
KUBERNETES CONTAINER ORCHESTRATOR
SCHEDULING PROBLEMS AND CHALLENGES

Dalibor Klusáček
CESNET

April 2022
Brno

06.04.2022 MetaCentrum 2

Past and Future Kubernetes Tutorials

 RNDr. Lukáš Hejtmánek, Ph.D.
■ 4. 5. + 11. 5. 2022 - Kubernetes Tutorial (1&2) here at Sitola
■ Online Webinar (past)

■ https://metavo.metacentrum.cz/cs/seminars/Webinar_2022/kubernetes2022.html

06.04.2022 MetaCentrum 3

What is the Big Deal with K8s?

 Containerized applications are popular
■ Containers hide the complexities of modern SW

 K8s is “container orchestrator”
■ Deploys containers (in so called “Pods”)
■ Handles network, storage access
■ Checks their status (availability and scalability)
■ Organizes them wrt. given rules (Pod-to-node mapping)
■ Kills/restarts Pods when needed

 CERIT-SC K8s installation
■ 2,560 CPUs in 20 nodes (128 cores, 512 GB RAM, 1 GPU, 7TB local SSD)
■ Web and interactive applications

■ Jupiter Hub, Binder Hub, Ansys, Matlab, RStudio, Wordpress…

06.04.2022 MetaCentrum 4

Scheduling Challenges in K8s

 We know standard batch-oriented HPC scheduling

 We cannot reuse same techniques in K8s easily

 Examples, Comparisons & Discussion

HPC vs. K8s SCHEDULING

06.04.2022 MetaCentrum 6

Batch vs K8s Workloads

 Batch workloads
■ Scripted executables
■ Non-interactive (mostly)
■ Waiting in queue is OK
■ Resource intensive
■ Rather accurate resource

requirements
■ Strict maximum runtime limit

 K8s workloads
■ Interactive usage is common
■ GUI-based work
■ Long running services
■ Waiting is not OK
■ Overestimated resource

requirements
■ Usually not limited runtime

re
s
o
u
rc

e
s

time

re
s
o
u
rc

e
s

time

06.04.2022 MetaCentrum 7

Batch vs K8s Scheduling Concepts

 Batch scheduling basics
■ The organization owns the resources
■ Resources are provided for free
■ So fairness is important

 How does the scheduler work?
■ Jobs in queue(s)
■ Queue is ordered by priority
■ User-priority is dynamic (fairness)

■ User waiting = priority ↑
■ User computing = priority ↓

■ Over long time period user’s “share” is balanced with other active users

 Scheduler decides who gets the resources and when

re
s
o
u
rc

e
s

time

06.04.2022 MetaCentrum 8

Batch vs K8s Scheduling Concepts

 K8s workloads
■ Interactive, no waiting, no maximum runtime…

 Scheduling basics (cloud, K8s) in commercial world
■ Users “own” the infrastructure
■ Pay-per-use model
■ Perfect motivation to release resources
■ Unused allocations? Overcommitted

■ Used by low QoS workloads
■ Can be terminated, if needed

 There is no “scheduling” needed... You are the “scheduler”
■ Instead, “capacity planning” is crucial

re

s
o
u
rc

e
s

time

06.04.2022 MetaCentrum 9

Batch vs K8s Scheduling Concepts

 Scheduling = capacity planning
■ Load prediction (Black Friday, Christmas, Superbowl, new season of

Mandalorian…)
■ Clever aggregation of different workloads
■ Resource pool can be increased (thanks to the revenue)

 Good scheduler/capacity planner = money
■ You aggregate better
■ You sell more with less resources needed

 The main difference between batch and K8s scheduling
■ The user who gives you the money is the “scheduler”
■ So there are no sophisticated schedulers available

06.04.2022 MetaCentrum 10

Scientific (non-commercial) Use of
Kubernetes

 We are not commercial providers
■ We have strictly limited resources
■ Yet our users expect similar experience as in the commercial world

■ Partly because we advertise our installation in such way

 K8s offers basic mechanisms for scheduling
■ Resource quotas

■ Constraints that limit aggregate resource consumption per namespace

■ Pod resource requests and limits
■ Guaranteed requests + best effort upper bound limits

■ Static Priority Classes
■ Higher priority Pod evicts lower priority Pod if needed

■ Pods with limited runtime (called Jobs)

PROBLEMS?

