Empty on purpose

Acceleration of image processing algorithms for single particle analysis by electron microscopy

RNDr. David Střelák

Supervisors: prof. Luděk Matyska (MU) prof. José María Carazo (CNB) Consultants: Jiří Filipovič, Ph.D. (MU) Carlos Óscar Sánchez Sorzano, Ph.D. (CNB)

RNDr. David Střelák

Masaryk University, CZ

Universidad Autónoma de Madrid, ES

- _ 2018 2022
- Computer Science, doctoral degree programme
- Programa de Doctorado en Ingeniería Informática
- INPhINIT "la Caixa" fellowship
- degree conferred: RNDr., in 2020

Goals

Improve the algorithms used in Cryo-EM

- single-node performance optimizations
- heterogeneous computing
- autotuning
- novel algorithms

Identify the limitations of state-of-the-art HPC techniques

- application in Cryo-EM
- extend those techniques to overcome their limitations

Collaboration between HPC and Cryo-EM

Generally applicable tools in HPC

- how to find them?
- how to test them?

Cryo-EM

- important part of the structural biology
- complex workflow
- high computational demands

Cryogenic Electron Microscopy

5 D. Střelák – Acceleration of image processing algorithms for SPA by EM

- applicable techniques differ depending on the part of the pipeline
- new advanced algorithms are being researched
 - computationally very expensive conformational landscapes

Cryogenic Electron Microscopy

7 D. Střelák – Acceleration of image processing algorithms for SPA by EM

Acceleration by ...

- Using accelerator
 - Sheer brute force
- Faster algorithm
 - More efficient
 - Better fit the HW
- Adjusting implementation
 - To HW
 - To Data
- Adjusting invocations
 - Necessary for close-sourced libraries
- Utilizing all resources
 - Heterogeneous computing

Table 2.1: Raw performance (TFLOPS) comparison of multiple accelerators and processors[47][48][49][50][51][52])

Precision	DP	SP	HP
Intel® Xeon Phi 7290	2.92 (1:2)	5.84	
AMD Radeon VII	3.360 (1:4)	13.44	26.88 (2:1)
NVIDIA GeForce RTX 2080 Ti	0.41 (1:32)	13.45	26.90 (2:1)
NVIDIA TITAN RTX	0.51 (1:32)	16.31	32.62 (2:1)
NVIDIA Tesla V100	7.06 (1:2)	14.13	28.26 (2:1)
Intel Core I9-7980XE	1.12 (1:2)	2.24	

Acceleration by ...

- Using accelerator
 - Sheer brute force

FlexAlign

[1] STŘELÁK et al. FlexAlign: An Accurate and Fast Algorithm for Movie Alignment in Cryo-Electron Microscopy. Electronics. Switzerland: MDPI, 2020, vol. 9, No 6, p. 1-25. ISSN 2079-9292. doi:10.3390/electronics9061040. Scopus Q2

FlexAlign – global alignment

Figure 2. Phantom movie (grid, detail), an average of 10 frames, *n*th frame shifted by the vector [2*n*, 3*n*], before global alignment (**left**), after global alignment (**right**).

FlexAlign

[1] STŘELÁK et al. FlexAlign: An Accurate and Fast Algorithm for Movie Alignment in Cryo-Electron Microscopy. Electronics. Switzerland: MDPI, 2020, vol. 9, No 6, p. 1-25. ISSN 2079-9292. doi:10.3390/electronics9061040. Scopus Q2

FlexAlign – local alignment

 Figure 3. Phantom movie (grid, detail), an average of 50 frames, frames shifted + doming applied, using only global alignment (left), after local alignment (right).

 13 D. Střelák – Acceleration of image processing algorithms for SPA by EM

F

FlexAlign - quality

Figure 7. Detail of the frame of the normalized: cryoSPARC (top right), Fle left), Relion MotionCor (bottom right) Detail of the frame of the phantom movie (top left), cryoSPARC (top right), FlexAlign (center left), Warp (c

MUNI FΙ

Phantom

FlexAlign - quality

V

15 D. Střelák – Acceleration of image processing algorithms for SPA by EM

MUNI

16 (bottom).

X

FlexAlign - performance

Table 2. HW used for benchmarking.

