—
PV226 Lasaris Seminar

Towards Antifraé\ile‘Critical In/fr\asl:ructure Systems
~(Introduction)

Hind Bangui, Barbora Buhnova and Bruno Rossi* -..
* brossi@mail.muni.cz
Department of Computer Systems and Communications,]. a S a r‘l S

Lasaris (Lab of Software Architectures and Information Systems)
Masaryk University, Brno

(: Off-topic first :)

Where is Software En g heading?

ICSE 2022 submissions results from Andreas Zeller
g woir

Software researcher at @CISPA. |

work on @FuzzingBook,
@Debugging Book, and more.

oot

Topics: Submitted Papers

Validation and Verifi...

Apps and App Stor... Top 10 TOpiCS - Accepted

Toote and Environ. = b e~ Topics # Submitted Papers # A Papers Acceptance Rate
Software Testing Distributed and Coll. Software Faimess 5 4 0,009
10.2% . 1.5% Software Economics 4
Evolution and maint... .
Software Security 5.9% Program Synthesis 1
v N\ Fault Localization Variability and Product Lines 1
Sl Ll B \ Forial Met;‘(;;d; Configuration Management 16
Reliability and Safety 2.1% Green and Sustainable Technologies 5
; \Human Aspecisiof SE Fault Localization 28
commender. Sys Human-Computégr’f,L: Software Ecosystems 18
ram Repair Machine Leamiyl\g o Release Engineering and DevOps 1 4 36,’3;%
1 T API Design and Evolution 17 6 35,29%
Program Comprehe...
E’ri’)éram Analysis Mining Software Re...
5.9
F Mobile Applicafiodns
2.4%
googl 1 (YUXx0diNFQuzZeMp_pMhccl68WdE/edittigid=0
Top 10 Topics — Rejected
- = Topics # Submitted Papers # Accepted Papers|Acceptance Rat
Top 10 Topics - Submitted o B .
Modeling and Model-Driven Engineering 16 1
Topics ‘# d Papers # A d Papers A Rate Agile Methods and Software Processes 18 2
Machine Learning with and for SE 237 74 31,22% Software Architecture and Design 16 2
Software Testing 181 47 25,97% Requirements Engineering 22 3
Program Analysis 117 35 29,91% Embedded/Cyber-Physical Systems 19 3
Evolution and maintenance 105 31 29,52% Parallel, Distributed, and Concurrent Sys 12 2
Mining Software Repositories 105 23 21,90% Software Visualization 6 1
Software Security 85 25 29,41% Software Reuse 22 4
Human Aspects of SE 68 20 29,41% Ethics in Software Engineering 1 2
Validation and Verification 53 15 28,30%
Tools and Environments 49 12 24,49%
Reliability and Safety 46 15 32,61%

3/18

o il

| suggest interested students to have a look at
the ACM SRC page - https://src.acm.org

Using Local Activity Encoding for Dynamic Graph Pooling
in Structural-Dynamic Graphs

Silvia Beddar-Wiesing

April 28, 2022

ABOUT AWARDS & RECOGNITION GRAND FINALISTS GRAND FINALS CANDIDATES WINNERS JUDGING HOSTANSRC CALLSFORSUBMISSION TESTIMONIALS FAQS

ACM Student Research Competition

The ACM Student Research Competition (SRC) offers a unique forum for undergraduate and graduate students to present their original research at well-
known ACM sponsored and co-sponsored conferences before a panel of judges and attendees

About the Student Research Competition

The ACM Student Research Competition (SRC) offers a unique forum for undergraduate and graduate
students to present thelr original research before a panel of judges and attendees at well-known
ACM-sponsored and co-sponsored conferences.

Recognizing the value of student participation at conferences, ACM started the program in 2003, but ‘Association for Gomputing Machinery
It Is much more than just a travel funding program. The ACM SRC provides participants a chance to g a3 a Science & Profe
meet other students and to get direct feedback on their work from experts.

