PV204 Security Technologies

Overview of the subject and grading

Petr Švenda & Milan Patnaik & Lukasz Chmielewski & Vít Bukač & Václav Lorenc & Milan Brož & Antonín Dufka

People

- Main contact: Petr Švenda (CRoCS@FI MU)
 - svenda@fi.muni.cz, @rngsec
 - https://crocs.fi.muni.cz/people/svenda
- Other lectures and seminars
 - Lukasz Chmielewski, Milan Brož (MU), Milan Patnaik (U. Madras), Vašek Lorenc (HERE Technologies), Víťa Bukač (HERE)
- Spring 2022 semester is in person (fingers crossed)
 - Sometimes pre-recorded/online lectures
 - Interactive lectures + Q&A lecture sessions
 - In-person standard seminars

Spring 2022 semester organization

- Lectures
 - Different format based on the lecturer (in person, pre-recorded, online)
 - Typically
 - Pre-recorded video, uploaded into IS on Friday previous week
 - Watch before Tuesday next week, fill questionnaire
- In-person lecture & Q&A sessions (every Tuesday from 12:00)
 - Discussion of topics, interactive activities, flipped classroom style
 - Come, it will be fun ☺
- In-person hands-on seminars (every Thursday 10/14:00)
 - Mandatory attendance (time flexibility in picking the seminar group)

Covered topics

- Authentication, password handling, secure IM
- Trusted elements, side channels
- Microarchitectural attacks Meltdown, Spectre
- Secure hardware, smartcards, JavaCards
- Trusted Boot, TPM, secure enclaves
- Analysis of compromised systems, malware
- File and disk encryption, key management in cloud

Planned lectures (tentative)

- 15.2. Authentication and passwords (Petr Svenda)
- 22.2. Secure authentication and authorization (Petr Svenda)
- 1.3. Smartcards, JavaCards programming and management (Petr Svenda)
- 8.3. Disk/file encryption (Milan Broz)
- 15.3. Side-channels and constant-time (Lukasz Chmielewski)
- 22.3. Cryptocurrencies I. Bitcoin basics (Petr Svenda)
- 29.3. Cryptocurrencies II related topics (Petr Svenda)
- 5.4. Trusted boot Hardware Security Modules and Cloud (Petr Svenda)
- 12.4. Micro-Architectural Attacks I. (Spectre) (Milan Patnaik)
- 19.4. Micro-Architectural Attacks II. (Cache Timing, Prime+Probe, Meltdown (Milan Patnaik)
- 26.4. Blackbox malware analysis (Vit Bukac)
- 3.5. Thread modelling / Memory analysis (Vaclav Lorenc)
- 10.5. Project presentation (Antonin Dufka)

Previous knowledge requirements

- Basic knowledge of (applied) cryptography and IT security
 - symmetric vs. asymmetric cryptography, PKI
 - block vs. stream ciphers and usage modes
 - hash functions
 - random vs. pseudorandom numbers
 - basic cryptographic algorithms (AES, DES, RSA, EC, DH)
 - risk analysis
- Basic knowledge in formal languages and compilers
- User-level experience with Windows and Linux OS
- Practical experience with C/C++/Java language

Organization

- Lectures + seminars + assignments + project + exam
- Assignments
 - 6 regular homework assignments
 - Individual work of each student
 - Lab A403 available to students (except teaching hours)
- Project
 - Team work (2-3 members)
 - Details in pv204_project_2022.pdf (IS)
 - Secure system design and implementation
- Exam
 - Drill questions, Oral exam

Plagiarism

- Assignments
 - Must be worked out independently by each student
- Projects
 - Must be worked out by a team of 3 students
 - Every team member must show his/her contribution (description of workload distribution, git commits, activity during presentation)
- Plagiarism, cut&paste, etc. is not tolerated
 - Plagiarism is use of somebody else words/programs or ideas without proper citation
 - IS helps to recognize plagiarism
 - If plagiarism is detected student is assigned -5 points
 - In more serious cases the Disciplinary committee of the faculty will decide

http://dkdavis.weebly.com

Project organization

- Groups of three students
- Project defense / report
- Theme: Selection of applied cryptography topics
- GitHub repository, commits from all participants required

Grading

- Credits: 2+2+2 credits, plus 2 if exam
- Points [Notice minimal number of points required!]
 - Questionnaire from lectures (10) [no minimum limit]
 - Assignments (30) [minimum 15 required]
 - Project (30) [minimum 15 required]
 - Exam (30) [must know basics] + 95% correct from drill questions
 - Occasional bonuses ©
- Grading 100 (max)
 - $A \ge 90$, B ≥ 80, C ≥ 70, D ≥ 60, E ≥ 50, F < 50
 - Z ≥ 50 (including minimum numbers from Assignments and Project)

Attendance

- Lectures
 - Attendance not obligatory, but highly recommended
 - Interactive Q&A sessions
- Seminars
 - Attendance obligatory
 - Absences must be excused at the department of study affairs
 - 3 absences are OK (even without excuse)
- Assignments and projects
 - Done during student free time (e.g., at the dormitory)
 - Access to network lab and CRoCS lab possible

Discussion forum in Information System

- Discussion forum in Information System (IS)
 - https://is.muni.cz/auth/cd/1433/jaro2022/PV204/
- Mainly for discussion among the students
 - Not observed by stuff all the time!
 - Write us email if necessary please
- What to ask?
 - OK to ask about ambiguities in assignment
 - NOT OK to ask for the solution
 - NOT OK to post your own code and ask what is wrong

Course resources

- Lectures (video, PDF) available in IS
 - IS = Information System of the Masaryk University
 - Lecture questionares in IS opened till end of Monday
- Assignments (what to do) available in IS
 - Submissions done also via IS (homework Vault)
- Additional tutorials/papers/materials from time to time will also be provided in IS
 - To better understand the issues discussed
- Recommended literature
 - To learn more …

