
PV260 - SOFTWARE QUALITY

SOFTWARE MEASUREMENT & METRICS AND
THEIR ROLE IN QUALITY IMPROVEMENT

Bruno Rossi

brossi@mail.muni.cz

LAB OF SOFTWARE ARCHITECTURES
AND INFORMATION SYSTEMS

FACULTY OF INFORMATICS
MASARYK UNIVERSITY, BRNO

2/95

● The following defect (can you spot it?) in Apple's SSL code was
undiscovered from Sept 2012 to Feb 2014 – how can it be?

M. Bland, “Finding more than one worm in the apple,”
Communications of the ACM, vol. 57, no. 7, pp. 58–64,
Jul. 2014.

Introduction

3/95

● Modern systems are very large & complex in terms of
structure & runtime behaviour

● The figure on the right
represents Eclipse JDT 3.5.0
(350K LOCs, 1.324 classes,
23.605 methods)

Classes black - Methods red – Attributes blue. Method containment, attribute containment, and class → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class
inheritance gray - Invocations red - Accesses blue→ black - Methods → red – Attributes → blue. Method containment, attribute containment, and class → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class

Introduction

4/95

● We need ways to understand attributes of software, represent in a
concise way and use it to track for software & development process
improvement

● Software Measurement and Metrics are one of the aspects we can
consider

LOCs 354.780
NOM 23.605
NOC 1.324
NOP 45
LOCs=lines of code, NOM=nr. of methods
NOC=nr. of classes, NOP=nr. of packages

If we consider the following metrics,
what can we say?
What are these metrics “good” for?

Introduction

5/95

● Typical problems related to software measurement:

 → How can I measure the maintainability of my software?
 → Can I estimate the number of defects of my software?

 → What is the productivity of my development team?
 → Can I measure the quality of my testing process?

Introduction

6/95

Motivational Example

7/95

● Expert source code and system review after reported cases of
accidents due to cars accelerating without users' inputs *

● 18 months review + previous NASA experts code review
● Investigation on unintended accelerations

* http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

Review of defective Toyota Camry’s System (1/3)

http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

8/95

● Usage of software metrics (p.24):
● “Data-flow spaghetti

– Complex coupling between software modules and between tasks
– Count of global variables is a software metric for “tangledness”

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class 2005 Camry L4 has >11,000 global variables (NASA)”

* http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

Review of defective Toyota Camry’s System (2/3)

9/95

● Usage of software metrics (p.24):
● “Control-flow spaghetti

– Many long, overly-complex function bodies
– Cyclomatic Complexity is a software metric for “testability”

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class 2005 Camry L4 has 67 functions scoring >50 (“untestable”)
 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class The throttle angle function scored over 100 (unmaintainable)”

● See also p.30-31 for coding rules violations and expected number of bugs

* http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf

Review of defective Toyota Camry’s System (3/3)

10/95

Background on Software Measurement

11/95

● Measurement is the process by which numbers or symbols
are assigned to attributes of entities in the real world in
such a way as to describe them according to clearly defined
rules (N. Fenton and S. L. Pfleeger, 1997)

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class A measurement is the process to define a measure

Measurement

12/95

● To avoid anecdotal evidence without a clear research (through
experiments or prototypes for example)

● To increase the visibility and the understanding of the process
● To analyze the software development process
● To make predictions through statistical models

Gilbs’s Principle of fuzzy targets (1988):
“Projects without clear goals will not achieve their goals clearly”

Why Software Measurement

13/95

● Although measurement may be integrated in development,
very often objectives of measurements are not clear
“I measure the process because there is an automated tool
that collects the metrics, but do not know how to read the
data and what I can do with the data”

Tom De Marco (1982):
“You cannot manage what you cannot measure” ...

...but you need to know what to measure and how to measure

However...

14/95

● The measurement process goes from the real world to the
numerical representation

● Interpretation goes from the numerical representation to the
relevant empirical results

Real World Numbers

Reduced
Numbers

Relevant
Empirical
Results

Intelligence Barrier

Measures

Interpretation

S
tatis tics

R
elev ant R

esu lts

The Measurement Process

15/95

● A measure is a mapping between
– The real world
– The mathematical or formal world with its objects and relations

● Different mappings give different views of the world depending on the
context (height, weight, …)

● The mapping relates attributes to mathematical objects; it does not relate
entities to mathematical objects

Measure Definition

16/95

● The validity of a measure depends on definition of the attribute
coherent with the specification of the real world

● Example: Is LOC a valid measure of productivity?
 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class Think by paradox: 100K system.out statements vs

