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Past and Future Kubernetes Tutorials 

 RNDr. Lukáš Hejtmánek, Ph.D. 
■ 4. 5. + 11. 5. 2022 - Kubernetes Tutorial (1&2) here at Sitola 
■ Online Webinar (past) 

■ https://metavo.metacentrum.cz/cs/seminars/Webinar_2022/kubernetes2022.html 
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What is the Big Deal with K8s? 

 Containerized applications are popular 
■ Containers hide the complexities of modern SW 

 K8s is “container orchestrator” 
■ Deploys containers (in so called “Pods”) 
■ Handles network, storage access 
■ Checks their status (availability and scalability) 
■ Organizes them wrt. given rules (Pod-to-node mapping) 
■ Kills/restarts Pods when needed 

 CERIT-SC K8s installation 
■ 2,560 CPUs in 20 nodes (128 cores, 512 GB RAM, 1 GPU, 7TB local SSD) 
■ Web and interactive applications 

■ Jupiter Hub, Binder Hub, Ansys, Matlab, RStudio, Wordpress… 
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Scheduling Challenges in K8s 

 

 We know standard batch-oriented HPC scheduling 

 

 We cannot reuse same techniques in K8s easily 

 

 Examples, Comparisons & Discussion 

 



HPC vs. K8s SCHEDULING 
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Batch vs K8s Workloads 

 Batch workloads 
■ Scripted executables 
■ Non-interactive (mostly) 
■ Waiting in queue is OK 
■ Resource intensive 
■ Rather accurate resource 

requirements 
■ Strict maximum runtime limit 

 

 

 K8s workloads 
■ Interactive usage is common 
■ GUI-based work 
■ Long running services  
■ Waiting is not OK 
■ Overestimated resource 

requirements 
■ Usually not limited runtime 
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Batch vs K8s Scheduling Concepts 

 Batch scheduling basics 
■ The organization owns the resources 
■ Resources are provided for free 
■ So fairness is important 

 

 How does the scheduler work? 
■ Jobs in queue(s) 
■ Queue is ordered by priority 
■ User-priority is dynamic (fairness) 

■ User waiting = priority ↑ 
■ User computing = priority ↓ 

 
■ Over long time period user’s “share” is balanced with other active users 

 Scheduler decides who gets the resources and when 
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Batch vs K8s Scheduling Concepts 

 K8s workloads 
■ Interactive, no waiting, no maximum runtime… 

 Scheduling basics (cloud, K8s) in commercial world 
■ Users “own” the infrastructure 
■ Pay-per-use model 
■ Perfect motivation to release resources 
■ Unused allocations? Overcommitted 

■ Used by low QoS workloads 
■ Can be terminated, if needed 

 

 There is no “scheduling” needed... You are the “scheduler” 
■ Instead, “capacity planning” is crucial 
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Batch vs K8s Scheduling Concepts 

 Scheduling = capacity planning 
■ Load prediction (Black Friday, Christmas, Superbowl, new season of 

Mandalorian…) 
■ Clever aggregation of different workloads 
■ Resource pool can be increased (thanks to the revenue) 

 Good scheduler/capacity planner = money  
■ You aggregate better 
■ You sell more with less resources needed 

 The main difference between batch and K8s scheduling 
■ The user who gives you the money is the “scheduler” 
■ So there are no sophisticated schedulers available 
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Scientific (non-commercial) Use of 
Kubernetes 

 We are not commercial providers 
■ We have strictly limited resources 
■ Yet our users expect similar experience as in the commercial world 

■ Partly because we advertise our installation in such way 

 K8s offers basic mechanisms for scheduling 
■ Resource quotas 

■ Constraints that limit aggregate resource consumption per namespace  

■ Pod resource requests and limits  
■ Guaranteed requests + best effort upper bound limits 

■ Static Priority Classes 
■ Higher priority Pod evicts lower priority Pod if needed 

■ Pods with limited runtime (called Jobs) 
 

 



PROBLEMS?  
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Common Problems - Bursty Workloads 

 Bursty workloads 
■ E.g., long running services that scientists use “three times a week for 2 hours” 
■ Such services are mostly idle, but will have peaks 
■ Overestimated requests 

 

 

 

CPU limit 

CPU request 

peak usage 

Pod running bursty workload 
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Common Problems – Resource Wasting 

 What is the problem? 
■ In general, overestimated requests (and zombies)  
■ Requests are guaranteed, thus overestimation means resource wasting 
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Some Good News 

 Some problems can be addressed quite 
efficiently 
 

 Free resources can be used by “scavenger” jobs 
■ Jobs that are small and can be evicted/restarted easily 
■ Help to utilize free resources 

 

 Pod requests must be “low” 
■ And we must allow the affected Pod to “scale up” 
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idle usage 

Scavenger Job 

Scavenger Job 

Scavenger Job 

Scavenger Job 

Scavenger Job 

Scavenger Job 

CPU request 

Pod during idle period 
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K8s Limitations 

 

 It is impossible to modify Pod priority dynamically 

 Or adjust too generous/tight Pod allocations 
■ Pod restart is requested 
■ No problem for “stateless” microservices 
■ Usually bigger deal for “scientific computations” 

 There is a “workaround” 
■ Enables the Pod to use more/less resources 
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Workaround: Placeholder Jobs 

 Pod-scaling can be achieved by running “placeholder” job 
■ Placeholder evicts scavangers 
■ Best effort 
■ Manual process 
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OPEN PROBLEMS 
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Open Problems – HPC vs. K8s 
Comparison 

 Common HPC batch scheduler 
■ When the system is full and new user arrives you can always: 
■ Tell the user what is his/her priority 
■ And estimate (roughly) when the running jobs of other users will terminate 
■ Or even provide him/her a non-destructive reservation 
■ This is all automatic 

 In K8s… 
■ Impossible to estimate Pod wait time (when we are out of resources) 

■ No guarantees – the Pod either starts immediately or… never? 
■ Unless we “manually” adjust the priority of the new Pod to evict some running Pod(s) 

■ Resource reclaiming is not solved => no Pod life-cycle management 
■ There is no such thing as “fairshare” in K8s 
■ No automation  
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Alternate Solutions & Future Work 

 Partition the infrastructure into clusters with different “rules” 
■ E.g., a cluster with time-limited access only 
■ Dedicated schedulers for each such cluster (either our own or third party) 

 Still, infrastructure will suffer from fragmentation 

 The need for long-term solution remains 
■ How to offer the service?  
■ What “QoS” we want to guarantee 

 Definition of overall usage policy 
■ Define mechanisms to implement this policy 
■ Either “by hand” or through some automated scheduling policy 

 



QUESTIONS?  
SUGGESTIONS? 
 
more info at: 
• Sitola seminars in May (4.+11. 5. 2022) 
• JSSPP 2022 paper “Using Kubernetes in Academic Environment: 

Problems and Approaches” 
• Future talk at Kubernetes batch + HPC day EU 
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Specific Problems – Resource Wasting 

 What is the problem? 
■ In general, overestimated requests (and zombies)  
■ Requests are guaranteed, thus overestimation means resource wasting 

 

 

 


