
Compiled by Milan Negovan • www.AspNetResources.com • Last update: 2007-12-17

Restriction Operators

Where Enumerates the source sequence and yields those elements for which the

predicate function returns true.

Projection Operators

Select Enumerates the source sequence and yields the results of evaluating the

selector function for each element.

SelectMany Performs a one-to-many element projection over a sequence.

IEnumerable<Order> orders = customers

 .Where(c => c.Country == "Denmark")

 .SelectMany(c => c.Orders);

Partitioning Operators

Skip Skips a given number of elements from a sequence and then yields the

remainder of the sequence.

SkipWhile Skips elements from a sequence while a test is true and then yields the

remainder of the sequence. Once the predicate function returns false for an

element, that element and the remaining elements are yielded with no further

invocations of the predicate function.

Take Yields a given number of elements from a sequence and then skips the

remainder of the sequence.

TakeWhile Yields elements from a sequence while a test is true and then skips the

remainder of the sequence. Stops when the predicate function returns false or

the end of the source sequence is reached.

IEnumerable<Product> MostExpensive10 =

 products.OrderByDescending(p => p.UnitPrice).Take(10);

Join Operators

Join Performs an inner join of two sequences based on matching keys extracted

from the elements.

GroupJoin Performs a grouped join of two sequences based on matching keys extracted

from the elements.

var custOrders = customers

 .Join(orders, c => c.CustomerID, o => o.CustomerID,

 (c, o) => new { c.Name, o.OrderDate, o.Total });

var custTotalOrders = customers

 .GroupJoin(orders, c => c.CustomerID, o => o.CustomerID,

 (c, co) => new { c.Name, TotalOrders = co.Sum(o => o.Total) });

Concatenation Operators

Concat Enumerates the first sequence, yielding each element, and then it enumerates

the second sequence, yielding each element.

Ordering Operators

OrderBy, OrderByDescending,

ThenBy, ThenByDescending

Make up a family of operators that can be composed to order

a sequence by multiple keys.

Reverse Reverses the elements of a sequence.

IEnumerable<Product> orderedProducts = products

 .OrderBy(p => p.Category)

 .ThenByDescending(p => p.UnitPrice)

 .ThenBy(p => p.Name);

Grouping Operators

GroupBy Groups the elements of a sequence.

IEnumerable<IGrouping<string, Product>> productsByCategory = products

 .GroupBy(p => p.Category);

Set Operators

Distinct Eliminates duplicate elements from a sequence.

Except Enumerates the first sequence, collecting all distinct elements; then

enumerates the second sequence, removing elements contained in the first

sequence.

Intersect Enumerates the first sequence, collecting all distinct elements; then

enumerates the second sequence, yielding elements that occur in both

sequences.

Union Produces the set union of two sequences.

IEnumerable<string> productCategories =

 products.Select(p => p.Category).Distinct();

Conversion Operators

AsEnumerable Returns its argument typed as IEnumerable<T>.

Cast Casts the elements of a sequence to a given type.

OfType Filters the elements of a sequence based on a type.

ToArray Creates an array from a sequence.

ToDictionary Creates a Dictionary<TKey,TElement> from a sequence (one-to-one).

 LINQ Standard Query Operators

Compiled by Milan Negovan • www.AspNetResources.com • Last update: 2007-12-17

ToList Creates a List<T> from a sequence.

ToLookup Creates a Lookup<TKey, TElement> from a sequence (one-to-many).

string[] customerCountries = customers

 .Select(c => c.Country).Distinct().ToArray();

List<Customer> customersWithOrdersIn2005 = customers

 .Where(c => c.Orders.Any(o => o.OrderDate.Year == 2005)).ToList();

Dictionary<string,decimal> categoryMaxPrice = products

 .GroupBy(p => p.Category)

 .ToDictionary(g => g.Key, g => g.Max(p => p.UnitPrice));

ILookup<string,Product> productsByCategory = products

 .ToLookup(p => p.Category);

IEnumerable<Product> beverages = productsByCategory["Beverage"];

List<Person> persons = GetListOfPersons();

IEnumerable<Employee> employees = persons.OfType<Employee>();

ArrayList objects = GetOrders();

IEnumerable<Order> ordersIn2005 = objects

 .Cast<Order>()

 .Where(o => o.OrderDate.Year == 2005);

Equality Operators

SequenceEqual Checks whether two sequences are equal by enumerating the two source

sequences in parallel and comparing corresponding elements.

Element Operators

DefaultIfEmpty Supplies a default element for an empty sequence. Can be combined

with a grouping join to produce a left outer join.1

ElementAt Returns the element at a given index in a sequence.

ElementAtOrDefault Returns the element at a given index in a sequence, or a default value if

the index is out of range.1

First Returns the first element of a sequence.
2

FirstOrDefault Returns the first element of a sequence, or a default value if no

element is found.¹

Last Returns the last element of a sequence.
 2

LastOrDefault Returns the last element of a sequence, or a default value if no element

is found.¹

Single Returns the single element of a sequence. An exception is thrown if the

source sequence contains no match or more than one match.

SingleOrDefault Returns the single element of a sequence, or a default value if no

element is found.1

1 The default value for reference and nullable types is null.
2
Throws an exception if no element matches the predicate or if the source sequence is empty.

Customer customer = customers.First(c => c.Phone == "111-222-3333");

Customer customer = customers.Single(c => c.CustomerID == 1234);

Generation Operators

Empty Returns an empty sequence of a given type.

Range Generates a sequence of integral numbers.

Repeat Generates a sequence by repeating a value a given number of times.

int[] squares = Enumerable.Range(0, 100).Select(x => x * x).ToArray();

long[]allOnes = Enumerable.Repeat(-1L, 256).ToArray();

IEnumerable<Customer> noCustomers = Enumerable.Empty<Customer>();

Quantifiers

Any Checks whether any element of a sequence satisfies a condition. If no predicate

function is specified, simply returns true if the source sequence contains any

elements. Enumeration of the source sequence is terminated as soon as the result

is known.

All Checks whether all elements of a sequence satisfy a condition. Returns true for an

empty sequence.

Contains Checks whether a sequence contains a given element.

bool b = products.Any(p => p.UnitPrice >= 100 && p.UnitsInStock == 0);

IEnumerable<string> fullyStockedCategories = products

 .GroupBy(p => p.Category)

 .Where(g => g.All(p => p.UnitsInStock > 0))

 .Select(g => g.Key);

Aggregate Operators

Aggregate Applies a function over a sequence.

Average Computes the average of a sequence of numeric values.

Count

LongCount

Counts the number of elements in a sequence.

Max Finds the maximum of a sequence of numeric values.

Min Finds the minimum of a sequence of numeric values.

Sum Computes the sum of a sequence of numeric values.

int count = customers.Count(c => c.City == "London");