100K of complex loops and statements

ADDITIONAL PROBLEM: You might have two different projects with two different
definitions of LOCs (e.g., considering blanks+comments vs only “;”) so that the
following can be true at the same time P1>P2 and P1<P2

Measurement
Low High

R
ea

l W
or

ld Low

High

TRUE
NEGATIVE

FALSE
POSITIVE

FALSE
NEGATIVE

TRUE
POSITIVE

Measurement
Low High

R
ea

l W
or

ld Low

High

TRUE
NEGATIVE

FALSE
POSITIVE

FALSE
NEGATIVE

TRUE
POSITIVE

Valid Measure

17/95

● Code coverage is a measure giving an indication of how much of the
source code has been run (“covered”) by running the tests

● Different criteria:
– Statement coverage (the one assumed by standard “code coverage): the % of

statements of the program covered by the tests
– Function coverage: the % of functions/methods covered by the tests
– Branch coverage: the % of branches of the control structures (e.g., if- then- else) → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class

covered by the tests
– Condition coverage: % of each Boolean condition evaluated both as True/False

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06] private static boolean[] crossedOut;
[07] private static int[] result;
[08] public static int[] generatePrimes(int maxValue){
[09] if (maxValue < 2){
[10] return new int[0];
[11] }else{
[12] uncrossIntegersUpTo(maxValue);
[13] crossOutMultiples();
[14] putUncrossedIntegersIntoResult();
[15] return result;
[16] }
[17] }
[18] }

Valid Measures – Example (1/5)

18/95

● From Wikipedia some years ago: “...A program with high code
coverage has been more thoroughly tested and has a lower chance
of containing software bugs than a program with low code
coverage...” - as of 2022 this sentence was removed from Wikipedia,
but it is still in some other webpages (probably copy & paste)
Q.: Would you consider code coverage as a valid measure of how
much thoroughly one software project has been tested?

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class Suppose you have two projects and you compute code coverage
P1 70% vs P2 80%→ black - Methods → red – Attributes → blue. Method containment, attribute containment, and class → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class

Would you generally consider P2 to be “better” (more accurately) tested
than P1?

Valid Measures – Example (2/5)

19/95

Coverage 100%

[01] double div (int x, int y){
[02] return x/y;
[03] }

AssertEquals(1.0, div(1,1));

Coverage 100%

assertEquals(0.66, div(2,3), 0.1);

[01] double div (int x, int y){
[02] return x/y;
[03] }

A. Assumption: considering every test covering the same nr. of lines
as equal?

Note(!): Software follows usually a Pareto principle:
 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class ~80% of the defects are in the ~20% of the code
 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class the ~20% of code with more defect-density can be more

difficult to cover with tests

Valid Measures – Example (3/5)

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class Same coverage, but the one on the right is a better test

20/95

● According to Martin Fowler:

 “→ “ Test coverage is a useful tool for
finding untested parts of a
codebase. Test coverage is of little
use as a numeric statement of how
good your tests are”
(http://martinfowler.com/bliki/TestCoverage.html)

Valid Measures – Example (4/5)

21/95

● In this case, we do not respect the representation condition: when we
assign symbols to the attributes of entities we need to preserve the meaning
of relationships when moving entities from the real world to the numerical
world

● You can see this also from the Information Theoretical point of view

Real
World

Mathem.
World

1-1 mapping on relations

Measurement
Low High

R
ea

l W
or

ld Low

High

TRUE
NEGATIVE

FALSE
POSITIVE

FALSE
NEGATIVE

TRUE
POSITIVE

Valid Measures – Example (5/5)

22/95

● Every measurement is mapped to a so-called scale (nominal, ordinal,
interval, rational)

● Considering the scale is quite important for the admissible operations

<,> min,max median avg prop
Nominal →
Ordinal →
Interval →
Rational →

≠,=

Measurement Scales (1/4)

23/95

● Some examples of measures and related scales

Scale Type Examples in Software Eng. Indicators of Central Tendency

Nominal Name of the programming
language (e.g. Java, C++, C#)

Mode

Ordinal Ranking of failures (as a
measure of failure severity)

Mode + Median

Interval Beginning date, end date of
activities

Mode + Median + Arithmetic
Mean

Ratio LOC (as a measure of program
size)

Mode + Median + Arithmetic
Mean + geometric Mean

Morasca, Sandro. "Software measurement." Handbook of Software Engineering and Knowledge
Engineering (2001): 239-276.

