
https://crocs.fi.muni.cz @CRoCS_MUNI

PV204 Security technologies

Secure channel protocols: From basic key establishment via Signal

protocol to Noise framework

Petr Švenda svenda@fi.muni.cz @rngsec

Centre for Research on Cryptography and Security, Masaryk University

Please provide any corrections and comments here (thank you!):

https://drive.google.com/file/d/1iupyVe8Iz39XJshZ2qV2prGPhtERsmqS/view?usp=sharing

https://drive.google.com/file/d/1iupyVe8Iz39XJshZ2qV2prGPhtERsmqS/view?usp=sharing

https://crocs.fi.muni.cz @CRoCS_MUNI2 PV204 - Secure channel protocols

Key Establishment

Diffie-Hellman ECDH

Perfect Forward Secrecy

Future Secrecy

Password-authenticated

key exchange (PAKE)

Off-The-Record protocol (IM)

Signal protocol (IM)

Extended Access Control

ECDH+PACE

BAC

Electronic passports

Backward Secrecy

Noise framework

https://crocs.fi.muni.cz @CRoCS_MUNI

SECURITY PROTOCOLS

3 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

Security protocols

• Security protocol = composition of cryptoprimitives

• “Security protocols are three line programs that people still manage to get

wrong.” (R. Needham)

• Many different aspects of security protocols

– Entity authentication

– Key agreement, establishment or distribution

– Data encryption and integrity protection

– Non-repudiation

– Secure multi-party computation (SMPC)

– …

PV204 - Secure channel protocols4

https://crocs.fi.muni.cz @CRoCS_MUNI

Authentication (AUTH) vs. Key establishment (KE)

• Early literature called protocols used to establish session keys as

“authentication protocols”

• Session keys can be established without authentication

– Example: non-authenticated Diffie-Hellman

• Authentication is also possible without session keys

– Example: Challenge-response protocol like FIDO U2F

• Common protocol workflow (e.g., TLS):

1. Authenticate parties

2. Establish session keys

3. Use session keys to encrypt and authenticate messages

– (do it in as few messages as possible)

5 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

User vs. key-oriented goals

• User-oriented authentication goals

– Entity authentication

– Strong entity authentication – fresh entity authentication

– Mutual authentication

• Key-oriented goals

– Key establishment

– Key derivation

– Implicit key establishment

– Key confirmation

– Mutual belief in the key

PV204 - Secure channel protocols6

https://crocs.fi.muni.cz @CRoCS_MUNI

Hierarchy of AUTH&KE goals

PV204 - Secure channel protocols

Protocols for Authentication and Key Establishment By Colin Boyd, Anish Mathuria

7

https://crocs.fi.muni.cz @CRoCS_MUNI

Entity authentication

• Entity = user, machine/device

• Something entity knows (password, key…)

• Something entity is (biometrics…)

• Something entity have (smartcard…)

• Multi-factor authentication

– More than one factor (password + smartcard)

– Aim to increase attacker’s cost to compromise multiple security layers (factors)

8 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

Protocol message components

1. Keys

– Long-term keys

– Session keys

2. Identifiers

– Protocol principals (Alice, Bob…)

3. Nonce(s)

– Random values, timestamps, counters

• Components are combined by crypto mechanism(s)

PV204 - Secure channel protocols9

https://crocs.fi.muni.cz @CRoCS_MUNI

PROTOCOLS AND ATTACKS

PV204 - Secure channel protocols10

https://crocs.fi.muni.cz @CRoCS_MUNI

Typical models of adversary

• Adversary controls the communication

– Between all principals

– Observe, alter, insert, delay or delete messages

• Adversary can obtain session/long term keys

– used in previous runs

• Malicious insider

– adversary is legitimate protocol principal

• Attacker can obtain partial knowledge

– Secrets compromise, side-channels…

• …

PV204 - Secure channel protocols11

https://crocs.fi.muni.cz @CRoCS_MUNI

Needham–Schroeder protocol: symmetric

• Basis for Kerberos protocol (AUTH, KE), 1978

– Two-party protocol (A,B) + trusted server (S)

– Session key KAB generated by S and distributed to A together with part intended

for B

– Parties A and B are authenticated via S

1. A → S: A, B, NA

2. S → A: {NA, KAB, B, {KAB, A}KBS}KAS

3. A → B: {KAB, A}KBS

4. B → A: {NB, A}KAB

5. A → B: {NB - 1}KAB

PV204 - Secure channel protocols12

Can you spot problem?

Which part ensures:

Authentication

Key confirmation

Freshness

https://crocs.fi.muni.cz @CRoCS_MUNI

N-S symmetric: Problem?

• Vulnerable to replay attack (Denning, Sacco, 1981)

• If an attacker compromised older KAB then

– {KAB, A}KBS can be replayed to B (step 3.)

– B will not be able to tell if KAB is fresh

– Attacker will then impersonate A using old (replayed, compromised) key KAB

• Fixed by inclusion of nonce/timestamp N’B generated by B (two

additional steps before step 1.)

– Bob can now check freshness of {KAB, A, N’B}KBS

PV204 - Secure channel protocols

What is required attacker model to perform the attack?

13

https://crocs.fi.muni.cz @CRoCS_MUNI

What is required attacker model?

• Able to capture valid communication ({KAB, A}KBS)

• Able to compromise older KAB

• Actively communicate with B (reply ({KAB, A}KBS)

PV204 - Secure channel protocols14

But is an assumption of compromise

of old key realistic?

https://crocs.fi.muni.cz @CRoCS_MUNI

How (not) to reason about potential compromise

• NO: all my (many) keys are in secure hardware and therefore I’m

secure (no compromise possible)

– Nothing like perfect security exists

• YES: assume compromise and evaluate impact

– Where the sensitive keys are

– How hard is to compromise them

– What will be the impact of the compromise

– Can I limit number/exposure of keys? For what price?

PV204 - Secure channel protocols15

https://crocs.fi.muni.cz @CRoCS_MUNI

How to reason about attack and countermeasures?

1. Where does an attack come from (principle)?

– Understand the principles

2. Different hypothesis for the attack to be practical

– More ways how to exploit the same weakness

3. Attack’s countermeasures by cancel of hypothesis

– For every way you are aware of

4. Costs and benefits of the countermeasures

– Cost of the assets protected

– Cost for an attacker to perform attack

– Cost of a countermeasure

• Important: Consider Break Once, Run Everywhere (BORE)

PV204 - Secure channel protocols16

https://crocs.fi.muni.cz @CRoCS_MUNI

What if key is compromised?