This year's competitions took place at 21 participating ACM SIG conferences, sponsored by
SIGACCESS, SIGAI, SIGARCH, SIGBED, SIGCHI, SIGCOMM, SIGCSE, SIGDA,SIGDOC, SIGGRAPH,
SIGHPC, SIGMETRICS, SIGMICRO, SIGMOBILE, SIGPLAN, SIGSOFT and SIGSPATIAL as well as
Grace Hoppper and TAPIA and included more than 296 student participans.

Students can gain many tangible and
Intangible rewards from participating in one of
ACM's Student Research Competitions. The
ACM Student Research Competition s an
Internationally recognized venue enabling
undergraduate and graduate students to

earn

‘The program Is administered by Nanette Hernandez at ACM, Dr. Laurie Ann Willlams at North Carolina
State University, Douglas Baldwin at SUNY Geneszo.

4/18

https://src.acm.org/
https://src.acm.org/

(: Back to the topic :)

o)

Where is Software Engine ?

erin

lan Sommerville
@lanSommerville

| have been thinking about the how well we have done https://lansommerville.com/technology/research-impact

in software engineering research. Too long for a thread
so |'ve written about the underwhelming impact of

I] s ar y re
software engineering research. The Underwhelming Impact of Software

Engineering Research (April 2022)

Ia nsomme r\” ‘ | e.co m/teC h n Ol Ogy/res This article was prompted by responses to a tweet | wrote in response to an analysis of the research

area of papers submitted to the 2022 ICSE conference, the flagship conference for software
engineering research. These led me to reflect on software engineering research in general. I'm sorry to

@ BN u Seibeh @ | \'Oﬂel c br"a n d @p rofse ri ous say that | think that we, as a community, have not really delivered very much that's substantive in over

40 years of research

11:13 AM - Apr 6, 2022 - TweetDeck Fundamentally, | think there are 3 related root causes of this situation:
+ Short-termism
42 Retweets 10 Quote Tweets 105 Likes « Reductionist thinking

« Competition rather than cooperation

Q 'Ll O Short-termism is now endemic in software engineering (and indeed in all computer science) research.
This is partly a consequence of the ‘publish or perish’ culture that started in the 1970s and that is now
endemic in most countries. Researchers have to keep writing papers to remain credible - and who can

blame them? There is a focus on short-term projects, publication of interim results, an unwillingness to

=

invest in producing robust and reusable demonstrator systems and a tendency to jump on whatever
bandwagon is fashionable at a particular moment in time (e.g. formal methods in the 1980s, machine
learning now).

This short-termism has the direct consequence that much software engineering research is lacking
ambition. Researchers who are mindful of their success metrics are reluctant to tackle long-term
difficult projects. In the UK, in the early 2000s, there was a proposal to identify ‘Grand Challenges in
Computing Science’. Some interesting projects, such as a verifying compiler, were proposed - none
came to fruition

Short-termism has been exacerbated by the policy of many funding agencies, such as the European
Commission, that academic research should be collaborative with industry. Industry, quite
understandably, does not see its role as a long-term research funder and focuses on short or, at best,
medium term research. Unfortunately, for both good and bad reasans, this research has a low priority
for many companies. My experience over 30 years is that it is often under-funded, cancelled at short
notice, and inadequately staffed.

6/18

https://iansommerville.com/technology/research-impact
https://twitter.com/IanSommerville/status/1511633126396772353

Where is Software Engin gr\ing{heading?

«\\
AN

" v 5
& GitHub Copilot Learnmore > 9 : Soions v Pk Customen v LeamingConter v Company v Gradears r.“ﬂ

Cut Test Time Up To 70% with) Introduction to S sy

Your AI pqir progrqmmer Precli;ﬁve Test Selection . Pfedic“""*%*'“ﬁm §
el g T & : :

Gradle Enterp dict o ing time by identifying, priori

) nat are ikely to provic cedback
D 3pplying a machine learning hat uniquely incorpor