Measurement Scales (2/4)

24/95

● Example, suppose that we have the following ranking of software
tickets by severity

Level Severity Description

6 Blocker Prevents function from being used, no work-
around, blocking progress on multiple fronts

5 Critical Prevents function from being used, no work-
around

4 Major Prevents function from being used, but a work-
around is possible

3 Normal A problem making a function difficult to use but
no special work-around is required

2 Minor A problem not affecting the actual function, but
the behavior is not natural

1 Trivial A problem not affecting the actual function, a
typo would be an example

Measurement Scales (3/4) - example

25/95

● Is it meaningful to use the weighted average to compare two
projects in terms of severity of the open issues?

Order Severity P1 P2

6 Blocker 2 10

5 Critical 36 19

4 Major 25 22

3 Normal 15 32

2 Minor 2 5

1 Trivial 121 113

Sev(Pn)=avg (∑ issuesi∗weighti)

Sev(P1)=avg(2∗6+36∗5+25∗4+15∗3+2∗2+121∗1)=77
Sev(P2)=avg(10∗6+19∗5+22∗4+32∗3+5∗2+113∗1)=77

Are the projects the same
according to our metric? Is there
the “same distance” from a
critical ticket to a blocker that
there is between minor and
trivial?

Let’s define the following metric:

Measurement Scales (4/4) - example

26/95

Pitfalls in linking the real world
phenomenon to numbering systems

https://xkcd.com/605/

https://xkcd.com/605/

27/95

● A/B Testing is a kind of randomized experiment in which you can
propose two variants of the same application to the users

● We set-up an experiment with two browsers and two variations of the
same webpage

● Conversion Rate: % of users completing an action

Conv Rate A Conv Rate B
Firefox 87.50% 100.00%
Chrome 50.00% 62.50%

What can you conclude? Which alternative is better?

https://medium.com/homeaway-tech-blog/simpsons-paradox-in-a-b-testing-93af7a2f3307

Pitfall Example (1/3)

28/95

● Let’s look at the same table but with additional information about
the way the tests were split

https://medium.com/homeaway-tech-blog/simpsons-paradox-in-a-b-testing-93af7a2f3307

Conv Rate A Conv Rate B
Firefox 70/80 = 87.5% 20/20 = 100%
Chrome 10/20 = 50% 50/80 = 62.5%
Both 80/100 = 80% 70/100 = 70%

Pitfall Example (2/3)

29/95

Simpsons' paradox
● It can happen that:

a/b < A/B

c/d < C/D

(a + c)/(b + d) > (A + C)/(B + D)

● example
1/5 (20%) < 2/8 (25%)

6/8 (75%) < 4/5 (80%)

7/13 (53%) > 6/13 (46%)

See: https://plato.stanford.edu/entries/paradox-simpson/ – considering the following papers:

J. Pearl (2000). Causality: Models, Reasoning, and Inference, Cambridge University Press.

P.J. Bickel, E.A. Hammel and J.W. O'Connell (1975). "Sex Bias in Graduate Admissions: Data From Berkeley. Science 187 (4175): 398–40

Dept Men Women

Applicants admitted Applicants admitted

A 5 20% 8 25%

B 8 75% 5 80%

Total 13 53% 13 46%

Pitfall Example (3/3)

30/95

Software Measurement Models & Methods

31/95

Measurement
artifacts /
objects

Product
(architecture

implementation,
documentation)

Process
(management, life-

cycle, CASE)

Resources
(personnel,
software,
hardware)

Measurement
Models

Flow graphs

Call graphs

Structure tree

Code schema

...

Scale
types,

statistics

Correlation

Estimation

Adjustment

Calibration

Measurement
Evaluation

Analysis

Visualization

Exploration

Prediction

...

Measurement
Goals

Understanding

Learning

Improvement

Management

Controlling

...

artefactBased
operation

quantificationBased
operation

valueBased
operation

experienceBased
operation

Software Measurement Methods

32/95

Information
Product

Information Needs

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

Measurable
Concept:
abstract relationship
between attributes of
entities and
information needs

Measurement Information Model (ISO/IEC 15939)

33/95

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

Property relevant to
information needs

Operations mapping
an attribute to a scale

Variable assigned a
value by applying the
method to one attribute

Algorithm for combining
two or more base
measures

Variable assigned a
value by applying the
measurement function
to two or more values of
base measures

Bottom part

Measurement Information Model (ISO/IEC 15939)

34/95

Information
Product

Information Needs

Interpretation

Indicator

(analysis)
Model

Algorithm for combining
measures and decision
criteria

Variable assigned a value
by applying the analysis
model to base and/or
derived measures