	Testbed 1	Testbed 2	Testbed 3
CPU	Intel(R) Core(TM) i7	7-8700 (12 cores, 3.20 GHz)	Intel(R) Core(TM) i7-7700HQ (4 cores, 2.80 GHz)
GPU	GeForce RTX 2080	GeForce GTX 1070	GeForce GTX 1060
CUDA/driver	10.1/418.39	10.1/418.67	8.0.61/436.02 (Win 10)/390.116 (Ubuntu 18.04)
SSD	Samsung SS	D 970 EVO 500 GB	NVMe TOSHIBA 1024 GB
RAM	$2 \times 16 \text{ GB}$	DDR4 @ 2.6 GHz	$2 \times 16 \text{ GB DDR4} @ 2.4 \text{ GHz}$

Table 3. Resolution and number of frames used for testing.

	Size	No. of Patches
Falcon	$4096 \times 4096 \times 40$	9×9
K2	$3838\times3710\times40$	8 imes 8
K2 super (resolution)	$7676\times7420\times40$	16×15
K3	5760 imes 4092 imes 30	12×9
K3 super (resolution)	11,520 $ imes$ 8184 $ imes$ 20	24 imes 17

17 D. Střelák – Acceleration of image processing algorithms for SPA by EM

FlexAlign - performance

	Falcon	K2	K2 Super	K3	K3 Super
MotionCor2	4.6 s	4.3 s	15.7 s	5.0 s	13.1 s
FlexAlign (tuned)	9.2 s	7.6 s	25.6 s	8.8 s	20.5 s
FlexAlign (autotuning)	<u>49.2 s</u>	<u>34.4 s</u>	71.9 s	59.3 s	72 .2 s
FlexAlign (non-tuned)	10.8 s	<u>9.1 s</u>	31.5 s	-10.7 s	22.9 s
-Movies to pay-off	25		8	27	

Table 4. Execution time on Testbed 1.

Table 5. Execution time on Testbed 2.

	Falcon	K2	K2 Super	K3	K3 Super
MotionCor2	5.5 s	5.2 s	20.3 s	5.9 s	15.7 s
FlexAlign (tuned)	9.0 s	8.2 s	27.3 s	9.3 s	21.1 s
FlexAlign (autotuning)	<u>47.8 s</u>	<u>38.7 s</u>	73.3 s	56.2 s	65.7 s
FlexAlign (non-tuned)	11.7 s	10.4 s	<u>35.2 s</u>	<u>-11.5 s</u>	- 26.9 s
Movies to pay off	15	14	6	22	

 Table 6. Execution time on Testbed 3.

	Falcon	K2	K2 Super	K3	K3 Super
Warp	11.7 s	10 s	14.2 s	13.1 s	15.6 s
FlexAlign (tuned)	11.9 s	9.9 s	35.5 s	11.3 s	27.7 s

18 D. Střelák – Acceleration of image processing algorithms for SPA by EM

Acceleration by ...

- Using accelerator
 - Sheer brute force
- Faster algorithm
 - More efficient

MUNI

-

Align Significant

[2] JIMÉNEZ-MORENO et al., DeepAlign, a 3D Alignment Method based on Regionalized Deep Learning for Cryo-EM. Journal of Structural Biology. San Diego, USA: Academic Press, 2021, vol. 213, No 2, 14 pp. ISSN 1047-8477. doi:10.1016/j.jsb.2021.107712. Scopus Q2

Align Significant – DL part

Fig. 2. (a) Top view of region centers shown in dots, example with regions separated 30°. (b) Illustrative example of the labeling for a particle: the distance between the particle (red point) and all the region centers (for clearness just six regions are drawn, A, B, C, D, E and F) is calculated, the minimum distance give the label for the particle (B in this example).

MUNI

FΤ

Align Significant - quality

Fig. 10. FSC curves obtained for *proteasome*. Xmipp Highres 3.3 Å, DeepAlign 2.9 Å, and DeepAlign consensus 2.7 Å are compared.

Fig. 6. FSC curves obtained for *ribosome*. Relion 4.0 Å, DeepAlign 3.5 Å, and DeepAlign consensus 2.9 Å are compared.

MUNI

-

Align Significant - quality

23 D. Střelák – Acceleration of image processing algorithms for SPA by EM

Fig. 15. Local resolution of the reconstructed 3D maps for SARS-CoV-2 Spike. (a) CryoSparc, (b) DeepAlign, and (c) DeepAlign consensus.

MUNI

FΙ

Align Significant - quality

(p) 3D reconstructed maps for SARS-CoV-2 Spike. (a) and (b) Whole 3D Zoom in a specific area showing several helices for CryoSparc and DeepAlign, maps reconstructed by CryoSparc and DeepAlign, respectively. (c) and respectively. 17 Fig.