• Prevention, detection (is hard), reaction

• Prevention of compromise

– Limit usage of a key

• master key → session keys

• Use PKI instead of many symmetric keys in trusted terminals

– Limit key availability

• Erase after use, no/limited copy in memory, trusted element

– Limited-time usefulness of keys (key update)

• (Perfect) forward secrecy: messages sent before is secure

• Reaction on compromise

– stop using key, update and let know (revocation)

PV204 - Secure channel protocols17

https://crocs.fi.muni.cz @CRoCS_MUNI

Needham–Schroeder protocol: asymmetric

• Simple asymmetric AUTH & KE protocol

• Designed by R. Needham and M. Schroeder (1978)

– (below is simplified version without PKI server S)

1. A → B: {A, NA}PKB

2. B → A: {NA, NB}PKA

3. A → B: {NB}PKB

PV204 - Secure channel protocols

Can you spot the problem?

18

Which part ensures:

Authentication

Freshness

Key establishment

https://crocs.fi.muni.cz @CRoCS_MUNI

N-S asymmetric: Problem?

• Discovered by G. Lowe 17 years after using formal verification

method/tool

PV204 - Secure channel protocols19

https://crocs.fi.muni.cz @CRoCS_MUNI

Formal verification of protocols

• Negatives

• Specific attacker model

– Different attacker (e.g., side-

channels) => attack possible

• Assumes perfect crypto-

primitives

• Sensitive to precise specification

• Hard to express real-world

complex protocols

– Search space too large

• Positives

• Automated process

• Prevents basic and some

advanced design flaws

• Favours simple solutions

– Complexity is enemy of security

20 PV204 - Secure channel protocols

Is formal verification

panacea?

Proofs by formal verification now considered good

practice and actively aimed for (e.g., TLS1.3)

https://crocs.fi.muni.cz @CRoCS_MUNI

MORALE: PROTOCOL DESIGN IS VERY

HARD => USE EXISTING, PROVEN ONES

21 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

References

• Security Protocols Open Repository

– http://www.lsv.ens-cachan.fr/Software/spore/

• C. Cremer, Scyther tool

– https://github.com/cascremers/scyther/

• Cas Cremer’s exercise sheet

– https://www.cs.ox.ac.uk/people/cas.cremers/scyther/scyther-exercises.html

PV204 - Secure channel protocols22

http://www.lsv.ens-cachan.fr/Software/spore/
https://github.com/cascremers/scyther/
https://www.cs.ox.ac.uk/people/cas.cremers/scyther/scyther-exercises.html

https://crocs.fi.muni.cz @CRoCS_MUNI

N-S asymmetric: Fix

• Fixed by addition of B’s identity into second step

1. A → B: {A, NA}PK(B)

2. B → A: {B, NA, NB}PK(A)

3. A → B: {NB}PK(B)

PV204 - Secure channel protocols23

https://crocs.fi.muni.cz @CRoCS_MUNI

KEY ESTABLISHMENT

PV204 - Secure channel protocols24

https://crocs.fi.muni.cz @CRoCS_MUNI

Methods for key establishment

1. Derive from pre-shared secret (PBKDF2)

2. Establish with help of trusted party (Kerberos, PKI)

3. Establish over insecure channel (Diffie-Hellman)

4. Establish over other (secure) channel (code book)

5. Establish over non-eavesdropable channel (BB84)

6. …

25 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

Methods for key confirmation

• Goal: ensure that parties use same key value(s)

• Implicit confirmation by use of valid key

– E.g., MAC by session key on future message is valid

• Explicit confirmation by challenge-response

– Dedicated steps in protocol

PV204 - Secure channel protocols26

http://www.themccallums.org/nathaniel/2014/10/27/authenticated-key-exchange-with-speke-or-dh-eke/

https://crocs.fi.muni.cz @CRoCS_MUNI

Diffie-Hellman key exchange

PV204 - Secure channel protocols

http://www.themccallums.org/nathaniel/2014/10/27/authenticated-key-exchange-with-speke-or-dh-eke/

27

Which part ensures:

Key establishment

Key confirmation

Authentication

Cyclic group with large order,

generator g, large prime p

https://crocs.fi.muni.cz @CRoCS_MUNI

Diffie-Hellman in practice

• Be aware of particular p and g

– If g is widely used with length up to 1024b then precomputation is possible

• “Logjam” attack, [CCS’15]

• Huge precomputation effort, but feasible for national agency

• Certain combination of g and p => fast discrete log to obtain A

– If p is really prime and g has larger order (Indiscrete logs, [NDSS17])

• Variant of DH based on elliptic curves used (ECDH)

– ECDH is preferred algorithm for TLS, ePassport…

– ECDH is algorithm of choice for secure IM (Signal)

28 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

DH based on elliptic curves used (ECDH)

PV204 - Secure channel protocols

http://www.themccallums.org/nathaniel/2014/10/27/authenticated-key-exchange-with-speke-or-dh-eke/

29

EC curve, G (base point)

A x G (scalar multiplication) B x G

A x B x G A x b B x a A x B x G

EC curve options:

• Edwards curves (e.g., Ed25519)

• NIST FIPS curves (e.g., NIST P-256)

• … many options, see

https://safecurves.cr.yp.to/

https://safecurves.cr.yp.to/

https://crocs.fi.muni.cz @CRoCS_MUNI

Diffie-Hellman in practice

• K is not used directly, but K’ = KDF(K) is used

1. Original K may have weak bits

2. Multiple keys may be required (KENC, KMAC)

• Is vulnerable to man-in-the-middle attack (MitM)

– Attacker runs separate DH with A and B simultaneously

– (Unless a and b are authenticated)

• DH can be used as basis for Password-Authenticated Key Exchange

• DH can be used as basis for Forward/Backward/Future secrecy

PV204 - Secure channel protocols30

https://crocs.fi.muni.cz @CRoCS_MUNI

PERFECT FORWARD SECRECY

PV204 - Secure channel protocols31

https://crocs.fi.muni.cz @CRoCS_MUNI

Forward secrecy - motivation

• Assume that session keys are exchanged using long-term secrets

1. Pre-distributed symmetric cryptography keys (SCP’02)

2. Public key cryptography (PGP, TLS_RSA_...)

• What if long-term secret is compromised?