Explanation relating the
quantitative information in
the indicator to the
information needs

The outcome of the
measurement process
that satisfies the
information needs

Top part

Measurement Information Model (ISO/IEC 15939)

35/95

Information
Product

Information Needs

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

B1= Nr. of
inaccurate

computations
encountered

by users

B2=
Operation

Time

B1/B2

Computational
Accuracy

Comparison of
values obtained

with generic
thresholds and/or

targets

External quality
measures –

Functionality -
Accuracy

Software

Run-time
accuracy

Run-time
usability

Information
Product

Information Needs

Interpretation

Indicator

(analysis)
Model

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

B1= Number of
detected
failures

B2= Number
of performed

test cases

B1/B2

Failure density
against test

cases

Comparison of
values obtained

with generic
thresholds and/or

targets

External quality
measures –
Reliability -

Maturity

Software

Run-time
reliability

Level of
testing

Inspired by Abran, Alain, et al. "An information model for software quality measurement with ISO standards." Proceedings of the International
Conference on Software Development (SWDC-REK), Reykjavik, Iceland. 2005.

ISO/IEC 15939 Examples

36/95

● Some measures are harder to collect or are not regularly
collected
– Direct: from a direct process of measuring
– Indirect: from a mathematical equation in the world of symbols

Derived
Measure

Derived
Measure

Measurement
Function

Base
Measure

Base
Measure

Measurement
Method

Measurement
Method

Attribute Attribute

Entity

Measurable
Concept

Property relevant to
information needs

Operations mapping
an attribute to a scale

Variable assigned a
value by applying the
method to one attribute

Algorithm for combining
two or more base
measures

Variable assigned a
value by applying the
measurement function
to two or more values of
base measures

This is what ISO/IEC
15939 refers as base
measure and derived
measure

Direct vs Indirect Measures (1/2)

37/95

● Direct
– Number of known defects

● Indirect
– Defects density (DD)

– COCOMO, measure of effort

E=a⋅KSLoCb⋅EAF

where b=0.91+0.01∑
i=1

5

SF i

a=2.94

DD=
known defects
product size

EAF = Effort Adjustment Factor
SF = Scale Factors

Direct vs Indirect Measures (2/2)

38/95

● Generally, it easier to collect measures of length and
complexity of the code (internal attributes of product) than
measures of its quality (external attributes)
– Internal attribute: internal characteristics of product, process,

and human resources
– External attributes: due to external environment

Internal vs External Attributes (1/4)

39/95

● One of the aims of Software Engineering is to improve the
quality of software

Internal vs External Attributes (2/4)

40/95

● The mapping of internal attributes to external ones – and
then quality in use – is not as straightforward

Internal vs External Attributes (3/4)

41/95

● The mapping of internal attributes to external ones – and then
quality in use – is not as straightforward (example: reliability)

nr. of
failures over
a period of

time
How many faults were
detected in reviewed

Product?
X=A/B

A=Absolute number of faults
detected in review

B=Number of estimated faults to
be detected in review (using past

history or reference model)

Is there a relation
between the two?

ASSUMPTION (!) → fix internal mistakes to fix the corresponding failure(s)

Internal vs External Attributes (4/4)

42/95

Objective: the same each time they are taken (e.g. automated
collected by some device)

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class e.g., LOCs

Subjective: manually collected by individuals
 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class e.g., time to use a functionality in an application

Objective vs Subjective Measures

43/95

SOFTWARE METRICS - SIZE

44/95

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06] private static boolean[] crossedOut;
[07] private static int[] result;
[08] public static int[] generatePrimes(int maxValue){
[09] if (maxValue < 2){
[10] return new int[0];
[11] }else{
[12] uncrossIntegersUpTo(maxValue);
[13] crossOutMultiples();
[14] putUncrossedIntegersIntoResult();
[15] return result;
[16] }
[17] }
[18] }

Various Measures of Size

45/95

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06] private static boolean[] crossedOut;
[07] private static int[] result;
[08] public static int[] generatePrimes(int maxValue){
[09] if (maxValue < 2){
[10] return new int[0];
[11] }else{
[12] uncrossIntegersUpTo(maxValue);
[13] crossOutMultiples();
[14] putUncrossedIntegersIntoResult();
[15] return result;
[16] }
[17] }
[18] }

LOC = 18
(Lines Of Code)

CLOC=3
(Commented
Lines of Code)