MUNI

FΙ

24 D. Střelák – Acceleration of image processing algorithms for SPA by EM

Align Significant – performance

- [placeholder]

challenging data set. We use the SARS-CoV-2 Spike data set (Melero et al., in press) whose characteristics are: size of 400 \times 400 pixels, pixel size of 1.05 Å/pixel, and no symmetry. We considered a distance between regions of 30°, which results in 42 regions, and a target resolution of 4 Å to rescale the input particle images and volume to a size of 314 \times 314 pixels. The data set consisted of 36,558 images, from which we

We used 7 GPUs to run DeepAlign with these data. The time required to train one region was, on average, 9 h, so to train the 42 regions we needed 54 h. The prediction time was 3 h, and the final alignment required 20 min, on average, per region, so a total of 2 h were dedicated to this step. The entire process, taking into account some additional steps, took approximately 2 days and a half. These times are higher than

Acceleration by ...

- Faster algorithm
 - More efficient
 - Better fit the HW

3D Fourier reconstruction

[3] Střelák et al. A GPU acceleration of 3-D Fourier reconstruction in cryo-EM, The International Journal of High Performance Computing Applications. 2019, vol. 33, no. 5, pp. 948–959. Available from DOI:10.1177/1094342019832958. Scopus Q2

3D Fourier reconstruction

Figure 1. Comparison of the scatter (left) and the gather (right) approach in a cut of the 3-D grid. The solid line represents a sample s, red dots represent pixels, and black dots represent written voxels. With the scatter pattern, the pixels weighted value is written into multiple voxels. With the gather pattern, the voxel value is computed using multiple pixels.

Figure 2. Schematic view of the iteration space in the cut of the 3-D grid. The solid line represents a sample *s*, and dashed lines represent boundaries of an area affected by the interpolation window. Arrows show computation of the initial iteration in the third dimension (i.e. dimension not iterated at the iteration plane). The updated voxels are emphasized.

3D Fourier reconstruction – quality

Figure 4. FSC between two halves of samples computed by the original and proposed GPU implementations. FSC: Fourier shell correlation; GPU: graphics processing unit.

3D Fourier reconstruction – performance

Table 1. Theoretical performance (in single-precision Tflops), memory bandwidth (in GB/s), and power consumption (in Watts) of hardware used in the evaluation.

Processor	Single-precision performance	Memory bandwidth	TDP
2× Xeon E5-2650 v4	0.845	154	210
I imes Tesla P100	9519	732	300
4 imes Tesla P100	38,076	2928	1200
GeForce GTX-1070	5783		071
GeForce GTX 750	1044	80.2	 5
GeForce GTX 680	3090	192	195

TDP: Thermal Design Power.

Table 5. Performance comparison of the original CPU and our GPU 3-D Fourier reconstruction using different numbers of GPUs. The walltime shows overall application time, the parallel region shows time of the parallelized code of samples insertion into the 3-D grid. The speedup is computed as the relative difference of the walltime.

Configuration	Walltime	Parallel region	Speedup
CPU only	155 min 00 s	150 min	n/a
$I \times PI00$	13 min 35 s	12 min 42 s	11.4×
$2 \times PI00$	8 min 14 s	6 min 50 s	18.8 imes
4× P100	4 min 53 s	3 min 26 s	31.7×

GPU: graphics processing unit.

3D Fourier reconstruction – power consumption

Table 6. Power consumption of CPU and GPU 3-D Fourierreconstruction.

Configuration	Time	Input (W)	Used power (kJ)
CPU only	150 m	206	1845
I× PI00	12 min 42 s	253	182.2
2× P100	6 min 50 s	397	159.6
4× P100	3 min 26 s	679	139.9

GPU: graphics processing unit.

Acceleration by ...

- Adjusting implementation
 - To HW
 - To Data

Autotuning

- Autotuning allows optimizing the
 application's tuning parameters (properties
 influencing the application performance) in
 order to perform the execution more
 efficiently.
- Offline autotuning
 - before the execution of a tuned code
 - easier to implement
 - does not allow an application to re-tune when its environment changes
- Dynamic autotuning
 - the application can even build the space of different variants during runtime, i. e., it is able to compile tuned kernels during the tuning process

[4] Petrovič et al. A benchmark set of highly-efficient CUDA and OpenCL kernels and its dynamic autotuning with Kernel Tuning Toolkit. Future Generation Computer Systems, Elsevier, 2020, vol. 108, pp. 161-177. ISSN 0167-739X. doi:10.1016/j.future.2020.02.069. Scopus Q1

Autotuning of the CUDA and OpenCL kernels

Table 3

A list of the benchmarks and the size and dimensionality (i.e., the number of tuning parameters) of their tuning spaces.