I. All future transmissions can be read

II. Attacker can impersonate user in future sessions

III. All previous transmissions can be compromised if traffic was captured

• Can III. be prevented? (Forward secrecy)

• Can I. be prevented? (Backward secrecy, “healing”)

PV204 - Secure channel protocols32

Must not have past keys

Must not derive future

keys deterministically

https://crocs.fi.muni.cz @CRoCS_MUNI

Forward/backward secrecy – how to

• (Perfect) Forward Secrecy

– Compromise of long-term keys does not compromise past session keys

• Solution: ephemeral key pair (DH/ECDH/RSA/…)

1. Fresh keypair generated for every new session

2. Ephemeral public key used to exchange session key

3. Ephemeral private key is destroyed after key exchange

• Captured encrypted transmission cannot be decrypted

• Long-term key is used only to authenticate ephemeral public key to

prevent MitM

– E.g., MAC over DH share

PV204 - Secure channel protocols33

https://crocs.fi.muni.cz @CRoCS_MUNI

Use of forward secrecy: examples

• HTTPS / TLS

– TLS1.2: ECDHE-ECDSA, ECDHE-RSA…

– TLS1.3: TLS_ECDHE_ECDSA_WITH_xxx…

• SSH (RFC 4251)

• PAKE protocols: EKE, SPEKE, SRP…

• Off-the-Record Messaging (OTR) protocol (2004)

• Signal protocol (2015)

• Noise protocol framework (2017)

PV204 - Secure channel protocols34

https://crocs.fi.muni.cz @CRoCS_MUNI

PASSWORD-AUTHENTICATED KEY

EXCHANGE (PAKE)

PV204 - Secure channel protocols35

https://crocs.fi.muni.cz @CRoCS_MUNI

PAKE protocols - motivation

• Diffie-Hellman can be used for key establishment

– Authentication ca be added via pre-shared (longterm) key

• But why not directly derive session keys from pre-

shared instead of running DH?

1. Compromise of pre-shared key => compromise of all data

transmissions (including past) => no forward secrecy

2. Pre-shared key can have low entropy (password / PIN) =>

attacker can brute-force

• Password-Authenticated Key Exchange (PAKE)

– Sometimes called “key escalation protocols”

PV204 - Secure channel protocols36

https://crocs.fi.muni.cz @CRoCS_MUNI

PAKE protocols - principle

• Goal: prevent MitM and offline brute-force attack

1. Generate asymmetric keypair for every session

– Both RSA and DH possible, but DH provides better performance in keypair

generation

2. Authenticate public key by (potentially weak) shared secret (e.g.,

password or even PIN)

– Must limit number of failed authentication requests!

3. Exchange/establish session keys for symmetric key cryptography

using authenticated public key

PV204 - Secure channel protocols37

https://crocs.fi.muni.cz @CRoCS_MUNI

To protect against offline

bruteforce attack against

the used password, an

attacker must not be able to

tell if the decrypted a’ is

valid (any structure of a’

can reveal successful

decryption)

Diffie-Hellman Encrypted Key Exchange [PAKE]

38 PV204 - Secure channel protocols

h
tt

p
:/
/w

w
w

.t
h

e
m

c
c
a

llu
m

s
.o

rg
/n

a
th

a
n

ie
l/
2

0
1

4
/1

0
/2

7
/a

u
th

e
n

ti
c
a

te
d

-k
e

y
-e

x
c
h
a

n
g

e
-w

it
h

-s
p

e
k
e
-o

r-
d
h
-e

k
e
/

Various options

available

https://crocs.fi.muni.cz @CRoCS_MUNI

Simple Password Exponential Key Exchange (SPEKE)

PV204 - Secure channel protocols

http://www.themccallums.org/nathaniel/2014/10/27/authenticated-key-exchange-with-speke-or-dh-eke/

39

https://crocs.fi.muni.cz @CRoCS_MUNI

Secure Remote Password protocol (SRP), [aPAKE]

• Earlier Password-Authenticated Key Exchange protocols (PAKEs)

were patented: EKE, SPEKE… (patent expired in 2017)

• Secure Remote Password protocol (SRP) 1998

– Designed to work around existing patents

– Royalty free, open license (Standford university), basis for multiple RFCs

– Several revisions since 1998 (currently 6a)

– Originally with DH, variants with ECDH exist

– Widely used, support in common cryptographic libraries

• Asymmetric Password Authenticated Key Exchange (aPAKE)

• Apple uses SRP extensively in its iCloud Key Vault

40 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI41 PV204 - Secure channel protocols

h
tt

p
s
:/

/w
w

w
.c

o
d
e

p
ro

je
c
t.
c
o
m

/K
B

/s
e

c
u

ri
ty

/1
0
8

2
6
7

6
/S

rp
A

u
th

e
n

ti
c
a

ti
o

n
S

e
q

u
e

n
c
e
.p

n
g

https://crocs.fi.muni.cz @CRoCS_MUNI

PAKEs evolution

1. Only password

2. “PAKE” protocols

3. “aPAKE” protocols

4. Strong aPAKE (“SaPAKE”)

• Compromised if server hack

• Prevent MitM offline cracking,

still server hack compromise

• Like PAKE, but using salted hash

instead of password, salt-specific

precomputation possible

• Prevent offline cracking and

precomputation attack (using

zero-knowledge proofs)

42 PV204 - Secure channel protocols

https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

Properties

https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

https://crocs.fi.muni.cz @CRoCS_MUNI

Current state of the art SaPAKE

• OPAQUE protocol (Eurocrypt 2018)

– https://eprint.iacr.org/2018/163.pdf

– https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/

• Prediction about future PAKE uptake

– https://emilymstark.com/2020/07/30/should-web-apps-use-pakes.html

43 PV204 - Secure channel protocols

https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://blog.cryptographyengineering.com/2018/10/19/lets-talk-about-pake/
https://emilymstark.com/2020/07/30/should-web-apps-use-pakes.html

https://crocs.fi.muni.cz @CRoCS_MUNI

SECURE INSTANT MESSAGING

PV204 - Secure channel protocols44

https://crocs.fi.muni.cz @CRoCS_MUNI

“Toy” protocol for protection of instant messaging

• Relatively short sessions with multiple messages

• Perfect forward secrecy

– Ephemeral DH to establish Alice/Bob master keys

• Past keys/messages are secure

• Derive next key within session by KDF (hash)