Various Measures of Size

46/95

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06] private static boolean[] crossedOut;
[07] private static int[] result;
[08] public static int[] generatePrimes(int maxValue){
[09] if (maxValue < 2){
[10] return new int[0];
[11] }else{
[12] uncrossIntegersUpTo(maxValue);
[13] crossOutMultiples();
[14] putUncrossedIntegersIntoResult();
[15] return result;
[16] }
[17] }
[18] }

NLOC = 15
(Non-Commented
Lines Of Code)

Various Measures of Size

47/95

[01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator
[05] {
[06] private static boolean[] crossedOut;
[07] private static int[] result;
[08] public static int[] generatePrimes(int maxValue){
[09] if (maxValue < 2){
[10] return new int[0];
[11] }else{
[12] uncrossIntegersUpTo(maxValue);
[13] crossOutMultiples();
[14] putUncrossedIntegersIntoResult();
[15] return result;
[16] }
[17] }
[18] }

NOC = 1
(Number Of
Classes)

NOM = 1
(Number of
Methods)

NOP = 1
(Number of
Packages)

Various Measures of Size

48/95

● Size is used for normalization of existing measures
 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class from the example before, it would be much more useful to report a

comments density of 16% (3/18) rather than 3 CLOCs

CD=
CLOCs
LOCs

=
3
18

=0.16

Measures of Size good for…?

49/95

● Example: using comments density to compare Open Source
projects after normalization

What is a good
reference value
for “comments
density” in your
opinion?

These look “scary”

O. Arafat and D. Riehle, “The comment density of open source software code,” in 31st International Conference on Software
Engineering - Companion Volume, 2009. ICSE-Companion 2009, 2009, pp. 195–198.

Measures of Size good for…?

50/95

● Size can give a good rough initial estimation of effort,
although...

 → Measures of source code size should *never* be used to assess
the productivity of developers

How would you compare
Mozilla Firefox with the
Linux Kernel in terms of
maintenance effort?

Software LOCs

Microsoft Windows Vista ~50M

Linux Kernel 3.1 ~15M

Android ~12M

Mozilla Firefox ~10M

Unreal Engine 3 ~2M

Measures of Size good for…?

51/95

→ http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

● Size can be used for comparison of projects and across
releases

Measures of Size good for…?

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

52/95

“The task then is to refine the code base to better meet customer
need. If that is not clear, the programmers should not write a line of
code. Every line of code costs money to write and more money to
support.”

Jeff Sutherland, one of the main proponents of the
Agile Manifesto and the SCRUM methodology

Another observation about LOCs

53/95

SOFTWARE METRICS - COMPLEXITY

54/95

● CC represents the number of independent control flow paths
● G=(N,E) is a graph representing the control flow of a

program. N=nodes, E=edges, P = nr. disconnected parts of G,
like main program and method call

● Cyclomatic Complexity is defined as:
v(G) = |E|-|N|+ 2P

 → Assumptions: higher complexity of the program flow graphs, more
complex testing process for the source code

McCabe's Cyclomatic Complexity (CC)

Note: a shortcut is to use # branches + 1 (if, for, foreach, while, do-while, case label, catch,
conditional statements)

55/95

CC = 2 [01] * multiples. Repeat until there are no more multiples
[02] * in the array.
[03] */
[04] public class PrimeGenerator{
[05] private static boolean[] crossedOut;
[06] private static int[] result;
[07] public static int[] generatePrimes(int maxValue){
[08] if (maxValue < 2){
[09] return new int[0];
[10] }else{
[11] uncrossIntegersUpTo(maxValue);
[12] crossOutMultiples();
[13] putUncrossedIntegersIntoResult();
[14] return result;
[15] }
[16] }
[17] }

Typical ranges
1-4 low
5-7 medium
8-10 high
11+ very high

CC of method
generatePrimes
v(G)=|E|-|N|+2
v(G)=9-9+2=2

entry

exit

McCabe's Cyclomatic Complexity (CC)

56/95

● The following code structure from a 2008 students' project
implementing chess: one method with 292LOCs and 163 CC

Example Application of CC

57/95

● Let's decompose a bit such huge method

public boolean eatCoin(Movement mov, Movement eatMov, Coin coin)
throws IOException{

//Controls if the eatMove is in the board, if not return
if(!canMove(eatMov)){

System.out.println("You can't eat this coin");
return false;

}

try{
//If it is a coin
if(!this.board[mov.row][mov.col].isKing()){

//If the coin to eat isn't a king
System.out.println("nextRow " + mov.nextRow + "

 nextCol " + mov.nextCol + " isKing " +
 this.board[mov.nextRow][mov.nextCol].isKing());

if(!this.board[mov.nextRow][mov.nextCol].isKing()){
....