Benchmark	Dimensions	Configurations
BiCG	11	5,122
Convolution	10	5,248
Coulomb 3D	8	1,260
GEMM	15	241,600
GEMM batched	11	424
Hotspot	6	480
Transpose	9	10,752
N-body	8	9,408
Reduction	5	175
Fourier	6	360

Autotuning of the CUDA and OpenCL kernels Table 6

Relative performance of benchmarks ported across GPU architecture average and standard deviation of the relative performance, worst sho cannot be executed on a device. 3D Fourier Reconstruction has been

Benchmark	$GPU \rightarrow GPU$		
	avg±stdev	Worst	Failed
BiCG	89.0%±12.3%	57%	1
Convolution	79.4%±14.9%	55%	3
Coulomb 3D	95.8%±6.5%	67%	0
GEMM	83.6%±16.4%	31%	0
GEMM batched	85.4%±17%	37%	0
Hotspot	80.3%±17.5%	46%	3
Transpose	85.0%±21.9%	8%	3
N-body	78.8%±24.2%	2%	3
Reduction	88.4%±24%	12%	3
Fourier	74.5%±30%	31%	0

37 D. Střelák – Acceleration of image processing algorithms for SPA by EM

Autotuning of the CUDA and OpenCL kernels Table 8

Performance portability of 3D Fourier reconstruction with 128×128 samples. The rows represent GPUs used for offline tuning; the columns represent GPUs used for execution. The percentage shows how performance differs compared to the code using the best combination of tuning parameters (for example, the code tuned for GeForce GTX 1070 and executed on GeForce GTX 750 runs at only 31% of the speed of the code both tuned and executed on GeForce GTX 750).

	2080Ti	1070	750	680
2080Ti	100%	99%	31%	49%
1070	99%	100%	31%	50%
750	43%	67%	100%	94%
680	60%	72%	71%	100%

Table 9

Performance portability on GeForce GTX1070. The rows represent samples resolution used for offline tuning, the columns represent samples resolution used for execution. The percentage shows relative performance compared to the code autotuned for the used resolution.

	128 × 128	91 × 91	64×64	50 × 50	32 × 32
128 × 128	100%	100%	77%	70%	32%
91 × 91	100%	100%	76%	68%	33%
64×64	94%	94%	100%	91%	67%
50×50	79%	78%	98%	100%	86%
32 × 32	65%	67%	80%	92%	100%

Autotuning of the CUDA and OpenCL kernels

Table 10

The relative performance of dynamically-tuned 3D Fourier reconstruction. The best runtime is measured with orāculum, i.e., the fastest kernel is selected immediately, and no tuning is performed. The relative performance of tuning with searching 50 configurations and with searching the entire tuning space is measured as a percentage of the best runtime. Results for "tuning 50" are shown as an average and standard deviation, whereas other results are shown as an average only (their performance is very stable across multiple executions).

	Best runtime	Tuning 50	Tuning full
2080Ti	1 m 40 s	88% ± 3%	54%
1070	5 m 49 s	96% ± 2%	79%
750	16 m 59 s	$92\% \pm 4\%$	72%
680	15 m 12 s	$94\% \pm 2\%$	75%

Acceleration by ...

- Adjusting invocations
 - Necessary for close-sourced libraries

cuFFTAdvisor

[5] David Střelák and Jiří Filipovič. Performance Analysis and Autotuning Setup of the CuFFT Library. In: Proceedings of the 2nd Workshop

on AutotuniNg and ADaptivity AppRoaches for Energy Efficient HPC Systems. ANDARE '18. Limassol, Cyprus: Association for Computing

Machinery, 2018. isbn: 9781450365918. doi: 10.1145/3295816.3295817

41 D. Střelák – Acceleration of image processing algorithms for SPA by EM

cuffAdvisor

	Falcon	K2	K2 Super	K3	K3 Super
MotionCor2	4.6 s	4.3 s	15.7 s	5.0 s	13.1 s
FlexAlign (tuned)	9.2 s	7.6 s	25.6 s	8.8 s	20.5 s
FlexAlign (autotuning)	49.2 s	34.4 s	71.9 s	59.3 s	72.2 s
FlexAlign (non-tuned)	10.8 s	9.1 s	31.5 s	10.7 s	22.9 s
Movies to pay-off	25	18	8	27	22

Table 4. Execution time on Testbed 1.

Table 5. Execution time on Testbed 2.