• We also need “Future” secrecy

– Automatic self-healing after key compromise

– Next key must NOT be deterministically generated from previous ones

45 PV204 - Secure channel protocols

Key 2 is compromised

All subsequent

session keys now

compromised

https://signal.org/blog/advanced-ratcheting/

https://crocs.fi.muni.cz @CRoCS_MUNI

“Ratcheting” == new DH exchange for every message

46 PV204 - Secure channel protocols

https://signal.org/blog/advanced-ratcheting/

https://crocs.fi.muni.cz @CRoCS_MUNI

Off-The-Record Messaging (OTR), 2004

• Protocol for protection of instant messaging

– Establish session, communicate, close (minutes/hours)

• Perfect forward secrecy (using ephemeral DH keys)

– Also “future” secrecy: automatic self-healing after compromise

• OTR “ratcheting” (new DH key for every session & new message)

• Plausible deniability of messages

– Message MAC is computed, message send and received

– MAC key used to compute MAC is then publicly broadcast

– As MAC key is now public, everyone can forge past messages (will not affect

legitimate users but can dispute claims of cryptographic message log in court)

47 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

OTR protocol

PV204 - Secure channel protocols48

Key exchange
Message exchange

See https://blog.cryptographyengineering.com/2014/07/26/noodling-about-im-protocols/ for details

https://blog.cryptographyengineering.com/2014/07/26/noodling-about-im-protocols/

https://crocs.fi.muni.cz @CRoCS_MUNI

OTR – some problems

• How to work with asynchronous messages?

– OTR designed for instant messaging with short sessions

• What if out-of-order message is received?

– OTR has counter to prevent replay

• Window of compromise is extended

– Decryption key cannot be deleted until message arrives

• …

• State of Knowledge: Secure Messaging (2015)

– Systematic mapping of Secure Messaging protocols

– http://www.ieee-security.org/TC/SP2015/papers-archived/6949a232.pdf

49 PV204 - Secure channel protocols

http://www.ieee-security.org/TC/SP2015/papers-archived/6949a232.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

SIGNAL PROTOCOL

50 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

The Signal protocol

• State-of-the-art of instant messaging protocols

– Used in Signal, WhatsApp, Facebook Messenger, Google Allo…

• The Signal protocol provides:

– confidentiality, integrity, message authentication,

– participant consistency, destination validation,

– forward secrecy, backward secrecy (aka future secrecy)

– causality preservation, message unlinkability, message repudiation, participation repudiation

and asynchronicity

– end-to-end encrypted group chats

• Requires servers (but servers are untrusted wrt message privacy/integrity)

– relaying of messages and storage of public key material

• 3-DH with Curve25519, AES-256, HMAC-SHA256

51 PV204 - Secure channel protocols

https://signal.org/blog/advanced-ratcheting/

https://crocs.fi.muni.cz @CRoCS_MUNI

The Signal protocol implementation

• Authentication of users: 1) Trust on first use 2) Trusted party (PKI) 3) Fingerprint check

using other channel (hex, QR code…)

• Protection of messages

– Perfect forward secrecy and backward secrecy (ratcheting)

– New DH for (almost) every message (announced in the previous one)

– Message key derived both from long-term key and chain key

– Authenticated Encryption with deniability (MAC key broadcasted later)

• Protection of metadata (but no strong anonymity such as in Tor)

– Message delivery time and communicating parties available

– Service provider may choose to keep or delete this information

• Private contact discovery using Intel SGX

– https://signal.org/blog/private-contact-discovery/

52 PV204 - Secure channel protocols

https://signal.org/blog/private-contact-discovery/

https://crocs.fi.muni.cz @CRoCS_MUNI

Message keys in Signal

53 PV204 - Secure channel protocols

• Basic trick: combine frequent ECDH and hash chains

• Root key(s) (RK)

– Established from last ECDH ratchet and previous RK

• Chain key(s) (CK)

– Established from the most recent RK + hash chain

– KDF to derive next CK = HMAC-HASH(CK, "1")

• Message key(s) (MK)

– Derived from CK as MK = HMAC-HASH(CKs, "0")

– Message Ax encrypted by MKx

• RK&CK compromise is “healed” by next ECDH

• Out-of-order messages by storage of corresponding MKx

https://signal.org/docs/specifications/doubleratchet/

https://crocs.fi.muni.cz @CRoCS_MUNI

https://signal.org/docs/specifications/doubleratchet/

54 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

The Signal protocol – group messaging

• Speaker consistency

• Out-of-order resilience

• Dropped message resilience

• Computational equality

• Trust equality

• Subgroup messaging

• Contractible and expandable group membership

• Read more details at https://www.whatsapp.com/security/WhatsApp-

Security-Whitepaper.pdf

55 PV204 - Secure channel protocols

https://en.wikipedia.org/wiki/Signal_(software)#Encryption_protocols

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

https://crocs.fi.muni.cz @CRoCS_MUNI

NOISE PROTOCOL FRAMEWORK

56 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

Noise protocol framework (https://noiseprotocol.org/)

• Do you have exactly same situation as Signal?
– Then use Signal’s code, but: different usage scenario, unnecessarily large code base…

• What if different usage scenario is required with some changes needed?
– Custom changes to protocol are always risky

– (Signal is formally verified, but change may break the proof + change in assumptions)

• And formally verified protocols is not enough – we need also secure

implementation!

