying — Visual Studio Community 2022 — 17.0.0

Workloads

Individual components

Web & Cloud (4)

©

A

ASPNET and web development
Build web applications using ASP.NET Core, ASP.NET,

HTML/JavaScript, and Containers including Docker supp...

Python development

Editing, debugging, interactive development and source
control for Python.

Desktop & Mobile (5)

Location

Mobile development with NET
Build cross-platform applications for i05, Android or
Windows using Xamarin.

Desktop development with C++

Build modern C++ apps for Windows using tools of your
choice, including M3VC, Clang, CMake, or M3Build.

Language packs

Installation locations

N

Azure development

Azure SDKs, tools, and projects for developing cloud apps
and creating rescurces using NET and .MET Framework....

Node.js development
Build scalable network applications using Node,js, an
asynchronous event-driven JavaScript runtime.

NET desktop development
Build WPF, Windows Forms, and console applications
using C#, Visual Basic, and F# with .MET and .NET Frame...

Universal Windows Platform development
Create applications for the Universal Windows Platform
with C#, VB, or optionally C++.

Installation details

» Visual Studio core editor
» ASP.NET and web development
~ .NET desktop development

w Included

+

MET desktop development tools

+ NET Framework 4.7.2 development tools

o

C# and Visual Basic

= Optional

o EEQg

Development tools for NET

MET Framework 4.8 development tools

Blend for Visual Studio

Entity Framework 6 tools
NET profiling tocls
IntelliCode

Just-In-Time debugger

Live Share

MLMET Model Builder

F# desktop language support

PreEmptive Protection - Dotfuscator

C:\Program Files\Microsoft Visual Studis\2022\Community

Total space required 1001 KB
By continuing, you agree to the license for the Visual Studio edition you selected. We also offer the ability to download other software with Visual Studic.

This software is licensed separately, as set out in the 3rd Party Notices or in its accompanying license. By continuing, you also agree to those licenses. Install while downloading - Close

Visual Studio Tour

« Creating a WinForms project
e Toolbox

e Document outline

e Form editor

 Control properties & events

VS Tour + Standard Controls

Application Logic

« Based on handling events
« Switching between Ul and code-behind: (Shift +) F7

« Don't touch the generated code (*.Designer.cs) if you are not sure about what
you're doing

« Don't put business logic in the code-behind, interact with business logic
classes instead!
e Thisis a common bad practice even in software companies

« The code becomes unmaintainable very quickly
 There is a high potential of (even unintentionally) storing business data in the Ul controls

Application Logic

Dialogs

Custom Controls

« Composition
» Creating a new UserControl and then drag&dropping existing controls onto it
« Quite easy to create, reduces repetition of common Ul groupings
 Progress bar with status text
« Listbox with button controls

» Creating an entirely new control
 Quite low-level

 Extending an existing control
« Differently styled button (e.g., material design)
« Creating a new control from scratch
« OnPaint event + drawing basic shapes (points, lines, rectangles, ...)

Creating an Entirely New Control

» Out of scope of this lecture

« Taught in PBo6g

Custom Controls - Composition

Scaling

« Smart usage of different types of panels combined with:
 Docking

« Anchoring

« Major disadvantage — no sane out-of-the-box font scaling
« Has to be implemented at a pretty low level — using Graphics.MeasureString

Panel

A container for a group of controls

Primarily used to scale or move this
group of controls together

BottomRight E

BottornRight

FlowLayoutPanel

Used for stacking controls after each
other in a certain direction

TableLayoutPanel

« More fine-tuned control of placements

« Columns and rows sized by:

Number of pixels
Percentage of available space

Contents of the given cell

® Form1i

AutoSize

® Formi

AutoSize

Anchor

Controls' position is computed relative
to the parent's position

This property defines the sides of
parent from which the position is
computed

Behavior when resizing:

- Zero sides —relative position to all sides
stays the same (great for centering)

1-2 adjacent sides — the distances (in px)
to the chosen sides stay the same

2 non-adjacent, any 3+ sides — the
control is stretched, if possible (e.g.,
AutoSize = true)

Tep

Bottom + Left

Top + Left + Right

Bottorm + Left

Top + Left + Right

Dock

Dock property -, Sticking™ and
stretching a control to fit one of the
parent container's sides

Does not play nice with non-docked
controls in the same container

Docking priority is set by the order of
controls in the document tree

Document OQutline - Form1

B &

4 [F] |[Form1 Form
[zt fill Button
(] right Button
(@] left Button
(8] bottom Button

(] top Button

Document Qutline - Form 1

B 4 &

4 [Z Form1 Form
(=] fill Button
[xt] bottom Button
[xt] top Button

(] right Button

Scaling

Asynchronous Code

« Problem 1-You can access Ul only from the Ul thread
 Writing to the Ul elements gets more complicated

« Solution: control.Invoke() and Begininvoke()
« Beginlnvoke() is fire&forget — less deadlock-prone

 Problem 2: Events have only synchronous delegates
 Therefore async/await parallelism can only be done by void-returning methods

« No completion signaling
« Exceptions get ignored
 Solution: Side channels in the event handler code
« Beware using ConfigureAwait(false) -> after awaiting, you must use Invoke() to access Ul

Asynchronous Code

Further study

e PBo6g course
« Microsoft docs

« CodeProject.com — best resource for obscure parts of WinForms

« Experimenting ©

THANKYOU FOR

ATTENDING