Technical Preview

With GitHub Copilot, get suggestio

e test analytics, and flaky test data. It suppor

-form-urlenc

7/18

The Traditional View of So.fE&vare REJ.iabllll'.y & ReS|l|ence

\ _®

Dependability

Availability Reliability Safety Security Resilience

' Y L

The ability of the system The ability of the system The ability of the system The ability of the system The ability of the system
to deliver services when to deliver services as to operate without to protect itself against to resist and recover
requested specified catastrophic failure deliberate or accidental ~ from damaging events
intrusion

* Reliability is the probability that a system will work as designed

* Resiliency can be described as the ability to a system to self-heal after damage, failure, load,
or attack

* Some assumptions in SE:
- Faults in Software / Hardware might lead to failures
- We can try to predict and take countermeasures based on the analysis of past history

— All models are based on monothonic behaviour (i.e., the fact that there are no concept
drifts)

— We can adapt systems based on our models of failure detection / location

8/18

The Traditional View of Software Reliability & Resilience

~ ~subcharacteristic” ~ over a period

How many faults were)
of time

detected in reviewed
Product?
X=A/B external attributes
A=Absolute number of faults
detected in review
B=Number of estimated faults

Scharacteristic - =~

to be detected in review (using
past history or reference
model)

We do not know or cannot
search through the whole
space of failures

We build models and use
proxies (as faults) to estimate
the failures and adapt
systems ex-post

9/18

Defects Prediction as proxies -

\ _/)

GitHub < aAp— 3lissues tracking data

Clone

Local —PyDriler—>» Commit data

Repo

SourceMeter—

)

Class-level source

code metrics

Identify faulty classes:

Join

Class-level defect
data

Join

Linked metrics with
bug data

=)

10-fold cross-validation

Training data . q
90% i»Traln Trained model
4

——Split— Prediction

v ¥
Testing data n
{ 10% J»lnpuh)[Predicted data }

Evaluate performace

Linked metrics
with bug data

Calculate average

Prediction results

It is assumed that the more defects —. the more the failures

look into code and improve to avoid future failures (for e.g., to see which modules require more attention)

=)

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

We can have prediction models telling us about the prediction of defects in code

LoC CcK
1.0
Q o
0.8 o r‘l'-‘
o @
= = =
=_-=
0.4 @
0.2
NB DT RF NB DT RF
OTHER CK + OTHER
1.0
o o o o
o 'I‘ 0.8 ,l‘ &!
0.6
@ b E
l? ool T
g 0.2
NB DT RF NB DT RF

F-measure distribution

We need to develop/refactor, redeploy, etc... This is an old view of how software systems are built

10/18

Software Reliability Growth Models (SRGM)

We can try to fit the cumulative failure data curve to see which models could be better in giving us an estimate

[]
of our failures - clearly impossible to get one-fits-all models

777 Fitting all models for a project

: Failure occurence : !t F N Y N A N ‘

. | ! g A

El 3 i [} \ ‘ |

!\ asoo] | | oss FEN \ |

| 4000] ! ! . N |

= I =R s

| | | |

! 000 / ! | |

| %Z:] | 085 3

T ———— 1 |

| o ooty ! |

[) oiee Lo s | [— Go___GOS __WD___MO___DY___WE___YE___YR___L 1

RQ2 - OVERVIEW OF THE GOF (R?) FOR THE PROJECT CATEGORIES AND INDIVIDUAL MODELS (TOP-3 MODELS HIGHLIGHTED).
Cl C2 C3 C4 C5 C6 C7