• Ideally, custom, but formally verified protocol + generator of its code

57 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

Noise protocol framework (https://noiseprotocol.org/)

• Ideally, formally verified protocol + generator of code

• Noise protocol framework is exactly that

– T. Perrin (co-author of Signal’s double-ratchet protocol)

– https://noiseprotocol.org/noise.pdf + generator (https://noiseexplorer.com/)

– Used by WhatsApp since October 2020

1. Protocol designer to describe what needs using simple language or picks

from already existing patterns (many of them)

2. Execute formal verification (ProVerif) to verify protocol claims
– E.g., claim: same shared key, one party authenticated for passive attacker

3. Run code generator to get complete code in target language

58 PV204 - Secure channel protocols

https://noiseprotocol.org/noise.pdf
https://noiseexplorer.com/

https://crocs.fi.muni.cz @CRoCS_MUNI

Some examples of existing Noise patterns

59 PV204 - Secure channel protocols

https://noiseexplorer.com/patterns/NN/

https://noiseexplorer.com/patterns/NX/

https://noiseexplorer.com/patterns/IKpsk2/

• Noise protocols use set of rules:

– If you already have some key, use it immediately to

encrypt all subsequent messages

– When new entropy is available (ECDH), update

current state (keys) => forward&backward secrecy

– Use AEAD for all message encryption

– …

https://noiseexplorer.com/patterns/NN/
https://noiseexplorer.com/patterns/NX/

https://crocs.fi.muni.cz @CRoCS_MUNI

ELECTRONIC PASSPORTS

AND CITIZEN ID CARDS

PV204 - Secure channel protocols

Credit: Slides partially based on presentation by Zdenek Říha

60

https://crocs.fi.muni.cz @CRoCS_MUNI

Passports of the first generation

• Electronic passport

– Classical passport booklet + passive contactless smartcard

(ISO14443, communication distance 0-10 cm)

– Chip & antenna integrated in a page or cover

• Technical specification standardized by ICAO

– Standard 9303, 6th edition

– References many ISO standards

• Data is organised in 16 data groups (DG) and 2 meta files

– DG1-DG16, EF.COM, EF.SOD

– Mandatory is DG1 (MRZ), DG2 (photo), EF.COM and EF.SOD (passive authentication)

PV204 - Secure channel protocols61

https://crocs.fi.muni.cz @CRoCS_MUNI

Chip and antenna

PV204 - Secure channel protocols62

https://crocs.fi.muni.cz @CRoCS_MUNI

Data groups
Data group Stored data

DG1 Machine readable zone (MRZ)

DG2 Biometric data: face

DG3 Biometric data: fingerprints

DG4 Biometric data: iris

DG5 Picture of the holder as printed in the passport

DG6 Reserved for future use

DG7 Signature of the holder as printed in the passport

DG8 Encoded security features – data features

DG9 Encoded security features – structure features

DG10 Encoded security features – substance features

DG11 Additional personal details (address, phone)

DG12 Additional document details (issue date, issued by)

DG13 Optional data (anything)

DG14 Data for securing secondary biometrics (EAC)

DG15 Active Authentication public key info

DG16 Next of kin

PV204 - Secure channel protocols63

https://crocs.fi.muni.cz @CRoCS_MUNI

Protocols used in ePassports I.

I. Authentication of inspection system to chip [BAC]

– Read basic digital data from chip (MRZ, photo)

– SG: Passport provides basic data only to local terminal with physical access to passport

– S: Auth. SCP, sym. crypto keys derived from MRZ [BAC]

II. Authorized access to more sensitive chip data

– SG: Put more sensitive data on chip (fingerprint, iris), but limit availability only to inspection

systems of trustworthy countries

– S: Challenge-response auth. protocol [EAC,EAC-PACE], PKI + cross-signing between

trustworthy states [EAC]

PV204 - Secure channel protocols64

SG: security goal, S: solution used

https://crocs.fi.muni.cz @CRoCS_MUNI

Protocols used in ePassports II.

III. Genuine data on passport

– SG: Are data on passport unmodified?

– S: digital signatures, PKI [passive authentication]

IV. Authentication of chip to inspection system

– SG: Is physical chip inside passport genuine?

– S: Challenge-response authentication protocol [AA, EAC-PACE]

V. Transfer data between chip and IS securely

– SG: attacker can’t eavesdrop/modify/replay

– S: secure channel [EAC, EAC-PACE]

PV204 - Secure channel protocols65

SG: security goal, S: solution used

https://crocs.fi.muni.cz @CRoCS_MUNI

Basic Access Control (BAC) protocol

• Authentication&secure channel between inspection terminal and chip

– Based on symmetric crypto (3DES), similar to SCP’0x protocols

– Low computational requirements

• Problem: anyone with access to MRZ can authenticate

• Problem: MRZ has insufficient entropy

– Document number, birth date, expiration date used

– Theoretically 58/74 bits, but in practice about 32 bits

• Offline attack (eavesdrop then crack)

– Eavesdrop valid communication between chip and reader

– Brute-force attack in less then hour (232 ops, offline attack)

• Online attacks against chip (att. model: found passport)

– Significantly slower, ~20 ms for every attempt

PV204 - Secure channel protocols66

https://crocs.fi.muni.cz @CRoCS_MUNI

Extended Access Control (EAC) protocol

• Based on asymmetric cryptography (RSA/DH/ECDSA)

• Chip Authentication (CA) based on PACE protocol

– Password Authenticated Connection Establishment (PACE)

– Uses chip’s static DH/ECDSA key and terminal’s ephemeral DH key pair (perfect forward secrecy)

– Both parties combines chip’s public static and ephemeral public key into same key K

– Keys for encryption and MAC (KENC, KMAC) are derived from exchanged K

• How can be Terminal sure of authenticity of chip’s static key?

– Signed by Issuing country

• Terminal Authentication (TA)

– Based on challenge-response protocol (RSA/ECDSA, SHA-1/2)

– Hash of the ephemeral DH key from previous step hashed with challenges

PV204 - Secure channel protocols67

https://crocs.fi.muni.cz @CRoCS_MUNI

How Signal and ePassports compare?

• Completely different usage scenario

– Instant messaging vs. person/terminal authentication

– Frequent software updates possible vs. 15 years passport validity

• Different trust relations and participants structure

– N friends vs. many partially or fully distrusting participants

– Mostly online vs. mixed offline/online (even without clock!)