06.04.2022 MetaCentrum 12

Common Problems - Bursty Workloads

 Bursty workloads
■ E.g., long running services that scientists use “three times a week for 2 hours”
■ Such services are mostly idle, but will have peaks
■ Overestimated requests

CPU limit

CPU request

peak usage

Pod running bursty workload

06.04.2022 MetaCentrum 13

Common Problems – Resource Wasting

 What is the problem?
■ In general, overestimated requests (and zombies)
■ Requests are guaranteed, thus overestimation means resource wasting

0,00001

0,0001

0,001

0,01

0,1

1

10

100

1000

10000

100000

1000000

n
a
m

e
s
p

a
c
e

_
0

n
a
m

e
s
p

a
c
e

_
3

n
a
m

e
s
p

a
c
e

_
6

n
a
m

e
s
p

a
c
e

_
9

n
a
m

e
s
p

a
c
e

_
1

2

n
a
m

e
s
p

a
c
e

_
1

5

n
a
m

e
s
p

a
c
e

_
1

8

n
a
m

e
s
p

a
c
e

_
2

1

n
a
m

e
s
p

a
c
e

_
2

4

n
a
m

e
s
p

a
c
e

_
2

7

n
a
m

e
s
p

a
c
e

_
3

0

n
a
m

e
s
p

a
c
e

_
3

3

n
a
m

e
s
p

a
c
e

_
3

6

n
a
m

e
s
p

a
c
e

_
3

9

n
a
m

e
s
p

a
c
e

_
4

2

n
a
m

e
s
p

a
c
e

_
4

5

n
a
m

e
s
p

a
c
e

_
4

8

n
a
m

e
s
p

a
c
e

_
5

1

n
a
m

e
s
p

a
c
e

_
5

4

n
a
m

e
s
p

a
c
e

_
5

7

n
a
m

e
s
p

a
c
e

_
6

0

n
a
m

e
s
p

a
c
e

_
6

3

n
a
m

e
s
p

a
c
e

_
6

6

n
a
m

e
s
p

a
c
e

_
6

9

re
la

ti
v
e

 u
s
a

g
e

 o
f

a
llo

c
a

te
d

 C
P

U

h
o

u
rs

 (
%

)

relative usage (%) of allocated CPU hours per K8s namespace

allocation usage%

allocation 100%

allocation 50%

allocation 5%

06.04.2022 MetaCentrum 14

Some Good News

 Some problems can be addressed quite
efficiently

 Free resources can be used by “scavenger” jobs
■ Jobs that are small and can be evicted/restarted easily
■ Help to utilize free resources

 Pod requests must be “low”
■ And we must allow the affected Pod to “scale up”

CPU limit

idle usage

Scavenger Job

Scavenger Job

Scavenger Job

Scavenger Job

Scavenger Job

Scavenger Job

CPU request

Pod during idle period

06.04.2022 MetaCentrum 15

K8s Limitations

 It is impossible to modify Pod priority dynamically

 Or adjust too generous/tight Pod allocations
■ Pod restart is requested
■ No problem for “stateless” microservices
■ Usually bigger deal for “scientific computations”

 There is a “workaround”
■ Enables the Pod to use more/less resources

06.04.2022 MetaCentrum 16

Workaround: Placeholder Jobs

 Pod-scaling can be achieved by running “placeholder” job
■ Placeholder evicts scavangers
■ Best effort
■ Manual process

CPU limit

idle usage

CPU limit

CPU request

peak usage

CPU request = CPU limit

Scavenger Job

Scavenger Job

Scavenger Job

Scavenger Job

Scavenger Job

Scavenger Job
CPU request

 idle period peak period idle placeholder

 Idle Pod + Scavenger Jobs Busy Pod + Placeholder Job

placeholder job

remains idle

and reserves

capacity for

active Pod

OPEN PROBLEMS

06.04.2022 MetaCentrum 18

Open Problems – HPC vs. K8s
Comparison

 Common HPC batch scheduler
■ When the system is full and new user arrives you can always:
■ Tell the user what is his/her priority
■ And estimate (roughly) when the running jobs of other users will terminate
■ Or even provide him/her a non-destructive reservation
■ This is all automatic

 In K8s…
■ Impossible to estimate Pod wait time (when we are out of resources)

■ No guarantees – the Pod either starts immediately or… never?
■ Unless we “manually” adjust the priority of the new Pod to evict some running Pod(s)

■ Resource reclaiming is not solved => no Pod life-cycle management
■ There is no such thing as “fairshare” in K8s
■ No automation

06.04.2022 MetaCentrum 19

Alternate Solutions & Future Work

 Partition the infrastructure into clusters with different “rules”
■ E.g., a cluster with time-limited access only
■ Dedicated schedulers for each such cluster (either our own or third party)

 Still, infrastructure will suffer from fragmentation

 The need for long-term solution remains
■ How to offer the service?
■ What “QoS” we want to guarantee

 Definition of overall usage policy
■ Define mechanisms to implement this policy
■ Either “by hand” or through some automated scheduling policy

QUESTIONS?
SUGGESTIONS?

more info at:
• Sitola seminars in May (4.+11. 5. 2022)
• JSSPP 2022 paper “Using Kubernetes in Academic Environment:

Problems and Approaches”
• Future talk at Kubernetes batch + HPC day EU

06.04.2022 MetaCentrum 21

Specific Problems – Resource Wasting

 What is the problem?
■ In general, overestimated requests (and zombies)
■ Requests are guaranteed, thus overestimation means resource wasting