Example Application of CC

58/95

Example Application of CC

59/95

● A word of warning is that metrics take typically into account syntactic
complexity NOT semantic complexity

● Both of the following code fragments have the *same* Cyclomatic Complexity
→ which code fragment is easier to understand?

[04] public class PrimeGenerator
[05] {
[06] private static boolean[] crossedOut;
[07] private static int[] result;
[08]
[09] public static int[] generatePrimes(int maxValue){
[10] if (maxValue < 2){
[11] return new int[0];
[12] }else{
[13] uncrossIntegersUpTo(maxValue);
[14] crossOutMultiples();
[15] putUncrossedIntegersIntoResult();
[16] return result;
[17] }
[18] }

[04] public class A
[05] {
[06] private static boolean[] c;
[07] private static int[] b;
[08]
[09] public static int[] generate(int m){
[10] if (m < 2){
[11] return new int[0];
[12] }else{
[13] methodOne(m);
[14] methodTwo();
[15] methodThree();
[16] return b;
[17] }
[18] }

● As well, as in the initial motivating example, a word of warning when
comparing projects in terms of average complexity

Complexity

60/95

OBJECT ORIENTED METRICS

61/95

● WMC: Weighted methods per class
● DIT: Depth of Inheritance Tree
● NOC: Number of Children
● CBO: Coupling between object classes
● RFC: Response for a Class
● LCOM: Lack of cohesion in methods

Chidamber & Kemerer Suite

62/95

● WMC: Weighted methods per class
– weighted sum of the number of methods of a class. Given C a

class and M1, …, MK k methods with complexity c1,…,cK

WMC

∑
i−1

n

c i ,where c is the complexity of amethod

63/95

 → What is the WMC of the following classes?

WMC

WMC=∑
i−1

n

ci

64/95

 → What is the WMC of the following classes?

WMC

WMC=∑
i−1

n

ci

WMC(A) = NoM(A) = 5
WMC(B) = NoM(B) = 1
WMC(C) = NoM(C) = 0
WMC(D) = NoM(D) = 1
WMC(E) = NoM(E) = 3
WMC(F) = NoM(F) = 0
WMC(G) = NoM(G) = 0

65/95

● DIT: Depth of Inheritance Tree

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class max inheritance level from the root to the class
● NOC: Number of Children

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class nr. Of direct descendants of a class

DIT & NOC

Figure source from NDepend documentation

66/95

● DIT: Depth of Inheritance Tree

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class max inheritance level from the root to the class
● NOC: Number of Children

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class nr. Of direct descendants of a class

DIT & NOC

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class The deeper a class is in the hierarchy, the more
methods it is likely to inherit, making it more complex

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class Deep trees as such indicate greater design complexity
 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class As a positive factor, deep trees promote reuse

because of method inheritance

What are “good” DIT & NOC values?
Figure source from NDepend documentation

67/95

● CBO: Coupling between object classes

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class Class A coupled with B, if A is using methods/attributes of B

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class Multiple accesses to the same class are counted as one access

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class High CBO is undesirable: Excessive coupling between object
classes is detrimental to modular design and prevents reuse

CBO

68/95

CBO

 → What is the CBO of the following classes?

69/95

CBO

 → What is the CBO of the following classes?

CBO(A)=3
CBO(B)=CBO(C)=CBO(D)=
CBO(E)=CBO(F)=0

70/95

● RFC: Response for a Class

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class count of methods that can be executed by class A responding to
a message

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class the number of methods of a class than can be invoked in response of a
call to a method of a class. This includes all methods accessible within the
class hierarchy

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class A large RFC has been found to indicate more faults

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class Classes with a high RFC are more complex and harder to understand

 → black - Methods → red – Attributes → blue. Method containment, attribute containment, and class Testing and debugging is complicated

RFC

71/95

RFC

 → What is the RFC of the following classes?

72/95

RFC

 → What is the RFC of the following classes?