• Underlying cryptographic primitives are shared

– Forward secrecy, ECDH, AES, SHA-2…

– Ratcheting and deniability not necessary for ePass

68 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

STILL WANT TO DESIGN OWN

PROTOCOL? ☺

69 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

Design of cryptographic protocols

• Don’t design own cryptographic protocols

– Use existing and well-studied protocols (TLS, EAC-PACE…)

– Don’t remove “unnecessary” parts of existing protocols

• Don’t implement existing/your protocol (if possible)

– Potential for error, implementation attacks…, use existing implementations

• Follow all required checks on incoming messages

– Verification of cryptograms, check for revocation…

• But more likely you will need to design own protocol than to design

own crypto algorithm

– Always use existing protocol if possible

PV204 - Secure channel protocols70

https://crocs.fi.muni.cz @CRoCS_MUNI

Conclusions

• Design of (secure) protocols is very hard

– Understand what are your requirements

– Use existing protocols, e.g., TLS, Signal or EAC-PACE

– Use existing implementations (very hard to implement securely)

• Resiliency against compromise of long-term secrets is crucial (forward secrecy)

• Strong session keys authenticated by weak passwords (PAKEs)

• Signal protocol is state-of-the-art and widely deployed (Instant messaging)

• Electronic passport uses variety of protocols (Interesting and complex scenarios)

• Mandatory reading
– M. Green, Noodling about IM protocols, http://blog.cryptographyengineering.com/2014/07/noodling-about-im-

protocols.html

– M. Marlinspike, Advanced cryptographic ratcheting https://whispersystems.org/blog/advanced-ratcheting/

71 PV204 - Secure channel protocols

http://blog.cryptographyengineering.com/2014/07/noodling-about-im-protocols.html
https://whispersystems.org/blog/advanced-ratcheting/

https://crocs.fi.muni.cz @CRoCS_MUNI72 PV204 - Secure channel protocols

• Place/upvote questions in slido

while listening to lecture video

• We will together discuss these

during every week lecture Q&A

(every Monday, 17-18:00)

https://crocs.fi.muni.cz @CRoCS_MUNI73 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

DESIGN OF PROTOCOLS

PV204 - Secure channel protocols74

https://crocs.fi.muni.cz @CRoCS_MUNI

Design of cryptographic protocols

• Don’t design own cryptographic protocols

– Use existing well-studied protocols (TLS, EAC-PACE…)

– Don’t remove “unnecessary” parts of existing protocols

• Follow all required checks on incoming messages

– Verification of cryptograms, check for revocation…

• Don’t design and implement your own (if possible)

– Potential for error, implementation attacks…

• But more likely you will need to design own protocol than to design

own crypto algorithm

– Always use existing protocol if possible

PV204 - Secure channel protocols75

https://crocs.fi.muni.cz @CRoCS_MUNI

Design principles I. (Abadi & Needham)

• The conditions for a message to be acted should be clearly set out so reviewer

can judge if they are acceptable.

– Documentation, diagrams, formal specification

• Every message should say what it means, message interpretation should

depend only on its content.

– “This is 2nd message of SCP’02 from A to B”

– No assumptions like next random chunk number should be encrypted 2nd message because

I just received 1st message

• Mention name of principal (“Alice01”)

– Prevents (if checked) unintended parallel runs of protocol

– Prevents reflection attack

PV204 - Secure channel protocols76

https://crocs.fi.muni.cz @CRoCS_MUNI

Design principles II. (Abadi & Needham)

• Be clear about why encryption is being done

– For confidentiality, not to “somewhat” ensure integrity

• When signing encrypted data, it should not be inferred that signing

entity knows data content

– No knowledge of encryption key

• Be clear about properties of nonce

– random, never repeated, unpredictable, secret

– Random → almost never repeated unintentionally

PV204 - Secure channel protocols77

https://crocs.fi.muni.cz @CRoCS_MUNI

Design principles III. (Abadi & Needham)

• If predictable quantity is to be effective, it should be protected so that an

intruder cannot simulate a challenge and later replay the message

– Counter as challenge → counter freshness verification necessary → state

• If timestamps are used as freshness guarantees, then difference between

local clocks at various machines must be much less then allowable age of

message

– Otherwise an attacker can replay within time window

• Key may have been used recently and yet be old and possibly compromised

– Clear session state after session end, check freshness

PV204 - Secure channel protocols78

https://crocs.fi.muni.cz @CRoCS_MUNI

Design principles IV. (Abadi & Needham)

• It should be possible to deduce which protocol and which run of

that protocol a message belongs to including order number in the

protocol

– Danger of parallel runs of same protocol

– MAC and chaining with fresh session keys prevents message mixing

• Trust relation should be made explicit and there should be good

reason for its necessity.

– Less trust needed → better security achieved

PV204 - Secure channel protocols79

https://crocs.fi.muni.cz @CRoCS_MUNI

Design principles V. (Hanno Böck)

• Always use an AEAD. No CBC, OFB, CFB. No "signatures

are as good as an AEAD".

• Stay away from PKCS #1 1.5. If you want to use RSA use

PSS/OAEP, but maybe don't use RSA.

• Don't use ECDSA, don't use any old ECC. Use X25519,

Ed25519 or alike.

• Don't use DSA, 64-bit-blocks, sha1/md5 and other old crap.

• Think about duplicate nonces. If you can't easily avoid

nonce repetition consider AES-SIV.

• Still talk to a real cryptographer, but if you follow these

you're already better than a lot of others :-)

80 PV204 - Secure channel protocols

https://crocs.fi.muni.cz @CRoCS_MUNI

Secure channel – typical composition

1. Exchange basic (public) parameters

2. Generate random challenges (freshness)

3. Use pre-distributed secrets and challenges to generate session keys

(protect long term secrets)

4. Compute and verify authentication cryptograms (entity

authentication)

5. Encrypted&MAC message(s) (Secure Messaging)

6. End secure channel (erase session keys)

PV204 - Secure channel protocols81

https://crocs.fi.muni.cz @CRoCS_MUNI

SCP – what to take into account

• Usage scenario and expected attackers

• Confidentiality and integrity of command data

• Network level attacks (replay…)

• Atomicity of critical operations

• Robustness against side channel attacks (time and power analysis,

fault attacks…)

• Robustness against incorrect attempts (limit, delay retries…)

• Resilience against traffic analysis

• API and implementation attacks

PV204 - Secure channel protocols82

https://crocs.fi.muni.cz @CRoCS_MUNI

SCP – usage scenario and attacker model

• What are the sensitive objects (keys, data, functions)?

• What are these sensitive objects used for and what is the data flow of these

objects?

• What are the capabilities of the attackers (funding, tools, knowledge)?

• What are the points where an attacker can observe the system (dump of

exchanged messages, debugging, ...)?

• Which parts of the system must be trusted to achieve required functionality

(less the better)?

PV204 - Secure channel protocols83

https://crocs.fi.muni.cz @CRoCS_MUNI

SCP – network attacks

• Use HMAC or OMAC instead of simple hash only

• Include command header/metadata into MAC

• Pre-share two keys (encryption, mac) or derive from master instead of using

only one

• Use pre-shared keys only to derive session keys. Session keys are used than

to generate cryptograms etc.