	Falcon	K2	K2 Super	K 3	K3 Super
MotionCor2	5.5 s	5.2 s	20.3 s	5.9 s	15.7 s
FlexAlign (tuned)	9.0 s	8.2 s	27.3 s	9.3 s	21.1 s
FlexAlign (autotuning)	47.8 s	38.7 s	73.3 s	56.2 s	65.7 s
FlexAlign (non-tuned)	11.7 s	10.4 s	35.2 s	11.5 s	26.9 s
Movies to pay-off	15	14	6	22	8

Table 6. Execution time on Testbed 3.

	Falcon	K2	K2 Super	K3	K3 Super
Warp	11.7 s	10 s	14.2 s	13.1 s	15.6 s
FlexAlign (tuned)	11.9 s	9.9 s	35.5 s	11.3 s	27.7 s

42 D. Střelák – Acceleration of image processing algorithms for SPA by EM

Acceleration by ...

- Utilizing all resources
 - Heterogeneous computing

Task-based runtime systems

- Program is defined as a set of individual tasks that can be executed in parallel on various hardware resources
 respect the execution order defined by their data dependencies
- The tasks are scheduled to different processors available in the

system

- the task-based framework automatically handles data movement between memory spaces
- A task can have multiple implementations
 - for different hardware
 - for other properties

Acceleration by ...

- Using accelerator
 - Sheer brute force
- Faster algorithm
 - More efficient
 - Better fit the HW
- Adjusting invocations
 - Necessary for close-sourced libraries
- Adjusting implementation
 - To HW
 - To Data
- Utilizing all resources
 - Heterogeneous computing

– Gotta Catch 'Em All

MUNI

45 D. Střelák – Acceleration of image processing algorithms for SPA by EM

Umpalumpa framework

- Aims to manage complex workloads on heterogeneous computers
- Combines three aspects that ease programming and optimize code performance

- it implements data-centric design, where data are described by their physical properties (e. g., location in memory, size) and logical properties (e. g., dimensionality, shape, padding);
- 2. utilizes task-based parallelism to schedule tasks on heterogeneous nodes.
- tasks can be dynamically autotuned on a source code level

Umpalumpa – data centric design

Figure 1: UML of the Payload, the Logical Descriptor and the Physical Descriptor

Umpalumpa – Algorithms & Strategies

Figure 2: UML of the Algorithm with different Strategies

Umpalumpa – FlexAlign

Algorithm 1 FlexAlign pseudocode, Umpalumpa version.

Input F, batch

1: $frame_payloads \leftarrow \{\}$ 2: for j = 0; j < size(F); j + = batch do $frame_payloads \leftarrow create_payload(batch)$ 4: end for 5: $frames_fd \leftarrow \{\}$ 6: $shifts \leftarrow \{\}$ 7: for j = 0; j < size(F); j + = batch do $frame \leftarrow \text{load_frame}(j, batch, frame_payloads)$ 8: $frame_fd \leftarrow convert_to_fd(frame)$ 9: $frames_fd \leftarrow \operatorname{crop}(frame_fd)$ 10:for i = 0; $i \leq j$; i + batch do 11: $correlation \leftarrow correlate(frames_fd[i], frames_fd[j])$ 12: $corr_func \leftarrow convert_from_fd(correlation)$ 13: $shifts \leftarrow find_max(corr_func)$ 14:end for 15:16: **end for** 17: for all $shift \in shifts$ do // extract shift from the Payload 18: 19: **end for**

Algorithm 2 Method which converts batch of frames to the Fourier domain **Input** frames 1: $in_payload \leftarrow Payload(FourierDescriptor(frames), frames.pd)$ 2: $out_payload \leftarrow \{$ ld = FourierDescriptor(frames, FourierSpaceDescriptor())3: $pd = \text{create}_{pd}(ld)$ 4: return Payload(ld, pd)5:6: 7: $in \leftarrow PayloadWrapper(in_payload)$ s: $out \leftarrow PayloadWrapper(out_payload)$ 9: $alg \leftarrow \text{get_fft_alg}()$ 10: if alg is not initialized then $settings \leftarrow Settings(out_of_place, forward)$ 11: alg.init(out, in, settings) 12:13: end if 14: alg.execute(out, in) 15: return out_payload

Umpalumpa – FlexAlign

 Table 1: HW used for the performance testing.

CPU	AMD EPYC 7402 24-Core Processor
GPU	2 \times NVIDIA GeForce RTX 3090 (24 GB)
CUDA/driver	11.4 / 470.103.01
RAM	64 GB DDR4 @ 3.2 GHz

Table 3: Runtime of FlexAlign in seconds, single GPU. Speedup is computedrelative to Xmipp implementation.