RFC(A) = 7
WMC(B) = NoM(B) = 1
WMC(C) = NoM(C) = 0
WMC(D) = NoM(D) = 1
WMC(E) = NoM(E) = 3
WMC(F) = NoM(F) = 0
WMC(G) = NoM(G) = 0

73/95

● LCOM: Lack of cohesion in methods
– How closely the local methods are related to the local instance variables in the

class
– We use a “negative” measure of cohesiveness, the lack of cohesion of its

methods

LCOM

LCOM=1−
∑ F|M f|

|M|x|F|

M = static and instance methods in the class
F = instance field in the class
M

f
 = methods accessing field f

|S| = cardinality of set S

Figure source from NDepend documentation

1−
10
50

=0.8

Divide by the # of methods
multiplied the # of fields

Take each field in the class, count the methods
that reference it, sum all together for all fields. Violet=attributes, pink=methods

1−
2
2
=0

74/95

Question Time

75/95

● Given all that we have seen, what are your thoughts about the
following metric computing the Maintainability Index (MI) of a
project:

MI=171−5.2⋅ln (V)−0.23⋅CC−16.2⋅ln (LOC)

Note: you might see different versions of MI implemented in different tools – this is the original
formula that has a range (171,-∞), other variations go in the (0,100) range, e.g. look at
Microsoft Visual Studio documentation for details

Where V is the Halstead volume, measuring the complexity of code based on
length and vocabulary used (in the code)

V=N∗log2n
whereN=N1+N2,

N 1=Totaloperators(like>, ; ,), etc .. ,N 2=Total operands (like j , i ,0,etc ...)
N=n1+n2,
n1=uniqueoperators , n2=uniqueoperands

In your view, what is good and what is bad about this metric?

Maintainability Index

76/95

The Goal Question Metrics
(GQM) Approach

77/95

● Common pitfalls in software measurement
– Collecting measurements without a meaning

● Measurement must be goal-driven

– Not analyzing measurements
● Numbers need detailed analysis

– Setting unrealistic targets
● Targets should not be uniquely defined based on the numbers

– Paralysis by analysis
● Measurement is a key activity in management, not a separate activity

Count what is countable.
Measure what is measurable.
And what is not measurable, make measurable.
Galileo Galilei

Software Measurement Pitfalls

78/95

● Introduced in 1986 by Rombach and Basili
– GQM stands for Goal Question Metric

● It is a deductive instrument to derive suitable measures from
prescribed goals

● The paradigm is initiated by Business Goals (BG)
● From the BGs we can derive the GQM

● The Goal Question Metric top-down approach consists of
three layers

– Conceptual layer – the Measurement Goal (G)
– Operational layer – the Question (Q)
– Measurement layer – the Metric (M)

The GQM Approach

79/95

● Measurements must be goal-oriented
● Following typically a structure as the GQM approach:

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key
performance indicators,
projects targets,
improvements goals

Approaches to reach the
goals, improvement
programs, change
management, project
management techniques

Business, employee,
products, processes

What are the goals to reach?
What do I need to improve?

How do I reach my
objectives? I will I improve?

Am I doing good or bad? Am I
doing better or worse?

Feedback loop
(understand)

Review

Define

Goal-oriented Measurement

80/95

The primary question must be “What do I need to improve?” rather than “What
measurements should I use?”

Measurement
Goal (G)

Question (Q)

Metric (M)

Business objectives, key
performance indicators,
projects targets,
improvements goals

Approaches to reach the
goals, improvement
programs, change
management, project
management techniques

Business, employee,
products, processes

What are the goals to reach?
What do I need to improve?

How do I reach my
objectives? I will I improve?

Am I doing good or bad? Am I
doing better or worse?

Feedback loop
(understand)

Review

Define

Goal-oriented Measurement

81/95

● Here are some possible and common used words for each item
of the Goal structure

● Object of study: process, product, model, metric, etc
● Purpose: characterize, evaluate, predict, motivate, etc. in

order to understand, assess, manage, engineer, improve, etc. it
● Point of view: manager, developer, tester, customer, etc.
● Perspective or Focus: cost, effectiveness, correctness,

defects, changes, product measures, etc.
● Environment or Context: specify the environmental factors,

including process factors, people factors, problem factors,
methods, tools, constraints, etc.

The Measurement Goal

82/95

 SQALE (Software Quality Assessment
Based on Lifecycle Expectations)

83/95

● SQALE (Software Quality Assessment Based on Lifecycle Expectations) is a
quality method to evaluate technical debts in software projects based on
the measurement of software characteristics
– Three levels, the first one including 8 software characteristics

Characteristic Sub-
Characteristic

Source Code
Requirement

1 1,n 1 1,n

Level 1 Level 2 Level 3

Testability

Reliability

Changeability

Efficiency

Security

Maintainability

Portability

Reusability

SQALE

84/95

● The second level is formed by characteristics

Characteristic Sub-
Characteristic

Source Code
Requirement

1 1,n 1 1,n

Level 1 Level 2 Level 3

Testability

Reliability

Changeability

Efficiency

Security

Maintainability

Portability

Reusability

Unit Testing Testability

Integration Testing Testability

Data related reliability
Logic related reliability
Statement related reliability
Synchroniation related reliability
Resource related reliability
Architecture related reliability
Fault tolerance

Understandability
Readability

...