• Session keys must be dependent on contributions from both parties. One party

cannot force resulting key into specific value

PV204 - Secure channel protocols84

https://crocs.fi.muni.cz @CRoCS_MUNI

SC – network attacks

• Replay attack – hash chain better than counter only

• Encrypt then MAC: MAC(ENC(data))

• Close channel on error

• Use GCM rather than CBC rather than ECB

• Be aware of block swap in ECB mode, cut attack in CBC

• Do not use XOR for combination of values – use hash/HMAC instead

• Reflection attack: Do not use symmetric protocol messages (A→B cannot be

reflected as B→A)

PV204 - Secure channel protocols85

https://crocs.fi.muni.cz @CRoCS_MUNI

ELECTRONIC PASSPORTS

- MORE DETAILS

PV204 - Secure channel protocols86

https://crocs.fi.muni.cz @CRoCS_MUNI

Authorization and passports

1. Inspection terminal to read basic info from chip

2. Inspection terminal to read biometric data from chip

3. You to enter country based on chip data

PV204 - Secure channel protocols87

https://crocs.fi.muni.cz @CRoCS_MUNI

Basic Access Control (BAC) protocol

• Authentication&secure channel between inspection terminal and chip

– Based on symmetric crypto (3DES), similar to SCP’0x protocols

– Low computational requirements

• Problem: anyone with access to MRZ can authenticate

• Problem: MRZ has insufficient entropy

– Document number, birth date, expiration date used

– Theoretically 58/74 bits, but in practice about 32 bits

• Offline attack (eavesdrop then crack)

– Eavesdrop valid communication between chip and reader

– Brute-force attack in less then hour (232 ops, offline attack)

• Online attacks against chip (att. model: found passport)

– Significantly slower, ~20 ms for every attempt

PV204 - Secure channel protocols88

https://crocs.fi.muni.cz @CRoCS_MUNI

EAC – motivation

• EU passports stores fingerprints (from 2009)

– More sensitive than facial photo => better protocol needed

• Goal: not everyone with access to passport (and MRZ for BAC)

should be able to read out fingerprint

– Issuing country decides who else can access

• Stronger authentication than BAC required

PV204 - Secure channel protocols89

https://crocs.fi.muni.cz @CRoCS_MUNI

Mind exercise: symmetric crypto

• What if only symmetric crypto is used?

– Every chip has own unique symmetric key

– Large number of keys in inspection terminals

– Compromise of single terminal breach security

– => impractical and insecure => not used

PV204 - Secure channel protocols90

https://crocs.fi.muni.cz @CRoCS_MUNI

Extended Access Control (EAC) protocol

• Based on asymmetric cryptography (RSA/DH/ECDSA)

• Chip Authentication (CA) based on PACE protocol

– Password Authenticated Connection Establishment (PACE)

– Uses chip’s static DH/ECDSA key and terminal’s ephemeral DH key pair (perfect forward secrecy)

– Both parties combines chip’s public static and ephemeral public key into same key K

– Keys for encryption and MAC (KENC, KMAC) are derived from exchanged K

• How can be Terminal sure of authenticity of chip’s static key?

– Signed by Issuing country

• Terminal Authentication (TA)

– Based on challenge-response protocol (RSA/ECDSA, SHA-1/2)

– Hash of the ephemeral DH key from previous step hashed with challenges

PV204 - Secure channel protocols91

https://crocs.fi.muni.cz @CRoCS_MUNI

Terminal authentication I.

• Only authorized border authorities can read the secondary biometric

data (fingerprints and iris)

– The inspection system must prove to the chip it is authorized

– The chip stores a trust point – root certificate

– Inspection system presents a valid certificate chain (starting from the passport’s

trust point) specifying the IS’s authorizations (e.g. to read DG3)

– Challenge-response where IS proves knowledge/access of a secret key (whose

public part is certified)

– Certificates in Card-verifiable (CV) format

PV204 - Secure channel protocols92

https://crocs.fi.muni.cz @CRoCS_MUNI

Terminal Authentication II

Country

A

Country

B

CV CA CV CA

IS

DV

IS... IS

DV

IS... IS

DV

IS...IS

DV

IS...

CV CA

Country

C

Root public key of

issuing country: CV CA

PV204 - Secure channel protocols93

https://crocs.fi.muni.cz @CRoCS_MUNI

Terminal Authentication III

• Supported algorithms

– RSA PKCS#1 v1.5 with SHA-1 or SHA-256

– RSA PSS with SHA-1 or SHA-256

– ECDSA with SHA-1, SHA-224 or SHA-256

– Key lengths

• For ECDSA allowed 160, 192, 224, 256 bits

• For RSA allowed 1024, 1280, 1536, 2048 and 3072 bits

• In practice ECDSA is more common, key lengths 192 and 224 bit most popular, existing

implementations also support 256 and 384 bits.

• For RSA the PKCS#1 v1.5 padding is much more popular than PSS, key lengths are

between 512 (test only) and 2048 bits.

PV204 - Secure channel protocols94

https://crocs.fi.muni.cz @CRoCS_MUNI

Active Authentication (AA) protocol

• Motivation: Prevent cloning of passport

– Is chip inside passport authentic?

• Passport-specific asymmetric key stored on chip

• Public key freely readable (DG15 file, hash signed)

• Authentication against terminal

– Terminal generates 8 random bytes

– Chip adds additional 8 random bytes, hash and sign

– Terminal verifies signature

• Privacy attack: terminal’s challenge is date → signed

• PACE protocol replaces Active Authentication

PV204 - Secure channel protocols95

https://crocs.fi.muni.cz @CRoCS_MUNI

EAC Chip authentication

• Verifies the authenticity of the chip

– Replaces Active Authentication

– Improves the security of Secure Messaging

• Keys with higher entropy than for Basic Access Control (BAC)

• Diffie-Hellman key pair (passport’s chip)

– Public key and domain parameters stored in DG14

– Private key never leaves the chip

• Diffie-Hellman key pair (inspection system – IS)

– Key pair generated according to passport’s domain parameters

– Private key kept secret, public key sent to chip

• Both the parties (passport, IS) now share a secret

– The secret is used to derive the SM keys, the ability to communicate proves the authenticity of the

chip

PV204 - Secure channel protocols96

https://crocs.fi.muni.cz @CRoCS_MUNI

Chip authentication II

• Algorithms supported by the EAC specification

– Diffie-Hellman (PKCS#3)

– Elliptic Curve Diffie-Hellman (ISO 15946, BSI TR-03111)

– Both DH and ECDH popular with chip manufacturers

• DH with 1024 or 1536 bit prime

• ECDH with mostly 224 bit curves, some implementations use 256 or 384 bits

• No challenge semantics

• Coexistence of CA and AA

PV204 - Secure channel protocols97

https://crocs.fi.muni.cz @CRoCS_MUNI

Passive Authentication

• Goal: are data in chip unchanged?