Model m o I 3 n o I o I o I o m o m o
DU 0.989 0.008 0.982 0.016 0.850 0.269 0.976 0.027 0.982 0.016 0.976 0.020 0.952 0.076 0.960 0.080
GO 0949 0.056 0971 0018 | 0766 0283 | 0952 0.061 0958 0040 | 0970 0.027 0934 0.050 0945 0079
GOS 0842 0331 0949 0.114 | 0.774 0255 0845 0259 | 0872 0256 0987 0.008 0969 0.026 0980 0.017
HD 0970 0.043 0977 0021 | 0988 0011 | 0968 0072 | 0966 0.033 0982 0.028 0954 0.041 0988 0.008
LL 0.996 0.002 0.993 0.009 0.871 0.277 0.993 0.007 0.989 0.009 0.994 0.009 0.984 0.009 0.994 0.055
MO 0.947 0.058 0970 0018 [0757 0301 0947 0059 | 0957 0040 | 0967 0.026 0910 0.103 0952 0.021
WE 0.995 0.003 0.993 0.009 | 0865 0274 | 0993 0008 | 0987 0011 0.994 0.008 | 0958 0.077 0993 0.008
YE 0950 0.056 0971 0018 | 0.762 0286 | 0952 0.061 0958 0040 | 0970 0.027 0935 0.050 0969 0.028
YR 0.985 0.017 | 0986 0014 | 0921 0.165 098 0018 | 0975 0.030 | 0987 0.009 | 0970 0.023 0985 0.012

11718

Self-healing Systems . . - - -

AN @

* Modern systems of systems embrace failures

* Have monitoring capabilities and can self-adapt to emerging situations

* Can take action to restart services / processes — e.g., the circuit breaker pattern
Examples are Microservices

Corrective Action A

Tlnvokes corrective action

Health Monitor

lPing l iPing iPing
Ping

Service Service Ping! Service
Ping Service
Ping i
Pin Service
Service 9
Service

Service

12/18

j
]
o

Self-healing Systems

* Modern systems of systems embrace failures

* Have monitoring capabilities and can self-adapt to emerging situations

* Can take action to restart services / processes — e.g., the circuit breaker pattern
Examples are Microservices

Corrective Action Q : What we are mlSSlng |S the
- capability of systems to
- learn when self-adapting to

Tlnvokes corrective action

Health Monitor failure
lp"‘g lPing ipi"g lpi"g ~ Learning from failures,

Service | : Service |ping| Service . take countermeasures, and

Ping Service |

Ping : - self-adapt
; Ping Service '
Service
Servi : .

Service eree . This can be part of System-

- of-Systems modelling of
' “emerging behaviour”

13/18

Using Simulations to lea; expected behawour (1/2)

\\.

* In previous work we created a testing management platform for Smart Grids based on the Mosaik

framework for co-simulations

* We extended Mosaik with the disconnect method to remove edges from the dataflow graph and the entity
graph — A simple way to simulate node failures

Smart Grids Testing Processes

IPC

Mosaik Server

<<executionEnvironment>>
Python Interpreter

<<component>> g]
Mosaik

Simulator

<<executionEnvironment>>
Java Virtual Machine

<<executionEnvironment>>
Java Virtual Machine

<<component>>]
SG Testing Platform

TCP/IP

JDBC

Database Server

<<component>> €|
Database

HTTP

<<component>>
Mosaik API implementation

gl

IPC / TCP/IP

<<component>> 2]
Software Simulator

RS-232/USB

<<component>>
Hardware Simulator

gl

<<user>>
Lab Technician PC

<<component>>
Web Browser

g]

14/18

Using SimulationSt§ lea;niexpeef\.\l;{ejd b\ehﬂavi‘our (2/2)

* What about comparing results from simulations and “real runs” to determine expected behaviours?

* Systems can learn from running the system and simulation — Al can help in determing what could be the best
course of action

* Simulation - failure vs reality - failure?

Pure Predictive Simulation

- Needs definition of what is
- an anomaly as well

Can be done at design
- time or at runtime (in real-

Software Smart
Agent

Verify Accuracy

Temporal Logic
Model |

NO [
I—@ time)
Design Time l' ””””””””””””””””””””””””””””””””
Runtime Deploy Smart SW Agent
&TM

Execute TM

Create TDT

Linked Predictive Simulation

TM = Temporal Model
TDT = Temporal Digital Twin

15/18

Maybe we need to move forward
from the concept of resilience...

16/18

¥)

L —

Maybe we need to move forward
from the concept of resilience...

This is where the next talk starts

Maybe we need to move forward
from the concept of resilience...

This is where the next talk starts

Hind Bangui will have all the answers :)

	Lecture 10: ESB and middleware
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