	Xmipp	Umpalumpa, One GPU worker	Speedup	Umpalumpa, All workers	Speedup
Falcon	$7,\!5$	5,7	133~%	$6,\!5$	$115 \ \%$
K2	6,4	4,7	136~%	5,1	126~%
K2 super	23,3	21,2	$110 \ \%$	15,1	154~%
K3	7,3	5,7	128~%	6,2	118 %
K3 super	$19,\! 6$	13,2	148 %	15,0	131 %

Table 4: Performance of Umpalumpa FlexAlign, all CPUs, batch 5 / 1. Relative performance is computed as a fraction of Umpalumpa execution on a single GPU.

	Wall time (s)	Rel. performance
Falcon	27,5 / 12,1	27~%~/~62~%
K2	19,2 / 8,6	33 % / 74 %
K2 super	89,7 / 38,0	26~%~/~61~%
K3	28,3 / 10,9	26 % / 67 %
K3 super	86,8 / 24,1	23 % / 81 %

Algorithm 3 Fourier Reconstruction pseudocode, Umpalumpa version.

Input projections, batch

- 1: $volume \leftarrow create_volume_payload()$
- 2: for i = 0; i < size(projections); i + = batch do
- 3: $proj_payload \leftarrow create_payload(batch)$
- 4: $aux_payload \leftarrow create_payload(batch) // holds auxiliary data, e.g. projection orientation$
- 5: $proj \leftarrow load_projection(i, batch, proj_payload)$
- 6: $aux \leftarrow load_aux(i, batch, aux_payload)$
- 7: $proj_fd \leftarrow convert_to_fd(proj)$
- 8: $proj_fd \leftarrow crop(proj_fd)$
- 9: insert_to_volume(proj_fd, aux, volume)

10: **end for**

11: get_insert_alg().synchronize()


```
size t batchSize,
      const umpalumpa::fourier reconstruction::Settings::Type &type,
      const umpalumpa::fourier reconstruction::Settings::Interpolation &interpolation)
       assert(imgSize.x % 2 == 0);// we can process only odd size of the images
      using umpalumpa::fourier reconstruction::Settings;
      using umpalumpa::fourier reconstruction::Settings;
       auto imgBatchSize = umpalumpa::data::Size(imgSize.x, imgSize.y, 1, batchSize);
       auto volumeSize = umpalumpa::data::Size(imgSize.x + 1, imgSize.y + 1, imgSize.y + 1, 1);
      auto imgCroppedBatchSize = umpalumpa::data::Size(
        imgSize.x / 2, imgSize.y, 1, batchSize);// This should probably be .x / 2 + 1 (i.e. normal FFT
                                                 // size), but in Xmipp it's like that
      auto traverseSpaceBatchSize = umpalumpa::data::Size(1, 1, 1, batchSize * noOfSymmetries);
      auto settings = umpalumpa::fourier reconstruction::Settings{};
      settings.SetType(type);
      settings.SetInterpolation(interpolation);
       spdlog::info(
         "\nRunning Fourier Reconstruction.\nImage size: {}*{} ({})\nBatch: {}\nSymmetries: "
        "{}\nInterpolation type: {}\nInterpolation coefficient type: {}".
         imgSize.x,
         imgSize.v.
         imgSize.n.
        batchSize.
         noOfSymmetries,
         settings.GetType() == Settings::Type::kPrecise ? "immediate interpolation"
                                                       : "delayed interpolation".
         settings.GetInterpolation() == Settings::Interpolation::kDynamic ? "dynamic computation"
                                                                          : "precomputed table");
      auto symmetries = GenerateSymmetries(noOfSymmetries);
       auto filter = CreatePayloadFilter(imgCroppedBatchSize);
      auto volume = CreatePavloadVolume(volumeSize);
       auto weight = CreatePayloadWeight(volumeSize);
      // FIXME init volume and weight to 0
       auto table = CreatePayloadBlobTable(settings);
       for (size_t i = 0; i < imgSize.n; i += batchSize) {</pre>
        auto name = std::to_string(i) + "-" + std::to_string(i + batchSize - 1);
         spdlog::debug("Loop {}", name);
         auto img = CreatePayloadImage(imgBatchSize, name);
        GenerateData(i, img);
         auto space = CreatePayloadTraverseSpace(traverseSpaceBatchSize, name);
         GenerateTraverseSpaces(imgCroppedBatchSize, volumeSize, space, symmetries, settings);
         auto fft = ConvertToFFT(img, name);
        auto croppedFFT = Crop(fft, filter, name);
        InsertToVolume(croppedFFT, volume, weight, space, table, settings);
         RemovePD(img.dataInfo);
        RemovePD(fft.dataInfo);
        RemovePD(space.dataInfo):
         RemovePD(croppedFFT.dataInfo);
        OptionalSynch();
64
       GetFRAlg().Synchronize();// wait till the work is done
      // Show results
      // Print(volume, "Volume data");
      // Print(weight, "Weight data");
      RemovePD(table.dataInfo):
       RemovePD(weight.dataInfo);
```