• The list of the hashes (SHA-1/2)

of all present data groups is digitally

signed by the issuing organisation

(Document Signer)

– State printing house, Embassy, Etc.

• The X.509 certificate of the Document Signer issued by the CA of the issuing country (Country

Signing CA – e.g. the ministry of interior) is included.

• The CSCA certificates must be exchanged bilaterally

• ICAO PKD for DS certificates, CSCA CRL and cross certificates

• Passive authentication is a mandatory security feature of all ePassports

CSCA

DS1 DS2

ePassport 1 ePassport 2 ePassport 3

PV204 - Secure channel protocols98

https://crocs.fi.muni.cz @CRoCS_MUNI

Passive Authentication – the details

• The file EF.SOD contains a CMS (PKCS#7) SignedData structure (file is read and validated by inspection system)

– The signed data is the list of hashes of the present data groups

– The DS certificate is included (ICAO optional, EU mandatory)

– Data is signed by the DS

• Signature schemes

– RSA with PKCS#1 v1.5 padding (min. 3072 bits for CSCA, 2048 bits for DS)

• E.g. Hungary, France, Spain, Portugal, Italy: RSA 4096 bit key with SHA-1

• E.g. Austria, Netherlands: RSA 3072 bit key with SHA-256

– RSA with PSS padding (min 3072 bits for CSCA, 2048 for DS)

• E.g. Czech Republic, Norway, Denmark, Japan and Australia – all with SHA-256

– DSA (not standardized for key lengths > 1024)

– ECDSA (domain parameters must be specified, min. 256 bits for CSCA, 224 bits for DS)

• E.g. Switzerland, Germany, Russia – all with SHA-1

• Message Digest algorithms (for signature schemes and hashes of Data Groups)

– SHA-1 and all SHA-2 algorithms

PV204 - Secure channel protocols99

https://crocs.fi.muni.cz @CRoCS_MUNI

SECURE CHANNEL PROTOCOL

(FOR SMARTCARDS)

How to authenticate and communicate securely?

| PV204 JavaCard - programming secure elements100

https://crocs.fi.muni.cz @CRoCS_MUNI

TLS handshake

| PV204 JavaCard - programming secure elements

Credit: Cloudflare

101

https://crocs.fi.muni.cz @CRoCS_MUNI

Why not to use TLS all the time?

1. Requires asymmetric cryptography

– Unsuitable for slower devices

2. Requires long keys

– Unsuitable for devices with small memory

3. Requires significant data overhead (~6.5KB)

– http://netsekure.org/2010/03/tls-overhead/

4. More lightweight protocols exist

– RFID / smartcards / IoT…

• Note: TLS can be fully implemented on smartcards (but slow)

– https://github.com/gilb/smart_card_TLS

| PV204 JavaCard - programming secure elements102

http://netsekure.org/2010/03/tls-overhead/
https://github.com/gilb/smart_card_TLS

https://crocs.fi.muni.cz @CRoCS_MUNI

Secure channels – questions to ask

• What attacker model is assumed?

• Integrity protection? Encryption? Authentication?

• One-side or mutual authentication?

• What kind of cryptography is used?

• What keys are required/pre-distributed?

• Additional trust hierarchy required?

• Is necessary to generate random numbers/keys?

• What if keys are compromised? Forward secrecy?

| PV204 JavaCard - programming secure elements103

https://crocs.fi.muni.cz @CRoCS_MUNI104 | PV204 JavaCard - programming secure elements

• What attacker model is assumed?

• Integrity protection? Encryption? Authentication?

• One-side or mutual authentication?

• What kind of cryptography is used?

• What keys are required/pre-distributed?

• Additional trust hierarchy required?

• Is necessary to generate random numbers/keys?

• What if keys are compromised? Forward secrecy?

https://crocs.fi.muni.cz @CRoCS_MUNI

Common lightweight SCPs

• OpenPlatform SCP’01,’02 (3DES-based)

• OpenPlatform SCP‘10 (RSA-based)

• OpenPlatform SCP’03 (AES-based)

• ISO/IEC 7816-4 Secure Messaging

• ePassports Basic Access Control (3DES-based)

• ePassports Extended Access Control (3DES,RSA,DH,SHA1/2-based)

| PV204 JavaCard - programming secure elements105

https://crocs.fi.muni.cz @CRoCS_MUNI

Example: GlobalPlatform SCP’03

• Mutual authentication (based on symmetric crypto)

• Session key derivation (based on long-term keys)

– NIST SP 800-108

• Message (APDU) confidentiality and integrity MAC

1. INITIALIZE UPDATE

– Random challenge, card’s computations

2. EXTERNAL AUTHENTICATE

– Terminal response

3. Secure messaging

| PV204 JavaCard - programming secure elements106

What are problems with

usage of symmetric crypto?

https://crocs.fi.muni.cz @CRoCS_MUNI| PV204 JavaCard - programming secure elements

Secure Channel Protocol '03‘, Card Specification v2.2 – Amendment D, GPC_SPE_014

107

https://crocs.fi.muni.cz @CRoCS_MUNI| PV204 JavaCard - programming secure elements

Secure Channel Protocol '03‘, Card Specification v2.2 – Amendment D, GPC_SPE_014

108

https://crocs.fi.muni.cz @CRoCS_MUNI

ePassport protocols (ICAO 9303)

• Significantly more complex trust model

– Passport, Inspection terminal, Trusting countries, Distrusting countries

– Multiple sensitivity levels (basic info / fingerprint / iris)

– Combination of symmetric and asymmetric cryptography

• Basic Access Control (BAC) protocol

– SCP-like protocol, static key is content from MRZ

• Extended Access Control (EAC) protocol

– Terminal authentication (RSA/ECDSA, SHA-1/2)

– Chip authentication (DH/ECDSA key)

– PACE protocol to establish session keys

• Active Authentication (AA) protocol

| PV204 JavaCard - programming secure elements109