...

...

...

...

SQALE

85/95

● The third level is linking language specific constructs to the sub-
characteristics

Characteristic Sub-
Characteristic

Source Code
Requirement

1 1,n 1 1,n

Level 1 Level 2 Level 3

Testability

Reliability

Changeability

Efficiency

Security

Maintainability

Portability

Reusability

Unit Testing Testability

Integration Testing Testability

Data related reliability
Logic related reliability
Statement related reliability
Synchroniation related reliability
Resource related reliability
Architecture related reliability
Fault tolerance

Understandability
Readability

...

...

...

...

...

Number of parameters in a module call (NOP) <6

Coupling between objects (CBO) <7

Switch statements have a 'default' condition

No assignement ' =' within 'if' statement

No assignement ' =' within 'while' statement

Invariant iteration index

SQALE

86/95

● For each of the source code requirements we need to associate a
remediation function that translates the non-compliances into
remediation costs

● In the most complex case you can associate a different function for
each requirement, but in the most simple case you can have some
predefined value for categories in which code requirements are in:

SQALE – Remediation Function

87/95

● Non-remediation functions represent the cost to keep a non-
conformity so a negative impact from the business point of view

SQALE – Non-remediation Function

88/95

● Sums of all the remediation costs associated to a particular hierarchy
of characteristics constitute an index:
– SQALE Testability Index: STI
– SQALE Reliability Index: SRI
– SQALE Changeability Index: SCI
– SQALE Efficiency Index: SEI
– SQALE Security Index: SSI
– SQALE Maintainability Index: SMI
– SQALE Portability Index: SPI
– SQALE Reusability Index: SRuI

– SQALE Quality Index: SQI (overall index)

* Note that there is a version of each index that represents density,
normalized by some measure of size

SQALE - Indexes

89/95

● Indexes can be used to build a rating value:

Rating=
estimated remediationcost
estimated development cost

Rating=
8.30h
300h

=2.7%->C

Example, an artefact that has an estimated
development cost of 300 hours and a STI of 8.30
hours, using the reference table on the left

SQALE - Rating

90/95

● The final representation can take the form of a Kiviat diagram in
which the different density indexes are represented

SQALE - Rating

91/95

● This is the view you find in SonarCube
http://www.sonarqube.org/sonar-sqale-1-2-in-screenshot

SQALE - Rating

92/95

● Given our initial discussion of measurement pitfalls, scales and
representation condition, the following sentence should be now
clear:
“Because the non-remediation costs are not established on an
ordinal scale but on a ratio scale, we have shown [..] that we can
aggregate the measures by addition and comply with the
measurement theory and the representation clause.”

Letouzey, Jean-Louis, and Michel Ilkiewicz. "Managing technical debt with the SQALE method." IEEE software 6
(2012): 44-51.

SQALE – small detail

93/95

● Measurement is important to track progress of software
projects and to focus on relevant parts that need attention

● As such, we always need to take measurement into account
with some “grain of salt”

● Still, collecting non-relevant or non-valid metrics might be
even worse than not collecting any valid measure at all

Conclusions

94/95

● LOCs: Lines of Code
● CC: McCabe Cyclomatic complexity
● Fan in: number of local flows that terminates in a module
● Fan out: number of local flows emanate from a module
● Information flow complexity of a a module: length of the module times the

squared difference of fan in and fan out
● NOM: Number of Methods per class
● WMC: Weighted Methods per Class
● DIT: Depth of Inheritance Tree
● NOC: Number of Children
● CBO: Coupling Between Objects
● RFC: Response For a Class
● LCOM: Lack of Cohesion of Methods
● ANDC: Average Number of Derived Classes
● AHH: Average Hierarchy Height

List of some acronyms

95/95

● N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical Approach, Third
Edition, 3 edition. Boca Raton: CRC Press, 2014.

● C. Ebert and R. Dumke, Software Measurement: Establish - Extract - Evaluate -
Execute, Softcover reprint of hardcover 1st ed. 2007 edition. Springer, 2010.

● Lanza, Michele, and Radu Marinescu. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of object-
oriented systems. Springer Science & Business Media, 2007.

● Some code samples from Martin, Robert C. Clean code: a handbook of agile software
craftsmanship. Pearson Education, 2008.

● Moose platform for software data analysis http://moosetechnology.org

● The SQALE Method http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf

References

http://moosetechnology.org/
http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf

	Lecture 10: ESB and middleware
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