RemovePD(volume.dataInfo); RemovePD(filter.dataInfo);

Barracuda

- OS: Ubuntu 18.04.2 LTS
- RAM: 32 GiB @ 2666 MHz
- ∘ CPU: Intel® Core™ i7-8700 @ 3.20 GHz
- GPU: GeForce GTX 1070 (8 GiB)
- SSD: Samsung NVMe SM981/PM981

Supercuda

- OS: Ubuntu 18.04.2 LTS
- RAM: 32 GiB @ 2666 MHz
- ∘ CPU: Intel® Core™ i7-8700 @ 3.20 GHz
- GPU: GeForce RTX 2080 (8 GiB)
- SSD: Samsung NVMe SM981/PM981

jsem naměřil a komentuji je. Vstupní dataset čítá 31 547 snímků viru (Brome mosaic virus) [12], každý o rozměrech 83×83 pixelů. V testech se symetrií byl každý snímek umístěn 60krát, podle icosahedrální symetrie. Bez symetrie byly snímky umístěny pouze jednou.

Tabulka 3: Výsledky měření na jednom stroji, bez symetrií a bez CPU implementace codeletu rekonstrukce. Údaje v sekundách.

	Původní	eager	random	WS	lws	dm	dmda	dmdas	dmdasd
Barracuda	8,18 ± 0,08 %	4,49 ± 0,70 %	$5,21 \pm 0,80 \%$	4,46 ± 0,63 %	6,64 ± 0,41 %	4,51 ± 0,75 %	$4,54 \pm 0,44 \%$	4,45 ± 0,42 %	$4,51 \pm 0,72 \%$
Supercuda	8,10 ± 0,06 %	4,54 ± 0,39 %	5,26 ± 0,63 %	4,55 ± 0,39 %	5,97 ± 0,27 %	4,57 ± 0,70 %	4,61 ± 0,54 %	4,57 ± 0,47 %	4,55 ± 0,34 %

Tabulka 4: Výsledky měření na jednom stroji, se symetriemi a bez CPU implementace codeletu rekonstrukce. Údaje v sekundách.

	Původní	eager	random	WS	lws	dm	dmda	dmdas	dmdasd
Barracud <mark>a</mark>	98,23 ± 0,05 %	96,91 ± 0,01 %	99,01 ± 0,05 %	96,81 ± 0,01 %	97,37 ± 0,07 %	98,73 ± 0,03 %	98,74 ± 0,03 %	98,73 ± 0,04 %	98,68 ± 0,03 %
Supercuda	38,40 ± 0,02 %	39,70 ± 0,04 %	41,10 ± 0,07 %	39,79 ± 0,02 %	$39,90 \pm 0,02 \%$	40,74 ± 0,04 %	$40,77 \pm 0,04 \%$	40,82 ± 0,05 %	40,80 ± 0,05 %

Table 5: Runtime of Fourier Reconstruction in seconds, entire machine.Speedup is computed relative to Xmipp implementation

Resolution	Symmetries	Projections	Xmipp	Umpalumpa	Speedup
64×64	78	100 000	43,6	6,3	$696 \ \%$
128×128	78	30 000	14,4	7,6	$190 \ \%$
256×256	78	10 000	12,2	11,7	$104 \ \%$
512×512	78	10 000	46,0	39,4	117 %

54 D. Střelák – Acceleration of image processing algorithms for SPA by EM

Summary Cryo-EM

- several performance critical
 - algorithms have been accelerated
 - increased productivity
 - quality consensus
- all contributions are open-source
 and used by the community via
 Xmipp suite*

* https://github.com/I2PC/xmipp

HPC

- three novel tools

cuFFTAdvisor

- open-source*
- its core functionality might be added directly to cuFFT

KTT

- open-source*
- introduced dynamic autotuning

Umpalumpa

- open-source*
- combining tasks with autotuning

* https://github.com/HiPerCoRe/cuFFTAdvisor https://github.com/HiPerCoRe/KTT

Thank you for your attention

[1] **STŘELÁK, David**, Jiří FILIPOVIČ, Amaya JIMÉNEZ-MORENO, José María Carazo and Carlos Óscar S. SORZANO. "FlexAlign: an accurate and fast algorithm for movie alignment in Cryo-Electron Microscopy". Special Issue of Electronics "FPGA/GPU Acceleration of Biomedical Engineering Applications" (2020). ISSN: 2079-9292. Scopus Q2

[2] JIMÉNEZ-MORENO, Amaya, David STŘELÁK, Jiří FILIPOVIČ, José María CARAZO and Carlos Óscar S. SORZANO. DeepAlign, a 3D Alignment Method based on Regionalized Deep Learning for Cryo-EM. Journal of Structural Biology. San Diego, USA: Academic Press, 2021, vol. 213, No 2, 14 pp. ISSN 1047-8477. doi:10.1016/j.jsb.2021.107712. Scopus Q2

[3] **STŘELÁK, David**, Carlos Óscar S. SORZANO, José María CARAZO and Jiří FILIPOVIČ. A GPU acceleration of 3-D Fourier reconstruction in cryo-EM. The International Journal of High Performance Computing Applications, SAGE Publishing, 2019, vol. 33, No 5, p. 948-959. ISSN 1094-3420. doi:10.1177/1094342019832958. Scopus Q2

[4] PETROVIČ, Filip, **David STŘELÁK**, Jana HOZZOVÁ, Jaroslav OĽHA, Richard TREMBECKÝ, Siegfried BENKNER and Jiří FILIPOVIČ. A benchmark set of highly-efficient CUDA and OpenCL kernels and its dynamic autotuning with Kernel Tuning Toolkit. Future Generation Computer Systems, Elsevier, 2020, vol. 108, p. 161-177. ISSN 0167-739X. doi:10.1016/j.future.2020.02.069. Scopus Q1 [5] **STŘELÁK, David** and Jiří FILIPOVIČ. Performance analysis and autotuning setup of the cuFFT library. In ACM International Conference Proceeding Series. Limassol, Cyprus: ACM, 2018., 6 pp. ISBN 978-1-4503-6591-8. doi:10.1145/3295816.3295817.

[6] STŘELÁK, David, Amaya JIMÉNEZ-MORENO, José VILAS, Erney RAMÍREZ-APORTELA, Ruben SÁNCHEZ-GARCÍA, David MALUENDA, Javier VARGAS, David HERREROS, Estrella FERNÁNDEZ-GIMÉNEZ, Federico DE ISIDRO-GÓMEZ, Jan HORÁČEK, David MYŠKA, Martin HORÁČEK, Pablo CONESA, Yunior FONSECA-REYNA, Jorge JIMÉNEZ, Marta MARTÍNEZ, Mohamad HARASTANI, Slavica JONIĆ, Jiří FILIPOVIČ, Roberto MARABINI, José CARAZO and Carlos SORZANO. Advances in Xmipp for Cryo–Electron Microscopy: From Xmipp to Scipion. Molecules. Mayer und Muller, 2021, vol. 26, No 20, p. 1-14. ISSN 1420-3049. doi:10.3390/molecules26206224. Scopus Q2

[7] **STŘELÁK, David**, David MYSKA, Filip Petrovic, Jan Polak, Jaroslav Olha and Jiri Filipovic . Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes. Computing (Submitted, Scopus Q2)

In addition, I have co-authored 5 other articles and one book chapter

https://www.ebi.ac.uk/pdbe/entry/emdb/EMD-21024/experiment https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10337/ Icon made by Eucalyp from www.flaticon.com

Additional materials

58 D. Střelák – Acceleration of image processing algorithms for SPA by EM

cuFFTAdvisor - terms

- $-2^{a} \times 3^{b} \times 5^{c} \times 7^{d}$, where $a \neq 0$
- make sure the size of the input can be decomposed to as few kernel calls as possible (more info)

	1 term	2 terms	3 terms	4 terms	1-4 terms	heuristics	autotuned
count	2000	1927	1963	1972	2000	2000	2000
mean	5.05	5.94	5.84	5.61	5.90	6.03	6.94
std	1.70	1.80	1.71	1.68	1.67	1.68	1.81
min	0.54	0.93	0.82	0.80	1.00	1.00	1.01
25%	3.79	4.59	4.57	4.21	4.64	4.73	5.46
50%	4.73	5.49	5.43	5.36	5.51	5.69	6.68
75%	5.98	7.25	7.11	6.84	7.22	7.39	8.22
max	11.65	12.65	14.42	12.16	14.42	14.42	13.77

cuFFTAdvisor – memory usage

Our primary focus was performance

- using 'recommended' sizes automatically reduces memory footprint
- using multiple of two reduces memory
- more details in the paper [6]

